|
[1] Stead, L. G., Jain, A., Bellolio, M. F., Odufuye, A. et al.,Emergency Department n hyperglycemia as a predictor of early mortality and worse functional outcome after intracerebral hemorrhage. Neurocrit. Care 2010, 13, 67–74. [2] Lee, L. T., Glycemic control in the diabetic patient after stroke. Crit. Care Nurs. Clin. North Am. 2009, 21, 507–515. [3] Pasternak, J. J., McGregor, D. G., Schroeder, D. R., Lanier, W. L. et al., Hyperglycemia in patients undergoing cerebral aneurysm surgery: its association with long-term gross neurologic and neuropsychological function. Mayo Clin.Proc. 2008, 83, 406–417. [4] Paolino, A. S., Garner, K. M., Effects of hyperglycemia on neurologic outcome in stroke patients. J. Neurosci. Nurs.2005, 37, 130–135. [5] Bruno, A., Liebeskind, D., Hao, Q., Raychev, R., Diabetes mellitus, acute hyperglycemia, and ischemic stroke. Curr. Treat. Options Neurol. 2010, 12, 492–503. [6] Qin, Z., Karabiyikoglu, M., Hua, Y., Silbergleit, R. et al., Hyperbaric oxygen-induced attenuation of hemorrhagic transformation after experimental focal transient cerebral ischemia. Stroke 2007, 38, 1362–1367. [7] Vannucci, S. J., Willing, L. B., Goto, S., Alkayed, N. J. et al., Experimental stroke in the female diabetic, db/db, mouse. J. Cereb. Blood Flow Metab. 2001, 21, 52–60. [8] Ciccone, A., Pozzi, M., Motto, C., Tiraboschi, P., Sterzi, R., Epidemiological, clinical, and therapeutic aspects of primary intracerebral hemorrhage. Neurol. Sci. 2008, 29, S256–S257. [9] Panagos, P. D., Jauch, E. C., Broderick, J. P., Intracerebral hemorrhage. Emerg. Med. Clin. North Am. 2002, 20, 631–655. [10] Arboix, A., Comes, E., Garcia-Eroles, L., Massons, J. et al., Site of bleeding and early outcome in primary intracerebral hemorrhage. Acta Neurol. Scand. 2002, 105, 282–288 [11] Qin, Z., Xi, G., Keep, R. F., Silbergleit, R. et al., Hyperbaric oxygen for experimental intracerebral hemorrhage. Acta Neurochir. Suppl. 2008, 105, 113–117. [12] Wu, J., Hua, Y., Keep, R. F., Schallert, T. et al., Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res. 2002, 953, 45–52. [13] Huang, F. P., Xi, G., Keep, R. F., Hua, Y. et al., Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J. Neurosurg. 2002, 96, 287–293. [14] Carmichael, S. T., Vespa, P. M., Saver, J. L., Coppola, G. et al., Genomic profiles of damage and protection in human intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 2008, 28, 1860–1875. [15] Cook, N. L., Kleinig, T. J., van den Heuvel, C., Vink, R., Reference genes for normalising gene expression data in collagenase-induced rat intracerebral haemorrhage. BMC Mol. Biol. 2010, 11, 7. [16] Song, E. C., Chu, K., Jeong, S. W., Jung, K. H. et al., Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage. Stroke 2003, 34, 2215–2220. [17] Del Bigio, M. R., Yan, H. J., Buist, R., Peeling, J., Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates. Stroke 1996, 27, 2312–2319; discussion 2319–2320. [18] Shen, C. C., Yang, Y. C., Chiao, M. T., Cheng, W. Y. et al., Characterization of endogenous neural progenitor cells after experimental ischemic stroke. Curr. Neurovasc. Res. 2010, 7, 6–14. [19] Chin, L. T., Huang, P. R., Hu, K. Y., Huang, N. K. et al., A proteomics-based translational approach reveals an antifolate resistance inherent in human plasma derived from blood donation. J. Proteome Res. 2010, 9, 3091–3102. [20] Lin, C. Y., Wang, V., Shui, H. A., Juang, R. H. et al., A comprehensive evaluation of imidazole-zinc reverse stain for current proteomic researches. Proteomics 2009, 9, 696–709. [21] Simpson, R. J., Quantifying Protein by Bicinchoninic Acid, Cold Spring Harbor Laboratory Press, New York 2003. [22] Syroid, D. E., Maycox, P. J., Soilu-Hanninen, M., Petratos, S. et al., Induction of postnatal schwann cell death by the lowaffinity neurotrophin receptor in vitro and after axotomy. J. Neurosci. 