(18.204.227.34) 您好!臺灣時間:2021/05/17 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:洪慈霙
研究生(外文):Tzu-ying Hung
論文名稱:應用螞蟻演算法於精簡生產系統佈置
論文名稱(外文):THE APPLICATION OF ACO IN SIMPLIFIED PRODUCTION SYSTEM LAYOUT
指導教授:藍俊雄藍俊雄引用關係
指導教授(外文):Chun-hsiung Lan
學位類別:博士
校院名稱:南華大學
系所名稱:企業管理系管理科學碩博士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:61
中文關鍵詞:碎形維度螞蟻演算法SPS 模型
外文關鍵詞:Simplified Production System (SPS) ModelFractal DimensionACO Algorithms
相關次數:
  • 被引用被引用:1
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
  本研究構建一模形稱為為精簡生產系統模型(Simplified Production System Model,簡稱SPS 模型),是一個二階段的解決程序。SPS 模型不單單只考慮在給定的廠房空間裡二維多目標生產線的佈置,達到最小總物料運輸流量,同時還要讓生產線佈置在廠房空間裡最精簡。首先運用螞蟻演算法求出最小總物料運輸流量的生產線規劃輪廓,然後在給定的廠房空間裡移動,以最小碎形維度為依據,求出最精簡佈置。因為最精簡佈置可使員工舒適,進而提升員工滿意度,最後導致更好的企業績效。簡單來說,SPS 模型是運用電腦運算來建構此精簡生產系統模型,因此具重複使用的特性,SPS 模型為一提供極有價值之建議的決策工具,在條件已知的情況下可以提早做出規劃,因此本研究所提出之SPS 模型相當具有建設性。
  This research proposes a mathematical model called Simplified Production System (SPS) model and a two-staged solving procedure. SPS model not only considers the two-dimensional layout of a multiple production-line system under the constrained factory space to achieve the minimal total material transportation flow but also selects a specific site to deploy the production system for achieving the least complexity. ACO algorithms is firstly applied to arrange a minimal total material transportation flow of a production system. Then place this arranged display in a limited factory space by minimum fractal dimension for a simplified factory layout. Because a simplified factory layout leads to employee comfortable, it could transform to catch the employee satisfaction. Employee satisfaction will finally switch to become the better performance. In summary, this research applies computer programs to solve the SPS model, and thus it owns a repeated characteristic. Actually, this research can be regarded as a valuable decision support tool because it can easily duplicate to solve other cases by changing its input parameters only.
中文摘要 …………………………………………………………… i
英文摘要 …………………………………………………………… ii
目錄 ………………………………………………………………… iii
圖目錄 ……………………………………………………………… v
 
第一章 緒論 ………………………………………………………… 1
1.1 前言……………………………………………………………… 1
1.2 研究背景………………………………………………………… 2
1.3 研究目的………………………………………………………… 6
1.4 研究方法與流程………………………………………………… 7
 
第二章 文獻探討 …………………………………………………… 9
2.1 設施規劃………………………………………………………… 9
2.1.1 物料搬運成本………………………………………………… 10
2.2 二次分配問題…………………………………………………… 11
2.2.1 群體智慧……………………………………………………… 13
2.2.2 螞蟻演算法…………………………………………………… 14
2.2.3 螞蟻演算法歷史與應用……………………………………… 15
2.2.4 基本螞蟻演算法……………………………………………… 16
2.3 精簡環境………………………………………………………… 18
2.3.1 員工滿意度…………………………………………………… 19
2.3.2 碎形理論……………………………………………………… 20
2.3.3 碎形理論的應用……………………………………………… 25
 
第三章 模型建構 …………………………………………………… 28
3.1 研究架構………………………………………………………… 28
3.2 研究假設………………………………………………………… 30
3.3 螞蟻演算法……………………………………………………… 30
3.4 碎形維度………………………………………………………… 31
3.5 模型建構………………………………………………………… 33
 
第四章 數值範例與模擬 …………………………………………… 35
4.1 範例與模擬規格………………………………………………… 35
4.2 螞蟻演算法之運用……………………………………………… 35
4.3 碎形維度之運用………………………………………………… 38
4.3.1 正矩形可利用廠房空間……………………………………… 38
4.3.2 不規則形可利用廠房空間…………………………………… 40
 
第五章 結論與建議 ………………………………………………… 42
5.1 結論與建議……………………………………………………… 42
5.2 未來研究方向…………………………………………………… 43
 
