跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱正迪
研究生(外文):Chiu Cheng-Di
論文名稱:白蛋白在高血糖大白鼠出血性腦中風的病理生理角色
論文名稱(外文):The pathophysiologic roles of albumin on hyperglycemic rats after intracerebral hemorrhage
指導教授:朱紀洪朱紀洪引用關係
指導教授(外文):Chi-Hong Chu
口試委員:張 程馬辛一金立德楊松昇朱紀洪
口試委員(外文):Chen ChangHsin-I MaLi-Te ChinSung-Sen YangChi-Hong Chu
口試日期:2013-03-27
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:51
中文關鍵詞:白蛋白腦出血高血糖蛋白質體學
外文關鍵詞:albuminintracerebral hemorrhagehyperglycemiaproteomics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
腦出血(Intracerebral hemorrhage)造成病人高死亡率及殘疾,而腦出血的患者若合併高血糖則會有更為嚴重的臨床病徵及較差的神經功能,所以本研究利用蛋白質體學來探討高血糖在腦出血所扮演的角色,我們利用腹腔注射鏈佐黴素(streptozotocin)來誘導大鼠高血糖之形成;腦出血動物模式則利用腦立體定位儀在右側紋狀體注射膠原蛋白酶(collagenase)及肝素(heparin)。實驗結果發現高血糖組(n=6)的出血面積明顯大於其他組別。誘導腦出血後第一天高血糖組雙臂握力測試的結果明顯的低於正常血糖組。利用二維電泳(2-DE)及質譜儀(MS)檢測高血糖組及正常血糖組大鼠腦出血周邊組織的蛋白質體表現,結果顯示有八個蛋白質被鑑定出來。值得一提的是腦出血的組別中,正常血糖組的白蛋白(albumin)的表現有增加,但高血糖組的卻沒有。巧合的是,在高血糖組別中觀察到出血組織周圍的神經細胞有顯著細胞凋亡(apoptosis)的現象。以上結果說明在急性腦出血的過程中,白蛋白扮演保護的功能,且會被不同的血糖濃度所決定。
本研究可能未來對出血性腦血管疾病的藥物開發相關研究有所貢獻。

Intracerebral hemorrhage (ICH) is associated with high mortality and disability, and hyperglycemia worsens the clinical and neurological outcomes of patients with ICH. In this study, we utilized proteomic approaches to investigate the role of hyperglycemia in ICH. Hyperglycemia was induced by intraperitoneal injection of streptozotocin (STZ) in adult Sprague–Dawley male rats; ICH was induced by stereotaxic infusion of collagenase/heparin into the right striatum. It was observed that the size of induced hemorrhage was significantly larger in the hyperglycemic group (n =6 in each group). On the first day after ICH, an apparent decrease in the bilateral grasp was also observed for the lesioned hyperglycemic rats compared with normoglycemic ones. When employing 2-DE and MS to examine the proteomes of perihematomal and control regions in individual hyperglycemic and normoglycemic rats, eight differentially expressed protein targets were identified. Most noteworthy, in response to ICH significant increase of albumin was ubiquitously observed in the brains of normoglycemic rats but not in the brains of hyperglycemic rats. Coincidentally, more significant neuronal apoptosis were found in the perihematomal regions of hyperglycemic rats. These observations described suggest the protection role of albumin in acute stage of ICH, which may be dependent on different blood sugar levels.
Furthermore, the present research provides new ideas for the further searching for a medication on the cerebrovascular diseases.

正文目錄頁
正文目錄...........................................................................I
『表』目錄......................................................................II
『圖』目錄......................................................................III
中文摘要..........................................................................IV
英文摘要...........................................................................V


正文:
源起................................................................................1
緒言................................................................................3
材料與方法....................................................................5
結果................................................................................16
討論................................................................................35
結論................................................................................40
參考文獻........................................................................41

[1] Stead, L. G., Jain, A., Bellolio, M. F., Odufuye, A. et al.,Emergency Department n hyperglycemia as a predictor of early mortality and worse functional outcome after intracerebral hemorrhage. Neurocrit. Care 2010, 13, 67–74.
[2] Lee, L. T., Glycemic control in the diabetic patient after stroke.