2000, 20, 5741–5747. [23] Zhang, Y., Liang, Z. Y., Zhang, S. Y., Huang, F. F. et al., Albumin resuscitation protects against traumatic/hemorrhagic shock-induced lung apoptosis in rats. J. Zhejiang Univ. Sci. B 2008, 9, 871–878. [24] Schiller, M., Franz, S., Heyder, P., Voll, R. E. et al., Hypothesis: human serum-borne albumin bound lipids promote cellular survival after apoptosis induction by a variety of stimuli. Apoptosis 2008, 13, 319–328. [25] Zoellner, H., Hou, J. Y., Lovery, M., Kingham, J. et al., Inhibition of microvascular endothelial apoptosis in tissue explants by serum albumin. Microvasc. Res. 1999, 57, 162–173. [26] Zoellner, H., Hofler, M., Beckmann, R., Hufnagl, P. et al., Serum albumin is a specific inhibitor of apoptosis in humanendothelial cells. J. Cell Sci. 1996, 109, 2571–2580. [27] MacManus, J. P., Buchan, A. M., Apoptosis after experimental stroke: fact or fashion? J. Neurotrauma 2000, 17, 899–914. [28] Belayev, L., Saul, I., Busto, R., Danielyan, K. et al., Albumin treatment reduces neurological deficit and protects bloodbrain barrier integrity after acute intracortical hematoma in the rat. Stroke 2005, 36, 326–331. [29] Belayev, L., Pinard, E., Nallet, H., Seylaz, J. et al., Albumin therapy of transient focal cerebral ischemia: in vivo analysis of dynamic microvascular responses. Stroke 2002, 33, 1077–1084. [30] Belayev, L., Liu, Y., Zhao, W., Busto, R., Ginsberg, M. D., Human albumin therapy of acute ischemic stroke: marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke 2001, 32, 553–560. [31] Levetan, C. S., Effect of hyperglycemia on stroke outcomes. Endocr. Pract. 2004, 10, 34–39. [32] Ergul, A., Li, W., Elgebaly, M. M., Bruno, A., Fagan, S. C., Hyperglycemia, diabetes and stroke: focus on the cerebrovasculature. Vascul. Pharmacol. 2009, 51, 44–49. [33] Godoy, D. A., Pinero, G. R., Svampa, S., Papa, F., Di Napoli, M., Hyperglycemia and short-term outcome in patients with spontaneous intracerebral hemorrhage. Neurocrit. Care 2008, 9, 217–229. [34] Nakagami, H., Kaneda, Y., Ogihara, T., Morishita, R., Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Curr. Diabetes Rev. 2005, 1, 59–63. [35] Yano, M., Hasegawa, G., Ishii, M., Yamasaki, M. et al., Short-term exposure of high glucose concentration induces generation of reactive oxygen species in endothelial cells: implication for the oxidative stress associated with postprandial hyperglycemia. Redox Rep. 2004, 9, 111–116. [36] Bellin, C., de Wiza, D. H., Wiernsperger, N. F., Rosen, P., Generation of reactive oxygen species by endothelial and smooth muscle cells: influence of hyperglycemia and metformin. Horm. Metab. Res. 2006, 38, 732–739. [37] Busik, J. V., Mohr, S., Grant, M. B., Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes 2008, 57, 1952–1965. [38] Callaghan, M. J., Ceradini, D. J., Gurtner, G. C., Hyperglycemia- induced reactive oxygen species and impaired endothelial progenitor cell function. Antioxid. Redox. Signal. 