參考文獻
中文文獻……………………………………………………………… 45
英文文獻……………………………………………………………… 46
 
附錄一………………………………………………………………… 59
附錄二………………………………………………………………… 60
 
圖目錄
圖1.1 電影院訂票區平面規劃圖………………………………………3
圖1.2 1986年與1991年 Taco Dell餐廳平面規劃圖…………………3
圖1.3 研究流程圖………………………………………………………8
圖2.1螞蟻演算法費洛蒙示意圖………………………………………14
圖2.2 Von Koch curvel(1)………………………………………………21
圖2.3 Von Koch curvel(2)………………………………………………21
圖2.4 Von Koch curvel(3)………………………………………………21
圖2.5 Cantor Set(1)……………………………………………………22
圖2.6 Cantor Set(2)……………………………………………………22
圖2.7 Cantor Set(3)……………………………………………………23
圖2.8 Cantor Set(4)……………………………………………………23
圖2.9 Cantor Set(5)……………………………………………………23
圖2.10 Mandelbrot Ser x1……………………………………………24
圖2.11 Mandelbrot Ser x100…………………………………………24
圖2.12 Mandelbrot Ser x1000…………………………………………24
圖2.13 Mandelbrot Ser x100000………………………………………24
圖2.14 Julia Set(1)……………………………………………………25
圖2.15 Julia Set(2)……………………………………………………25
圖2.16 Relativity………………………………………………………26
圖2.17 作品圖…………………………………………………………26
圖2.18 A system of Architectural Ornament(圖版17)…………………27
圖2.19 富裕三十六景:神奈川衝浪裡………………………………27
圖3.1 研究說明圖……………………………………………………29
圖4.1生產線物料運輸流程圖…………………………………………36
圖4.2二工作站距離示意圖……………………………………………37
圖4.3三條生產線最小總物料運輸流量之最佳規劃輪廓……………37
圖4.4正矩形可利用廠房空間…………………………………………38
圖4.5 不規則形可利用廠房空間………………………………………38
圖4.6 正矩形可利用廠房空間最佳佈置圖……………………………39
圖4.7 正矩形可利用廠房空間最佳佈置3D模擬示意圖……………39
圖4.8 不規則形可利用廠房空間最佳佈置圖…………………………40
圖4.9不規則形可利用廠房空間最佳佈置3D模擬示意圖……………41
一、中文文獻
 
1. 方式光、李学典(民 80),李嘉诚成功之路,香江出版公司。
 
2. 李逸洋(民 93),創新、進取、專業,研習論壇,42 期,49 頁。
 
3. 藤田田(民 82),我是最會賺錢的人物,博聞堂。
 
二、英文文獻
 
1. Allegri, T. M. (1984), Material Handling: Principles and Practices, N. Y.: Van Nostrand.
 
2. Ali Taghavi & Alper Murat (2011), A heuristic procedure for the integrated facility layout design and flow assignment problem, Computers & Industrial Engineering, Vol. 61, No.1, pp. 55-63.
 
3. Apple J. M. (1977), Plant Layout and Material Handling, Wiley, New York.Askin G.G.
 
4. Arnett, Dennis B., Debra A. Laverie & Charlie McLane (2002), Using Job Satisfaction and Pride as Internal Marketing Tools, Cornell Hotel and Restaurant Administration Quarterly, Vol.43, No.2, pp. 87-96.
 
5. Augusto T. de Albuquerqueb, Mounir K. El Debsa & Antonio M.C. Melo (2012), A cost optimization-based design of precast concrete floors using genetic algorithms, Automation in Construction, Vol.22, pp. 348-356.
 
6. Barlow, M. T. & Bass, R. F. (2000), Divergence form operators on fractal-like domains, Journal of Functional Analysis, Vol.175, pp. 214-247.
 
7. Bandura, A. & Jourden, F. J. (1991), Self-regulatory mechanisms governing the impact of social comparison on complex decision making, Journal of Personality and Social Psychology, Vol.60, pp. 941-951.
 
8. Barnsley, M. (1988), Fractals Everywhere, New York: Academic Press.
 
9. Benoît B. Mandelbrot (1967), How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, Science, Vol.156, No.3775, pp.636-638.
 
