(3.238.88.35) 您好!臺灣時間:2021/04/19 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張文碩
研究生(外文):Chang, Wen-Shou
論文名稱:改善細菌性纖維素複合薄膜重組技術以應用在創傷敷料之初步研究
論文名稱(外文):Improving Fabrication Techniques of Bacterial Cellulose Composite Film for Application in Wound Dressing: A Preliminary Study
指導教授:陳輝煌陳輝煌引用關係
指導教授(外文):Chen, Hui-Huang
口試委員:陳輝煌林世斌陳莉臻吳明昌翁義銘
口試日期:2012-09-12
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:113
中文關鍵詞:細菌性纖維素重組生物薄膜褐藻膠創傷敷料幾丁聚醣
外文關鍵詞:bacterial cellulosefabricated bio-filmalginatewound dressingchitosan
相關次數:
  • 被引用被引用:5
  • 點閱點閱:379
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本實驗由釀醋工業廢棄的醋膜中回收細菌性纖維素(bacterial cellulose, BC),並與幾丁聚醣(chitosan, Chi)及褐藻膠(alginate, Alg)混合凝膠,開發成乾式重組生物薄膜(dry fabricated biofilm, DFBF),藉由調整BC複合薄膜的基材配方和重組技術,簡化製程、改善BC薄膜理化性質以期能應用為創傷敷料基材。結果顯示,以過氧化氫氧化的BC (HOBC)雖然氧化程度比過碘酸氧化者(POBC)低,衍生羧基含量只有0.092%,但保留較多BC原本的微細結構,且過氧化氫容易經漂洗去除,漂洗後的HOBC不會阻礙纖維母細胞生長。HOBC所製備之DFBF伸張率、復水率、膨潤率及水蒸氣通透率(WVP)都明顯較POBC製備者高,且較不易發生褐變,能縮減製程時間約49小時。當複合膠體基材水分含量為98.5%時,具有良好流動性以利鋪膜,而鋪膜後以30oC預乾2 hr製成之DFBF的WVP (3034 g/m2.day)接近理想創傷敷料的要求,且可減少預乾時間。HOBC交聯後漂洗10 min,可降低DFBF薄膜殘留的鈣濃度至72 ppm,使薄膜不會有細胞毒性,且製成的DFBF有合適的質感及復水能力。添加2%甘油可增加DFBF復水後薄膜的拉伸強度(342.47 kPa)與伸張率(22.21%);Chi改以水解幾丁聚醣(hydrolyzed Chi, HC)製備之DFBF可提升復水率(53.53%)與膨潤率(1255.12%),但抗菌能力、機械強度及WVP無明顯差異。整體而言,改質後的DFBF復水率可達51.69%,具有類似皮膚構造的非對稱結構,對E. coli與S. aureus都有明顯非擴散型抑菌區域產生,可吸附抗發炎物質naringin並逐漸釋放,在24 hr內釋放率達80%。此改質後的DFBF可適用於傷口初期癒創,作為抗菌、吸附滲出液與控制釋放藥物的創傷敷料。
The vinegar pellicle in vinegar brewing industry byproduct was recycled to obtain bacterial cellulose (BC) in this study. The dry fabricated biofilm (DFBF) was composed of BC, chitosan (Chi) and alginate (Alg). In order to apply DFBF to wound dressing, the adjustment of composition and fabrication techniques of BC composite film was investigated to simplify the process, to reduce the cost and to improve the physiochemical properties. The results revealed that the degree of oxidation in hydrogen peroxide oxidized BC (HOBC), with 0.092% carboxyl group content, was lower than that in periodic acid oxidized BC (POBC), but more original BC microstructure was kept. Hydrogen peroxide can be erased easily by rinsing and the rinsed HOBC did not interfere with the growth of fibroblast cell. DFBF made by HOBC exhibited higher elongation ratio, rehydration ratio, swelling ratio and water vapor transmission than that by POBC. Browning reaction was not observed during storage, and the process time was around 49 hours shortened for DFBF made by HOBC. The composite gel with 98.5% water content possessed desirable fluidity to mold. As the predrying of molded composite gel was performed for 2 hours under 30oC, the water vapor transmission (WVP) (3034 g/m.day) of final DFBF was close to the request of ideal wound dressing. After 10 min rinsing of crosslinked HOBC, 72 ppm calcium was left in final DFBF which not only prevented cell toxicity yield but also possessed desirable texture and rehydrated properties. Furthermore, adding 2% glycerol increased the tensile strength (342.47kPa) and elongation (22.21%) of rehydrated DFBF. Using hydrolyzed chitosan (HC) to instead of Chi in DFBF could enhance its dehydration ratio (53.53%) and swelling ratio (1255.12%), but the anti-bacterial ability, mechanical properties and WVP were not apparently changed. Overall, the modified DFBF revealed high rehydration ratio of 51.69%, possessed the skinlike asymmetrical structure and apparently appeared nondiffusible inhibition area against E. coli and S. aureus. The modified DFBF also could absorb anti-inflammatory substances, such as naringin, and gradually released them up to 80% within 24 hours. This modificatied DFBF has potential use in preparation of composites for application in wound dressing for antibacterial, exudates absorption and medicine controlledrelease in the initial stage of wound healing.
