跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃銘瑗
研究生(外文):Huang, Ming-Yuan
論文名稱:探討肌酸補充對於氧化壓力造成腦型肌酸激酶下降的保護效果
論文名稱(外文):Protective Effect of Creatine Supplementation on Oxidative Stress Mediated Brain-type Creatine Kinase Depletion
指導教授:王智弘王智弘引用關係
口試委員:張俊梁劉岱瑋
口試日期:2013-05-27
學位類別:碩士
校院名稱:國防醫學院
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:64
外文關鍵詞:cochleareactive oxygen species (ROS)brain-type creatine kinase (CKB)creatine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
活性氧物質會影響體內細胞的恆定,生產過多通常會與細胞死亡、疾病、以及老化有關。 老化會導致多個系統產生漸進性的功能損失,其中老年性聽力損傷也被認為與活性氧物質在內耳所引發的損傷有關。 此外,活性氧物質的大量形成也是噪音性聽力損傷的主要作用機制。耳蝸相較於其他器官更易受到氧化壓力的傷害,因為其內部構造的機械性感覺毛細胞在聲音刺激反應下有高度的能量代謝需求。 我們最近的研究發現,在具有聽損的漢丁頓氏症患者和小鼠模型中,腦型肌酸激酶的調控異常是造成聽損的重要原因,藉由肌酸飲食的補充則可提升耳蝸內腦型肌酸激酶的表現並減少氧化壓力,也藉此恢復小鼠的部分聽力。 因此,在我的研究中,我們假設腦型肌酸激酶的調控異常不單是造成漢丁頓氏症的聽損而已,可能也與其他形式的聽損有所關連。 我們希望驗證腦型肌酸激酶在活性氧物質所涉及的聽損傷害中扮演著重要的角色。實驗結果證實小鼠耳蝸中腦型肌酸激酶會隨著老化或噪音暴露後降低其表現量;給予肌酸的補充則可以提昇小鼠耳蝸腦型肌酸激酶的表現。 此外,在細胞培養的實驗中我們也證實了肌酸確實可以保護細胞減少活性氧物質的傷害以及其抗氧化的角色。
The generation of reactive oxygen species (ROS) will affect cellular homeostasis and high level of ROS are believed to be associated with cell death, disease, and aging. Aging results in progressive functional losses crossing multiple systems. Aging-induced hearing loss (AHL) may be contributed by ROS damage in the inner ear. In addition, the molecular mechanism for noise-induced hearing loss (NIHL) also involves the ROS formation. Cochleae are more vulnerable to oxidative stress compared to other organs because of the highly metabolic demands on their mechanosensory hair cells in response to sound stimulation. We recently showed that patients and mice with Huntington’s disease (HD) have hearing impairment and that the dysregulated phosphocreatine (PCr)‐creatine kinase (CK) system may account for this auditory dysfunction. Dietary creatine supplements have been shown to rescue the expression of cochlear brain type creatine kinase (CKB) in HD mice by reducing oxidative stress and thereby restoring their hearing. Thus, in my research, we hypothesize that dysregulated CKB not only be responsible for HD-related hearing impairment, but may also be implicated in several hearing impairments. We would like to investigate whether CKB plays an important role in ROS resultant hearing damages. Our results demonstrate that the expression of CKB in the cochlea would be reduced following the noise exposure or aging. Creatine supplementation helps in upregulating the expression of CKB in the mice cochleae. In addition, we showed that creatine, as an antioxidant, was demonstrated to protect auditory cells from ROS damage in vitro.
正文目錄 I
圖目錄 IV
中文摘要 V
ABSTRACT VI

第一章 緒論
第一節 活性氧化物質 1
第二節 腦型肌酸激酶 2
第三節 耳蝸之構造及功能 4
第四節 老年性聽損 5
第五節 噪音對耳蝸之影響 7
第六節 實驗動機與目的 8
第二章 材料與方法
第一節 試劑 10
第二節 動物模式 12
第三節 聽性腦幹反應 13
第四節 噪音模式 14
第五節 耳蝸組織樣本製備 14
第六節 石蠟組織切片 15
第七節 免疫組織化學染色 16
第八節 蛋白質定量 18
第九節 西方墨點法 19
第十節 細胞株培養 21
第十一節 模擬ROS環境 21
第十二節 胞內ROS偵測 22
第三章 結果
第一節 老化對腦型肌酸激酶表現的影響 23
第二節 噪音暴露後對腦型肌酸激酶表現的影響 25
第三節 肌酸補充對噪音暴露後肌酸激酶表現的影響 26
第四節 肌酸補充對細胞株之存活影響 28
第五節 肌酸補充對細胞內氧化壓力之影響 29
第四章 討論
第五章 結論
第六章 參考文獻

圖目錄
圖1 47
圖2 48
圖3 49
圖4 49
圖5 49
圖6 49
圖7 49
圖8 49
圖9 49
圖10 49
1.Liochev, S.I. and I. Fridovich, Superoxide and iron: partners in crime. IUBMB Life, 1999. 48(2): p. 157-61.
2.Beckman, J.S. and W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol, 1996. 271(5 Pt 1): p. C1424-37.
3.LeDoux, S.P., et al., Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat Res, 1999. 434(3): p. 149-59.
4.Stadtman, E.R. and R.L. Levine, Protein oxidation. Ann N Y Acad Sci, 2000. 899: p. 191-208.
5.Rubbo, H., et al., Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem, 1994. 269(42): p. 26066-75.