10. Benoît B. Mandelbrot (1977), The Fractal Geometry of Nature.
 
11. Bentley, P. J., Gordon, T.G., Kim, J. & Kumar, S. ( 2001), New Trends in Evolutionary Computation, In Proceedings of the 2001 Congress on Evolutionary Computation, pp. 162-169.
 
12. Black, J. S. & Gregersen, H. B. (1997), Participative decision-making: An integration of multiple dimensions, Human Relations, Vol.50, No.7, pp.859-879.
 
13. Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999), Swarm Intelligence: from Natural to Artificial Systems, New York, NY: Oxford University Press, Santa Fe Institute Studies in the Sciences of Complexity.
 
14. Braglia, M. (1996), Optimisation of a Simulated-Annealing-based Heuristic for Single Row Machine Layout Problem by Genetic Algorithm, International Transactions in Operational Research, Vol.3, No.1, pp.37-49.
 
15. Bullnheimer, B., Hartl, R. F. & Strauss, C. (1997), Applying the ant system to the vehicle routing problem, In: Second Metaheuristics International Conference, MIC’97, Sophia-Antipolis, France.
 
16. Bullnheimer, B., Hartl, R. F. & Strauss, C. (1999), A new rank based version of the ant system: a computational study, Central European Journal of Operations Research, Vol.7, No.1, pp. 25-38.
 
17. Cantor, Georg (1883), Grundlagen einer allgemeinen Mannichfaltigkeitslehre, Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen. Leipzig: Teubner. Also (without preface) in Mathematische Annalen 21, and Abhandlungen, pp.165–208.
 
18. Carlopio, J.R (1996), Construct validity of a physical work environment satisfaction questionnaire, Journal of Occupational Health and Psychology, Vol.1, pp.330-344.
 
19. Carlos Bousoño-Calzón & M. R. W. Manning (1995), The Hopfield Neural Network Applied to the Quadratic Assignment Problem, Neural Computing and Applications, Vol.3, No.2, pp. 64-72.
 
20. Caro, G. D. & Dorigo, M. (1998), Two Ant Colony Algorithms for Best-Effort Routing in Datagram Networks, Proceedings of the Tenth IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS’98), Las Vegas, Nevada, IASTED/ACTA Press, pp.541-546.
 
21. Chen, J. C., Dai, R. D. & Chen, C.W. (2008), A practical fab design procedure for wafer fabrication plants, International Journal of Production Research, Vol.46, No.10, pp. 2565-2588.
 
22. Chen, J. M. (1999), Fractal characterization of fabric wrinkle image, Journal of China Textile University (English Edition), Vol.16, No.3, pp.86-89.
 
23. Cheng, Y.C., Lee, P.J. & Lee, T.Y. (1999), Self-similarity Dimensions of the Taiwan Island Landscape, Computers & Geosciences, Vol.25, No.9, pp. 1043-1050.
 
24. Chu, S. C., Roddick, J. F. & Pan, J. S. (2004), Ant Colony system with communication strategies, Information Sciences, Vol.167, No.1-4, pp.63-76.
 
25. Collins T. D. (1998), The application of software visualization technology to evolutionary computation: a case study in Genetic Algorithms, Ph.D. thesis, The Open University.
 
26. David K. Goldstein & John F. Rockart (1984), An examination of work-related correlates of job satisfaction in programmer/analysts, MIS Quarterly, Vol.8, No.2, pp.103-115.
 
27. Deb, S.K., Bhattacharyya, B. & Sorkhel, S.K. (2001), Management of machine layout and material handling system selection using hybrid approach, In Proceedings of the International Conference on Logistic and Supply Chain Management.
 
28. European Commission (2011), Digital factories: Manufacturing design and product lifecyle management, extract from work programme.
 
29. Decenzo, D. A. & Robbins, S. P. (1997), Human Resource Management, 5th ed., New Youk:J. Wiley.
 
30. Dole, Carol & Richard G Schroeder (2001), The Impact of Various Factors On The Personality, Job Satisfaction and Turnover Intentions of Professional accountants, Managerial Auditing Journal, Vol.16, pp.234-245.
 
31. Dorigo M., V. Maniezzo & A. Colorni (1991a), The Ant System: An Autocatalytic Optimizing Process, Technical Report No. 91-016 Revised, Politecnico di Milano, Italy.
 
32. Dorigo M., V. Maniezzo & A. Colorni (1991b), Positive Feedback as a Search Strategy, Technical Report No. 91-016, Politecnico di Milano, Italy.
 