Crit. Care Nurs. Clin. North Am. 2009, 21, 507–515.
[3] Pasternak, J. J., McGregor, D. G., Schroeder, D. R., Lanier, W. L. et al., Hyperglycemia in patients undergoing cerebral aneurysm surgery: its association with long-term gross neurologic and neuropsychological function. Mayo Clin.Proc. 2008, 83, 406–417.
[4] Paolino, A. S., Garner, K. M., Effects of hyperglycemia on neurologic outcome in stroke patients. J. Neurosci. Nurs.2005, 37, 130–135.
[5] Bruno, A., Liebeskind, D., Hao, Q., Raychev, R., Diabetes mellitus, acute hyperglycemia, and ischemic stroke. Curr. Treat. Options Neurol. 2010, 12, 492–503.
[6] Qin, Z., Karabiyikoglu, M., Hua, Y., Silbergleit, R. et al., Hyperbaric oxygen-induced attenuation of hemorrhagic transformation after experimental focal transient cerebral ischemia. Stroke 2007, 38, 1362–1367.
[7] Vannucci, S. J., Willing, L. B., Goto, S., Alkayed, N. J. et al., Experimental stroke in the female diabetic, db/db, mouse.
J. Cereb. Blood Flow Metab. 2001, 21, 52–60.
[8] Ciccone, A., Pozzi, M., Motto, C., Tiraboschi, P., Sterzi, R., Epidemiological, clinical, and therapeutic aspects of primary intracerebral hemorrhage. Neurol. Sci. 2008, 29, S256–S257.
[9] Panagos, P. D., Jauch, E. C., Broderick, J. P., Intracerebral hemorrhage. Emerg. Med. Clin. North Am. 2002, 20, 631–655.
[10] Arboix, A., Comes, E., Garcia-Eroles, L., Massons, J. et al., Site of bleeding and early outcome in primary intracerebral hemorrhage.
Acta Neurol. Scand. 2002, 105, 282–288
[11] Qin, Z., Xi, G., Keep, R. F., Silbergleit, R. et al., Hyperbaric oxygen for experimental intracerebral hemorrhage. Acta Neurochir. Suppl. 2008, 105, 113–117.
[12] Wu, J., Hua, Y., Keep, R. F., Schallert, T. et al., Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage.
Brain Res. 2002, 953, 45–52.
[13] Huang, F. P., Xi, G., Keep, R. F., Hua, Y. et al., Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J. Neurosurg. 2002, 96, 287–293.
[14] Carmichael, S. T., Vespa, P. M., Saver, J. L., Coppola, G. et al., Genomic profiles of damage and protection in human intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 2008, 28, 1860–1875.
[15] Cook, N. L., Kleinig, T. J., van den Heuvel, C., Vink, R., Reference genes for normalising gene expression data in collagenase-induced rat intracerebral haemorrhage. BMC Mol. Biol. 2010, 11, 7.
[16] Song, E. C., Chu, K., Jeong, S. W., Jung, K. H. et al., Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage. Stroke 2003, 34, 2215–2220.
[17] Del Bigio, M. R., Yan, H. J., Buist, R., Peeling, J., Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates. Stroke 1996, 27, 2312–2319; discussion 2319–2320.
[18] Shen, C. C., Yang, Y. C., Chiao, M. T., Cheng, W. Y. et al., Characterization of endogenous neural progenitor cells after experimental ischemic stroke. Curr. Neurovasc. Res. 2010, 7, 6–14.
[19] Chin, L. T., Huang, P. R., Hu, K. Y., Huang, N. K. et al., A proteomics-based translational approach reveals an antifolate resistance inherent in human plasma derived from blood donation. J. Proteome Res. 2010, 9, 3091–3102.
[20] Lin, C. Y., Wang, V., Shui, H. A., Juang, R. H. et al., A comprehensive evaluation of imidazole-zinc reverse stain for current proteomic researches. Proteomics 2009, 9, 696–709.
[21] Simpson, R. J., Quantifying Protein by Bicinchoninic Acid, Cold Spring Harbor Laboratory Press, New York 2003.