6.Nordberg, J. and E.S. Arner, Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 2001. 31(11): p. 1287-312.
7.Turrens, J.F., Mitochondrial formation of reactive oxygen species. J Physiol, 2003. 552(Pt 2): p. 335-44.
8.Finkel, T. and N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature, 2000. 408(6809): p. 239-47.
9.Schlattner, U., M. Tokarska-Schlattner, and T. Wallimann, Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta, 2006. 1762(2): p. 164-80.
10.Ellington, W.R. and T. Suzuki, Early evolution of the creatine kinase gene family and the capacity for creatine biosynthesis and membrane transport. Subcell Biochem, 2007. 46: p. 17-26.
11.Wong, A.C., et al., Expression and distribution of creatine transporter and creatine kinase (brain isoform) in developing and mature rat cochlear tissues. Histochem Cell Biol, 2012. 137(5): p. 599-613.
12.Shin, J.B., et al., Hair bundles are specialized for ATP delivery via creatine kinase. Neuron, 2007. 53(3): p. 371-86.
13.McLeish, M.J. and G.L. Kenyon, Relating structure to mechanism in creatine kinase. Crit Rev Biochem Mol Biol, 2005. 40(1): p. 1-20.
14.Wyss, M. and R. Kaddurah-Daouk, Creatine and creatinine metabolism. Physiol Rev, 2000. 80(3): p. 1107-213.
15.Spicer, S.S. and B.A. Schulte, Creatine kinase in epithelium of the inner ear. Journal of Histochemistry & Cytochemistry, 1992. 40(2): p. 185-192.
16.Raphael, Y., et al., The sensory epithelium and its innervation in the mole rat cochlea. J Comp Neurol, 1991. 314(2): p. 367-82.
17.Kikuchi, T., et al., Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc, 2000. 33(2): p. 51-6.
18.Weber, P.C., C.D. Cunningham, 3rd, and B.A. Schulte, Potassium recycling pathways in the human cochlea. Laryngoscope, 2001. 111(7): p. 1156-65.
19.Dalton, D.S., et al., The impact of hearing loss on quality of life in older adults. Gerontologist, 2003. 43(5): p. 661-8.
20.Kane, K.L., et al., Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear Res, 2012. 283(1-2): p. 80-8.
21.Weston, T.E., Presbyacusis: A Study. J Coll Gen Pract, 1964. 7: p. 191-8.
22.Lin, Y.S., C.H. Wang, and Y. Chern, Besides Huntington's disease, does brain-type creatine kinase play a role in other forms of hearing impairment resulting from a common pathological cause? Aging (Albany NY), 2011. 3(6): p. 657-62.
23.Darrat, I., et al., Auditory research involving antioxidants. Curr Opin Otolaryngol Head Neck Surg, 2007. 15(5): p. 358-63.
24.Bielefeld, E.C., et al., Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide. Hear Res, 2005. 207(1-2): p. 35-42.
25.Puel, J.L., et al., Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. Neuroreport, 1998. 9(9): p. 2109-14.
26.Endo, T., et al., Elevation of superoxide dismutase increases acoustic trauma from noise exposure. Free Radic Biol Med, 2005. 38(4): p. 492-8.
27.Nordmann, A.S., B.A. Bohne, and G.W. Harding, Histopathological differences between temporary and permanent threshold shift. Hear Res, 2000. 139(1-2): p. 13-30.
28.Lin, Y.S., et al., Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease. J Clin Invest, 2011. 121(4): p. 1519-23.
29.Henry, K.R. and R.A. Chole, Genotypic differences in behavioral, physiological and anatomical expressions of age-related hearing loss in the laboratory mouse. Audiology, 1980. 19(5): p. 369-83.
30.Hequembourg, S. and M.C. Liberman, Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. J Assoc Res Otolaryngol, 2001. 2(2): p. 118-29.
31.Mikaelian, D.O., Development and degeneration of hearing in the C57/b16 mouse: relation of electrophysiologic responses from the round window and cochlear nucleus to cochlear anatomy and behavioral responses. Laryngoscope, 1979. 89(1): p. 1-15.
32.Wang, J., et al., Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice. Neurobiol Aging, 2010. 31(7): p. 1238-49.
33.Willott, J.F., Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol, 1986. 56(2): p. 391-408.
34.Hunter, K.P. and J.F. Willott, Aging and the auditory brainstem response in mice with severe or minimal presbycusis. Hear Res, 1987. 30(2-3): p. 207-18.
35.Keithley, E.M., et al., Age-related hearing loss and the ahl locus in mice. Hear Res, 2004. 188(1-2): p. 21-8.
36.Li, H.S. and E. Borg, Age-related loss of auditory sensitivity in two mouse genotypes. Acta Otolaryngol, 1991. 111(5): p. 827-34.
37.Zheng, Q.Y., K.R. Johnson, and L.C. Erway, Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res, 1999. 130(1-2): p. 94-107.
38.Jacono, A.A., et al., Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res, 1998. 117(1-2): p. 31-8.
39.Minami, S.B., et al., Creatine and tempol attenuate noise-induced hearing loss. Brain Res, 2007. 1148: p. 83-9.
40.Lawler, J.M., et al., Direct antioxidant properties of creatine. Biochem Biophys Res Commun, 2002. 290(1): p. 47-52.
41.Sestili, P., et al., Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med, 2006. 40(5): p. 837-49.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top