33. Dorigo M. (1992), Optimization, Learning and Natural Algorithms (in Italian), Ph.D. thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy.
 
34. Dorigo M., V. Maniezzo & A. Colorni (1996), The Ant System: Optimization by a Colony of Cooperating Agents, IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol.26, No.1, pp. 29-41.
 
35. Dorigo M. & L. M. Gambardella (1997a), Ant Colonies for the Traveling Salesman Problem, BioSystems, Vol.43, pp. 73-81.
 
36. Dorigo M. & L. M. Gambardella (1997b), Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem, IEEE Transactions on Evolutionary Computation, Vol.1, No.1, pp. 53-66.
 
37. El-Rayah, T. E. & Hollier, R. H. (1970), A review of plant design techniques, International Journal of Production Research, Vol.8, No.3, pp.263-279.
 
38. Felix Hausdorff (1919), Dimension und äußeres Maß, Mathematische Annalen, Vol.79, No.1–2, pp. 157-179.
 
39. Ficko, M., Brezocnik, M. & Balic, J. (2004), Designing the layout ofsingle- and multiple-rows flexible manufacturing system by genetic algorithms, Journal of Materials Processing Technology, Vol.157-158, pp.150-158.
 
40. Frank Gilbreth & Lillian Gilbreth (1920), Time Study and Motion Study as Fundamental Factors in Planning and Control: An Indictment of Stop-watch Time Study, Read before the New York Sectionof the Taylor Society, December 16, Montclair, N.J.: The Mountainside Press.
 
41. Frauenberger, C., Stockman, T., Putz, V. & Holdrich, R. (2005), Mode independent interaction pattern design, In Proceedings of 9th International Conference on Information Visualization, pp. 24-30.
 
42. Gambardella L. & Dorigo M. (1995), Ant-Q: A einforcement Learning approach to the traveling salesman problem, Proceedings of ML-95, Twelfth International Conference on Machine Learning, Tahoe City, CA, A. Prieditis and S. Russell (Eds.), Morgan Kaufmann, pp. 252–260.
 
43. Gambardella L., Taillard E. & Dorigo M. (1999), Ant colonies for the Quadratic Assignment Problem, Journal of the Operational Research Society, Vol.50, pp. 167-176.
 
44. Gen, M., Lin, L. & Zhang, H. (2009), Evolutionary techniques for optimization problems in integrated manufacturing system: State-ofthe-art-survey, Computers & Industrial Engineering, Vol.56, pp.779-808.
 
45. Gong, D., G. Yamazaki, M. Gen & W. Xu (1999), A Genetic Algorithm Method for One-dimensional Machine Location Problems, International J. of Production Economics, Vol.60/61, pp. 337-342.
 
46. Gouldner, Alvin W. (1960), The norm of reciprocity: A preliminary statement, American Sociological Review, Vol.25, pp. 161-178.
 
47. Grassé, P. (1959), La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes Natalensis et Cubitermes sp. lathéorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs, Insectes sociaux, Vol.6, pp. 41-81.
 
48. Han, K.H. & Kim, J.H. (2002), Quantum-Inspired Evolutionary Algorithm for a Class of Combinatorial Optimization, IEEE Transactions on Evolutionary Computation, Vol.6, No.6, pp. 580-593.
 
49. Hassan, M., Hogg, G. & Smith, D. (1986), SHAPE: A construction algorithm for area placement evaluation, International Journal of Production Research, Vol.24, No.5, pp. 1283-1295.
 
50. Helge von Koch (1904), Arkiv för matematik, Astronomi, och Fysik 1, pp.681-702.
 
51. Heragu, S. S. & Kusiak, A. (1988), Machine layout problem in exible manufacturing systems, Operations Research, Vol.36, No.2, pp. 258-268.
 
52. Heragu, S. S. (1997), Facilities Design, Boston: PWS Publishing. 53. Heskett J. L., Jones T. O., Loveman G. W., Sasser W. E. Jr. & Schlesinger L. A. (1994), Putting the service profit chain to work, Harvard Business Review, pp. 164-174.
 
54. Holthaus, O. & Rajendran, C. (2005), A fast ant-colony algorithm for single-machine scheduling to minimize the sum of weighted tardiness of jobs, Journal of the Operational Research Society, Vol.56, pp. 947-953.
 