2005, 7, 1476–1482. [39] Aronowski, J., Hall, C. E., New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol. Res. 2005, 27, 268–279. [40] Ardizzone, T. D., Lu, A., Wagner, K. R., Tang, Y. et al., Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat. Stroke 2004, 35, 2587–2591. [41] Peeling, J., Yan, H. J., Corbett, D., Xue, M., Del Bigio, M. R., Effect of FK-506 on inflammation and behavioral outcome following intracerebral hemorrhage in rat. Exp. Neurol.2001, 167, 341–347. [42] Lundsgaard-Hansen, P., Physiology and pathophysiology of colloid osmotic pressure and albumin metabolism. Curr.Stud. Hematol. Blood Transfus. 1986, 53, 1–17. [43] Roche, M., Rondeau, P., Singh, N. R., Tarnus, E., Bourdon, E., The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787. [44] Halliwell, B., Albumin – an important extracellular antioxidant? Biochem. Pharmacol. 1988, 37, 569–571. [45] Hankins, J., The role of albumin in fluid and electrolyte balance. J. Infus. Nurs. 2006, 29, 260–265. [46] Bernard, F., Al-Tamimi, Y. Z., Chatfield, D., Lynch, A. G. et al., Serum albumin level as a predictor of outcome in traumatic brain injury: potential for treatment. J. Trauma 2008, 64, 872–875. [47] Ferro, J. M., Davalos, A., Other neuroprotective therapies on trial in acute stroke. Cerebrovasc. Dis. 2006, 21, 127–130. [48] Wagner, K. R., Sharp, F. R., Ardizzone, T. D., Lu, A., Clark, J. F., Heme and iron metabolism: role in cerebral hemorrhage. J. Cereb. Blood Flow Metab. 2003, 23, 629–652. [49] Keep, R. F., Xiang, J., Ennis, S. R., Andjelkovic, A. et al., Blood-brain barrier function in intracerebral hemorrhage. Acta Neurochir. Suppl. 2008, 105, 73–77. [50] Tucker, V. L., Bravo, E., Weber, C. J., Wisner, D. H., Blood-to-tissue albumin transport in rats subjected to acute hemorrhage and resuscitation. Shock 1995, 3, 189–195. [51] Bakris, G., Viberti, G., Weston, W. M., Heise, M. et al., Rosiglitazone reduces albumin excretion in type II diabetes. J. Hum. Hypertens. 2003, 17, 7–12. [52] Tuvemo, T., Ewald, U., Kobbah, M., Proos, L. A., Serum magnesium and protein concentrations during the first five years of insulin-dependent diabetes in children. Acta Paediatr. Suppl. 1997, 418, 7–10. [53] Fioravanti, M., Solerte, S. B., Patti, A. L., Bacchella, L. et al., Determination of albuminuria in type 1 and type 2 diabetic patients with microproteinuria and overt nephropathy. Comparative evaluation between a radial immunodiffusion procedure and a highly sensitive radioimmunoassay. Ric. Clin. Lab. 1987, 17, 171–179. [54] Abu-Lebdeh, H. S., Nair, K. S., Protein metabolism in diabetes mellitus. Baillieres Clin. Endocrinol. Metab. 1996, 10, 589–601. [55] Faraco, G., Fossati, S., Bianchi, M. E., Patrone, M. et al., High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J. Neurochem. 2007, 103, 590–603. [56] Bankey, P. E., Mazuski, J. E., Ortiz, M., Fulco, J. M., Cerra, F. B., Hepatic acute phase protein synthesis is indirectly regulated by tumor necrosis factor. J. Trauma 1990, 30, 1181–1187; discussion 1187–1188. [57] Shamay, A., Homans, R., Fuerman, Y., Levin, I. et al., Expression of albumin in nonhepatic tissues and its synthesis by the bovine mammary gland. J. Dairy Sci. 2005, 88, 569–576. [58] Nahon, J. L., Tratner, I., Poliard, A., Presse, F. et al., Albumin and alpha-fetoprotein gene expression in various nonhepatic rat tissues. J. Biol. Chem. 1988, 263, 11436–11442. [59] Power, C., Henry, S., Del Bigio, M. R., Larsen, P. H. et al., Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann. Neurol. 2003, 53, 731–742. [60] Yao, D., Brownlee, M., Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 2010, 59, 249–255. [61] Pineda, J. A., Wang, K. K., Hayes, R. L., Biomarkers of proteolytic damage following traumatic brain injury. Brain Pathol. 2004, 14, 202–209.
|