[22] Syroid, D. E., Maycox, P. J., Soilu-Hanninen, M., Petratos, S. et al., Induction of postnatal schwann cell death by the lowaffinity neurotrophin receptor in vitro and after axotomy. J. Neurosci. 2000, 20, 5741–5747.
[23] Zhang, Y., Liang, Z. Y., Zhang, S. Y., Huang, F. F. et al., Albumin resuscitation protects against traumatic/hemorrhagic shock-induced lung apoptosis in rats. J. Zhejiang Univ. Sci. B 2008, 9, 871–878.
[24] Schiller, M., Franz, S., Heyder, P., Voll, R. E. et al., Hypothesis: human serum-borne albumin bound lipids promote cellular survival after apoptosis induction by a variety of stimuli. Apoptosis 2008, 13, 319–328.
[25] Zoellner, H., Hou, J. Y., Lovery, M., Kingham, J. et al., Inhibition of microvascular endothelial apoptosis in tissue explants by serum albumin. Microvasc. Res. 1999, 57, 162–173.
[26] Zoellner, H., Hofler, M., Beckmann, R., Hufnagl, P. et al., Serum albumin is a specific inhibitor of apoptosis in humanendothelial cells.
J. Cell Sci. 1996, 109, 2571–2580.
[27] MacManus, J. P., Buchan, A. M., Apoptosis after experimental stroke: fact or fashion? J. Neurotrauma 2000, 17, 899–914.
[28] Belayev, L., Saul, I., Busto, R., Danielyan, K. et al., Albumin treatment reduces neurological deficit and protects bloodbrain barrier integrity after acute intracortical hematoma in the rat. Stroke 2005, 36, 326–331.
[29] Belayev, L., Pinard, E., Nallet, H., Seylaz, J. et al., Albumin therapy of transient focal cerebral ischemia: in vivo analysis of dynamic microvascular responses. Stroke 2002, 33, 1077–1084.
[30] Belayev, L., Liu, Y., Zhao, W., Busto, R., Ginsberg, M. D., Human albumin therapy of acute ischemic stroke: marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke 2001, 32, 553–560.
[31] Levetan, C. S., Effect of hyperglycemia on stroke outcomes.
Endocr. Pract. 2004, 10, 34–39.
[32] Ergul, A., Li, W., Elgebaly, M. M., Bruno, A., Fagan, S. C., Hyperglycemia, diabetes and stroke: focus on the cerebrovasculature.
Vascul. Pharmacol. 2009, 51, 44–49.
[33] Godoy, D. A., Pinero, G. R., Svampa, S., Papa, F., Di Napoli, M., Hyperglycemia and short-term outcome in patients with spontaneous intracerebral hemorrhage. Neurocrit. Care 2008, 9, 217–229.
[34] Nakagami, H., Kaneda, Y., Ogihara, T., Morishita, R., Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis.
Curr. Diabetes Rev. 2005, 1, 59–63.
[35] Yano, M., Hasegawa, G., Ishii, M., Yamasaki, M. et al., Short-term exposure of high glucose concentration induces generation of reactive oxygen species in endothelial cells: implication for the oxidative stress associated with postprandial hyperglycemia. Redox Rep. 2004, 9, 111–116.
[36] Bellin, C., de Wiza, D. H., Wiernsperger, N. F., Rosen, P., Generation of reactive oxygen species by endothelial and smooth muscle cells: influence of hyperglycemia and metformin. Horm. Metab. Res. 2006, 38, 732–739.
[37] Busik, J. V., Mohr, S., Grant, M. B., Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes 2008, 57, 1952–1965.
[38] Callaghan, M. J., Ceradini, D. J., Gurtner, G. C., Hyperglycemia- induced reactive oxygen species and impaired endothelial progenitor cell function. Antioxid. Redox. Signal. 2005, 7, 1476–1482.
[39] Aronowski, J., Hall, C. E., New horizons for primary intracerebral
hemorrhage treatment: experience from preclinical studies.
Neurol. Res. 2005, 27, 268–279.
[40] Ardizzone, T. D., Lu, A., Wagner, K. R., Tang, Y. et al., Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat. Stroke 2004, 35, 2587–2591.