55. Ho, Y. C. & Moodie, C. L. (1998), Machine layout with a linear single-row flow path in an automated manufacturing system, Journal of Manufacturing Systems, Vol.17, No.1, pp. 1-22.
 
56. Hoppock, R. (1935), Job satisfaction, New York: Harper and Brothers.
 
57. Horbach, S., Ackermann, J., Müller, E. & Schütze, J. (2011), Building blocks for adaptable factory systems, Robotics and Computer-Integrated Manufacturing, Vol.27, No.4, pp. 735-740.
 
58. Houshyar, A. & McGinnis, L.F. (1990), A heuristic for assignment facilities to locations to minimize WIP travel distance in a linear facility,International Journal of Production Research, Vol.28, No.8, pp.1485-1498.
 
59. Ivancevich, J. & Matteson, M. (1980), Optimizing human resources: A case for preventative health and stress management, Organizational Dynamics, Vol.9, pp.4-25.
 
60. John Briggs & F. David Pest (1989), Turbulent Mirror: an Illustrated Guide to Chaos Theory and Science of Wholeness, Harpen & Row Publishers.
 
61. Junior, W. K. & Guanabara, A. S. (2005), Methodology for Product Design Based on the Study of Bionics, Materials & Design, Vol.26, No.2, pp. 149-155.
 
62. Kennedy, J. & Eberhart, R. (1995), Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, IV, pp. 1942–1948.
 
63. Kennedy, J., Eberhart, R. & Shi, Y. (2001), Swarm intelligence, San Francisco: Morgan Kaufmann Publishers.
 
64. Kenneth Bernhardt L., Naveen Donthu & Pamela A. Kennett (2000), A Longitudinal Analysis of Satisfaction and Profitability, Journal of Business Research, Vol.47, pp. 161-171.
 
65. Kinicki, A. &, Kreitner, R. (2006), Organizational Behavior, Boston, MA: McGraw-Hill Irwin.
 
66. Koopmans, T.C. & M. Beckman (1957), Assignment problems and the location of economic activities, Econometric, Vol.25, pp. 53-76.
 
67. Korczynski (1998), The Shape of Future Fabs, Cleanrooms Magazine, PennWell Corporation.
 
68. Kouvelis, P. & Kim, M. W. (1992), Unidirectional loop network layout problem in automated manufacturing systems, Operations Research, Vol.40, No.3, pp. 533-550.
 
69. Kouvelis, P., Chiang, W.C. & Yu, G. (1995), Optimal Algorithms for Row Layout Problems in Automated Manufacturing Systems, IIE Transactions, Vol. 27, pp. 99-104.
 
70. Kuan, S. N., Ong, H. L. & Ng, K. M. (2006), Solving the feeder bus network design problem by genetic algorithms and ant colony optimization, Advances in Engineering Software, Vol.37, pp. 351-359.
 
71. Kumar, K. R., Hadjinicola, G. C. & Lin, T. L. (1995), A heuristic procedure for the sigle-row facility layout problem, European Journal of Operational Research, Vol.87, No.1, pp. 65-73.
 
72. Kurosaki, R., N. Nagao, H. Komada, Y. Watanabe & H. Yano (1997), AMHS for 300mm Wafer, IEEE International Symposium on Semiconductor Manufacturing Conference Proceedings, pp. 13-16.
 
73. Leitão, P. (2009), Holonic Rationale and Self-Organization on Design of Complex Evolvable Systems, In: Proceedings of the Fourth International Conferenceon Industrial Applications of Holonicand Multi-Agent Systems, LNAI, 5696, Springer, pp.13–24.
 
74. Leitão, P., Barbosa, J. & Trentesaux, D. (2012), Bio-inspired multi-agent systems for reconfigurable manufacturing systems, Eng. Appl. of AI, Vol.25, No.5, pp. 934-944.
 
75. Leung, J. (1992), A graph-theoretic heuristic for designing loop-layout manufacturing systems, European Journal of Operational Research, Vol.57, No.2, pp. 243-252.
 
76. Levary, R. R. & S. Kalchik (1985), Facilities layout– A survey of solution procedures, Computers and Industrial Engineering, Vol. 9, No.2, pp.141-148.
 
77. Liao, C. J. & Juan, H. C. (2007), An ant colony optimization for single-machine tardiness scheduling with sequence-dependent setups, Computers and Operations Research, Vol.34, pp. 1899-1909.
 
