|
1.Liochev, S.I. and I. Fridovich, Superoxide and iron: partners in crime. IUBMB Life, 1999. 48(2): p. 157-61. 2.Beckman, J.S. and W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol, 1996. 271(5 Pt 1): p. C1424-37. 3.LeDoux, S.P., et al., Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat Res, 1999. 434(3): p. 149-59. 4.Stadtman, E.R. and R.L. Levine, Protein oxidation. Ann N Y Acad Sci, 2000. 899: p. 191-208. 5.Rubbo, H., et al., Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem, 1994. 269(42): p. 26066-75. 6.Nordberg, J. and E.S. Arner, Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 2001. 31(11): p. 1287-312. 7.Turrens, J.F., Mitochondrial formation of reactive oxygen species. J Physiol, 2003. 552(Pt 2): p. 335-44. 8.Finkel, T. and N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature, 2000. 408(6809): p. 239-47. 9.Schlattner, U., M. Tokarska-Schlattner, and T. Wallimann, Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta, 2006. 1762(2): p. 164-80. 10.Ellington, W.R. and T. Suzuki, Early evolution of the creatine kinase gene family and the capacity for creatine biosynthesis and membrane transport. Subcell Biochem, 2007. 46: p. 17-26. 11.Wong, A.C., et al., Expression and distribution of creatine transporter and creatine kinase (brain isoform) in developing and mature rat cochlear tissues. Histochem Cell Biol, 2012. 137(5): p. 599-613. 12.Shin, J.B., et al., Hair bundles are specialized for ATP delivery via creatine kinase. Neuron, 2007. 53(3): p. 371-86. 13.McLeish, M.J. and G.L. Kenyon, Relating structure to mechanism in creatine kinase. Crit Rev Biochem Mol Biol, 2005. 40(1): p. 1-20. 14.Wyss, M. and R. Kaddurah-Daouk, Creatine and creatinine metabolism. Physiol Rev, 2000. 80(3): p. 1107-213. 15.Spicer, S.S. and B.A. Schulte, Creatine kinase in epithelium of the inner ear. Journal of Histochemistry & Cytochemistry, 1992. 40(2): p. 185-192. 16.Raphael, Y., et al., The sensory epithelium and its innervation in the mole rat cochlea. J Comp Neurol, 1991. 314(2): p. 367-82. 17.Kikuchi, T., et al., Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc, 2000. 33(2): p. 51-6. 18.Weber, P.C., C.D. Cunningham, 3rd, and B.A. Schulte, Potassium recycling pathways in the human cochlea. Laryngoscope, 2001. 111(7): p. 1156-65. 19.Dalton, D.S., et al., The impact of hearing loss on quality of life in older adults. Gerontologist, 2003. 43(5): p. 661-8. 20.Kane, K.L., et al., Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear Res, 2012. 283(1-2): p. 80-8. 21.Weston, T.E., Presbyacusis: A Study. J Coll Gen Pract, 1964. 7: p. 191-8. 22.Lin, Y.S., C.H. Wang, and Y. Chern, Besides Huntington's disease, does brain-type creatine kinase play a role in other forms of hearing impairment resulting from a common pathological cause? Aging (Albany NY), 2011. 3(6): p. 657-62. 23.Darrat, I., et al., Auditory research involving antioxidants. Curr Opin Otolaryngol Head Neck Surg, 2007. 15(5): p. 358-63. 24.Bielefeld, E.C., et al., Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide. Hear Res, 2005. 207(1-2): p. 35-42. 25.Puel, J.L., et al., Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. Neuroreport, 1998. 9(9): p. 2109-14. 26.Endo, T., et al., Elevation of superoxide dismutase increases acoustic trauma from noise exposure. Free Radic Biol Med, 2005. 38(4): p. 492-8. 27.Nordmann, A.S., B.A. Bohne, and G.W. Harding, Histopathological differences between temporary and permanent threshold shift. Hear Res, 2000. 139(1-2): p. 13-30. 28.Lin, Y.S., et al., Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease. J Clin Invest, 2011. 121(4): p. 1519-23. 29.Henry, K.R. and R.A. Chole, Genotypic differences in behavioral, physiological and anatomical expressions of age-related hearing loss in the laboratory mouse. Audiology, 1980. 19(5): p. 369-83. 30.Hequembourg, S. and M.C. Liberman, Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. J Assoc Res Otolaryngol, 2001. 2(2): p. 118-29. 31.Mikaelian, D.O., Development and degeneration of hearing in the C57/b16 mouse: relation of electrophysiologic responses from the round window and cochlear nucleus to cochlear anatomy and behavioral responses. Laryngoscope, 1979. 89(1): p. 1-15. 32.Wang, J., et al., Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice. Neurobiol Aging, 2010. 31(7): p. 1238-49. 33.Willott, J.F., Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol, 1986. 56(2): p. 391-408. 34.Hunter, K.P. and J.F. Willott, Aging and the auditory brainstem response in mice with severe or minimal presbycusis. Hear Res, 1987. 30(2-3): p. 207-18. 35.Keithley, E.M., et al., Age-related hearing loss and the ahl locus in mice. Hear Res, 2004. 188(1-2): p. 21-8. 36.Li, H.S. and E. Borg, Age-related loss of auditory sensitivity in two mouse genotypes. Acta Otolaryngol, 1991. 111(5): p. 827-34. 37.Zheng, Q.Y., K.R. Johnson, and L.C. Erway, Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res, 1999. 130(1-2): p. 94-107. 38.Jacono, A.A., et al., Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res, 1998. 117(1-2): p. 31-8. 39.Minami, S.B., et al., Creatine and tempol attenuate noise-induced hearing loss. Brain Res, 2007. 1148: p. 83-9. 40.Lawler, J.M., et al., Direct antioxidant properties of creatine. Biochem Biophys Res Commun, 2002. 290(1): p. 47-52. 41.Sestili, P., et al., Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med, 2006. 40(5): p. 837-49.
|