[41] Peeling, J., Yan, H. J., Corbett, D., Xue, M., Del Bigio, M. R., Effect of FK-506 on inflammation and behavioral outcome following intracerebral hemorrhage in rat. Exp. Neurol.2001, 167, 341–347.
[42] Lundsgaard-Hansen, P., Physiology and pathophysiology of colloid osmotic pressure and albumin metabolism. Curr.Stud. Hematol. Blood Transfus. 1986, 53, 1–17.
[43] Roche, M., Rondeau, P., Singh, N. R., Tarnus, E., Bourdon, E., The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787.
[44] Halliwell, B., Albumin – an important extracellular antioxidant?
Biochem. Pharmacol. 1988, 37, 569–571.
[45] Hankins, J., The role of albumin in fluid and electrolyte balance.
J. Infus. Nurs. 2006, 29, 260–265.
[46] Bernard, F., Al-Tamimi, Y. Z., Chatfield, D., Lynch, A. G. et al., Serum albumin level as a predictor of outcome in traumatic brain injury: potential for treatment. J. Trauma 2008, 64, 872–875.
[47] Ferro, J. M., Davalos, A., Other neuroprotective therapies on trial in acute stroke. Cerebrovasc. Dis. 2006, 21, 127–130.
[48] Wagner, K. R., Sharp, F. R., Ardizzone, T. D., Lu, A., Clark, J. F., Heme and iron metabolism: role in cerebral hemorrhage.
J. Cereb. Blood Flow Metab. 2003, 23, 629–652.
[49] Keep, R. F., Xiang, J., Ennis, S. R., Andjelkovic, A. et al., Blood-brain barrier function in intracerebral hemorrhage. Acta Neurochir. Suppl. 2008, 105, 73–77.
[50] Tucker, V. L., Bravo, E., Weber, C. J., Wisner, D. H., Blood-to-tissue albumin transport in rats subjected to acute hemorrhage and resuscitation. Shock 1995, 3, 189–195.
[51] Bakris, G., Viberti, G., Weston, W. M., Heise, M. et al., Rosiglitazone reduces albumin excretion in type II diabetes. J. Hum. Hypertens. 2003, 17, 7–12.
[52] Tuvemo, T., Ewald, U., Kobbah, M., Proos, L. A., Serum magnesium and protein concentrations during the first five years of insulin-dependent diabetes in children. Acta Paediatr. Suppl. 1997, 418, 7–10.
[53] Fioravanti, M., Solerte, S. B., Patti, A. L., Bacchella, L. et al., Determination of albuminuria in type 1 and type 2 diabetic patients with microproteinuria and overt nephropathy. Comparative evaluation between a radial immunodiffusion procedure and a highly sensitive radioimmunoassay. Ric. Clin. Lab. 1987, 17, 171–179.
[54] Abu-Lebdeh, H. S., Nair, K. S., Protein metabolism in diabetes mellitus. Baillieres Clin. Endocrinol. Metab. 1996, 10, 589–601.
[55] Faraco, G., Fossati, S., Bianchi, M. E., Patrone, M. et al., High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J. Neurochem. 2007, 103, 590–603.
[56] Bankey, P. E., Mazuski, J. E., Ortiz, M., Fulco, J. M., Cerra, F. B., Hepatic acute phase protein synthesis is indirectly regulated by tumor necrosis factor. J. Trauma 1990, 30, 1181–1187; discussion 1187–1188.
[57] Shamay, A., Homans, R., Fuerman, Y., Levin, I. et al., Expression of albumin in nonhepatic tissues and its synthesis by the bovine mammary gland. J. Dairy Sci. 2005, 88, 569–576.
[58] Nahon, J. L., Tratner, I., Poliard, A., Presse, F. et al., Albumin and alpha-fetoprotein gene expression in various nonhepatic rat tissues.
J. Biol. Chem. 1988, 263, 11436–11442.
[59] Power, C., Henry, S., Del Bigio, M. R., Larsen, P. H. et al., Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann. Neurol. 2003, 53, 731–742.
[60] Yao, D., Brownlee, M., Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 2010, 59, 249–255.
[61] Pineda, J. A., Wang, K. K., Hayes, R. L., Biomarkers of proteolytic damage following traumatic brain injury. Brain Pathol. 2004, 14, 202–209.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