78. Madu, C. N., Kuei, C. H., Lin & Chu-Hwa (1995), A Comparative Analysis of Quality Practice in Manufacturing Firms in the U. S. and Taiwan, Decision Sciences, Vol.26, No.5, pp. 621-635.
 
79. Ma, J., Chen, W., Zhao, L. & Dahai Zhao (2008), Elastic Buckling of Bionic Cylindrical Shells Based on Bamboo, Journal of Bionic Engineering, Vol.5, No.3, pp. 231-238.
 
80. Mandelbrot, B. B. (1982), The Fractal Geometry of Nature, Freeman, San Francisco.
 
81. Mandelbrot, B. B. (1989), Fractal geometry: What is it, and what does it do? Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, Vol.42, No.1864, pp. 3-16.
 
82. Mandelbrot, B. B. (1990), Negative fractal dimensions and multifractals, Physica A, Vol.163, No.1, pp. 306–315.
 
83. Maniezzo, V. (1999), Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem, INFORMS Journal on Computing, Vol.11, No.4, pp. 358–369.
 
84. Maniezzo, V. & Colorni, A. (1999), The ant system applied to the quadratic assignment problem, Knowledge and Data Engineering, IEEE Transactions on, Vol.11, No.5, pp. 769–778.
 
85. McMullen, Patrick R. (2001), An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives, Artificial Intelligence in Engineering , Vol.15, No.3, pp. 309-317.
 
86. Meyersdorf, D. & Taghizadeh, A. (1998), Fab layout design methodology: Case of the 300mm fabs, Semiconductor International, Vol.21, No.8, pp.187-196.
 
87. Miller, Peter (2007), The Genius of Swarms, National Geographic Society.
 
88. Montreuil, B., Venkatadri, U. & Rardin, R. L. (1999), Fractal layout organization for job shop environments, International Journal of Production Research, Vol.37, pp. 501-521.
 
89. Nebeker, D., Busso, L., Werenfels, P. D., Diallo, H., Czekajewski, A. & Ferdman, B. (2001), Airline station performance as a function of employee satisfaction, Journal of Qulity Management, Vol.6, 29-45.
 
90. Paul A. Fishwick Edited (2006), Aesthetic Computing, Massachusetts Institute of Technology Press, Cambridge, Massachusetts, London, England, pp. 3-13.
 
91. Porter Michael E. (1980), Competitive strategy, Free Press.
 
92. Reiner, M. D. & Zhao, J. (1999), The Determinants of Job Satisfaction among United States Air Force Police, Review of Public Personnel Administration, Vol.19, No.3, pp. 5-18.
 
93. Reynolds, Craig (1987), Flocks, herds and schools: A distributed behavioral model, SIGGRAPH ''87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques (Association for Computing Machinery), pp. 25–34.
 
94. Robbins, S. P. (1994), Management, 4th ed., New Jersey: Prentice-Hall.
 
95. Robbins, S. P. & Coulter, M. (1999), Management, six edition, N.J., Prentice-Hall, Inc.
 
96. Sahni, S. & Gonzalez, T. (1976), NP-complete approximation problem, Journal of Associated Computing Machinery, Vol.23, No.3, pp. 555-565.
 
97. Sarker, B. R., Wilhelm, W. E. & Hogg, G. L. (1998a), Locating sets of identical machines in a linear layout, Annals of Operations Research, Vol.77, No.1, pp. 183-207.
 
98. Sarker, B. R., Wilhelm, W. E. & Hogg, G. L. (1998b), One-dimensional machine location problems in a multi-product flowline with equidistant locations, European Journal of Operational Research, Vol.105, No.3, pp.401-426.
 
99. Smith, P.C., L.M. Kendall & C.L. Hulin (1969), The Measurement of Satisfaction in Work and Retirement, Chicago: Rand McNally.
 
100. Spector, P. E. (1997), Job satisfaction. Application, assessment, causes and consequences, Thousand Oaks, C.A: Sage Publications Inc.
 
101. Stützle, T. (1998), Local Search Algorithms for Combinatorial Problems--Analysis, Improvements and New Applications, Ph.D. thesis, FB Informatik, Technische Universität Darmstadt, Darmstadt, Germany.
 
102. Stützle, T. & Dorigo, M. (1999), ACO Algorithms for the Traveling Salesman Problem, Evolutionary Algorithms in Engineering and Computer Science: Recent Advances in Genetic Algorithms, Evolution Strategies, Evolutionary Programming, Genetic Programming and Industrial Applications, P. Neittaanmaki, J. Periaux, K. Miettinen and M. Makela, (eds.), John Wiley & Sons.
 
103. Stützle, T. & Hoos, H. (1997), The MAX-MIN Ant System and Local Search for the Travelling Salesman Problem, Proceedings for the IEEE International Conference on Evolutionary Computation, pp. 309-314.
 
104. Stützle, T. & Hoos, H. (1999), MAX-MIN Ant System and Local Search for Combinatorial Optimization Problems, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization.
 
105. Stützle, T. & Hoos, H. (2000), MAX-MIN Ant system, Future Generation Computer Systems, Vol.16, No.8, pp. 889-914.
 
106. Taylor, F. W. (1911), The principles of scientific management, New York: Harper & Row.
 
107. Tommelein, I.D., Levitt, R.E. & Hayes-Roth, B. (1992), Site Layout Modeling: How Can Artificial Intelligence Help? Journal of Construction Engineering and Management, ASCE, Vol.118, No.3, pp.594–611.
 
108. Tompkins J. A. & White J. A. (1984), Facilities planning, Wiley, New York.
 
109. Tompkins, J. A., White, J. A., Bozer, Y. A., Frazelle, E. H., Tanchoco, J. M. A. & Trevino, J. (1996), Facilities Planning, 2nd ed., Wiley & Sons, INC., New York.
 
110. Valor, M., Albert, F., Gomis, J.M. & Contero, M. (2003), Textile and tile pattern design automatic cataloguing using detection of the plane symmetry group, In Proceedings of Computer Graphics International, pp.112-119.
 
111. Van Scotter, James R. (2000), Relationship of Task Performance and Contextual Performance with Turnover, Job Satisfaction and Affection Commitment, Human Resource Management Review, Vol.10, pp.79-95.
 
112. Venkatadri, U., Rardin, R. & Montreuil, B. (1997), A design methodology for fractal layout organization, IIE Transactions, Vol.29, pp. 911-924.
 
113. VFF, Holistic, extensible, scalable and standard Virtual Factory Framework, (FP7-NMP-2008-3.4-1, 228595). [Online], http://www.vff-project.eu/
 
114. Vroom, V. (1964), Work and Motivation, New York: Jon Wiley & Sons.
 
115. Wang, X. M. (2001), Composition art of fractal pattern with its implementation in computer, Journal of Computer-Aided Design & Computer Graphics, Vol.13, No.1, pp. 83-86.
 
116. Wang, X. M. (2003), Algorithmic modeling techniques in computer-aided fractal art pattern design, Journal of South China Normal University (Natural Science Edition), Vol.2003, No.1, pp. 46-50.
 
117. Watkins, C. J. C. H. & Dayan, P. (1992), Technical note: Q-learning, Machine Learning, Vol.8, No.3, pp. 279-292.
 
118. Wexley, K. N. & Yukl, G. A. (1984), Organizational Behavior and Personnel Psychology, Homewood, Illinois: Richard D. Irwin, Inc.
 
119. Williams, L. L. (2005), Impact of nurses job satisfaction on organizational trust, Health Care Management Review, Vol.30, No.3, pp.203-211.
 
120. William, W. (1840), The Philosophy of the Inductive Sciences, Founded upon their History, London: J. W. Parker.
 
121. Yan, C. Y. & Deng, X. X. (2003), Design of fractal artistic pattern, Acta Agriculturae Universitatis Jiangxiensis, Vol.25, No.5, pp. 801-804.
 
122. Yin P. Y. & Wang J. Y. (2006), Ant colony optimization for the nonlinear resource allocation problem, Applied Mathematics and Computation, Vol.174, pp.1438-1453.
 
123. Zhang, T., Yu, C., Zhang, Y. & Wenxin, T. (2007), Ant colony system based on the ASRank and MMAS for the VRPSPD, Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, Vol.5, pp.3728-3731.
 
124. Zhang, Y. G., Sugisaka, M. & Li, X. J. (1998), Lifelike artificial trees based on growth iterated function system, Applied Mathematics and Computation, Vol.91, pp. 3-8.
 
125. Zwaan, S. V. D. & Marques, C. (1999), Ant colony optimization for job shop scheduling, Proceedings of the Third Workshop on Genetic Algorithms and Artificial Life (GAAL 99).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top