摘要 I
Abstract II
目錄 III
表目錄 VIII
圖目錄 IX
附表目錄 XII
附圖目錄 XIII
縮寫表 XIV
壹、前言 1
貳、文獻探討 3
一、皮膚癒創與創傷敷料 3
(一) 皮膚構造 3
(二) 創傷癒合的機制 3
(三) 傷口敷料 5
二、細菌性纖維素(Bacterial cellulose, BC) 8
(一) BC之介紹 8
(二) BC之生合成機制 8
(三) BC之應用 9
(四) BC之複合改質技術 10
三、天然高分子複合材料 13
(一) 幾丁質(chitin)與幾丁聚醣(chitosan, Chi) 13
(二) 褐藻膠(alginate, Alg) 16
四、釋放機制 18
(一) 擴散釋放(Diffusioncontrolled release system) 18
(二) 膨脹釋放(swellingcontrolled release system) 18
(三) 侵蝕釋放(erosioncontrolled release system) 19
五、柚皮苷(naringin)與發炎反應 19
参、材料與方法 21
一、實驗架構 21
二、細菌性纖維素鹼處理 22
三、纖維衍生物製程 22
(一) 對照組 22
(二) 過氧化氫氧化BC 22
(三) 以過碘酸氧化BC 23
四、重組薄膜改質 23
(一) 水解幾丁聚醣製備 23
(二) 不同纖維衍生物配方選擇 24
(三) 薄膜改質製程 24
五、薄膜分析方法 25
(一) 水分含量 25
(二) 羧基測定 26
(三) 過氧化氫殘留檢測 26
(四) 鈣濃度定量分析 27
(五) 拉伸強度(tensile strength)與伸張率(elongation at break) 27
(六) 厚度 28
(七) 水蒸氣透氣率測定(water vapor transmission, WVP) 28
(八) 膨潤率(swelling Ratio)與復水率(rehydration ratio) 29
(九) 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 29
(十) 傅立葉式紅外線吸收光譜儀(FTIR) 30
(十一) 流變性質分析 30
(十二) 影像記錄 31
(十三) 褐變程度之測定 31
(十四) 滿意度評估(Evaluation of user satisfaction) 31
六、Naringin釋放試驗 32
(一) HPLC法定量naringin 32
(二) 釋放條件 32
七、 體外細胞實驗 (In vitro test) 33
(一) Detroit 551細胞繼代培養 33
(二) 細胞毒性(cell toxicity)與細胞存活率測試(cell viability rate test) 34
八、抗菌性試驗 35
(一) 菌種培養 35
(二) 抑菌試驗 35
九、 統計分析 36
肆、結果與討論 37
一、不同氧化處理對纖維基材理化性質的影響 37
(一)官能基變化 37
(二) 細微結構變化 38
(三) 細胞毒性 38
二、不同氧化處理纖維所製備的DFBF之理化性質 40
(一) 官能基分析 40
(二) 機械性質與親水性 41
(三) 微細結構分析 42
(四) 儲存時褐變程度分析 43
三、不同水分含量HOBC/Chi/Alg物理性質分析 45
(一) 流變性質 45
(二) 物理性質分析 45
四、鋪膜後的HOBC/Chi/Alg膠液預乾條件對薄膜之物性之影響 47
五、HOBC/Chi/Alg漂洗時間對薄膜物性與細胞毒性之影響 48
(一) 鈣鹽殘留與細胞毒性 48
(二) 物理性質 50
六、添加甘油對HOBC/Chi/Alg物理性質之影響 51
七、比較Chi與水解Chi (HC)製備之DFBF物理性質影響 52
八、HOBC/Chi/Alg在生醫材料上之應用 53
(一) 抑菌試驗 53
(二) 柚皮素(naringin)釋放試驗 54
伍、結論 55
陸、參考文獻 56
柒、表 70
捌、圖 75
玖、附表 101
拾、附圖 103

戶田登至也、桑名好惠、桐山修八。1994。ナタデココの新機能.血の中コレステロール低下作用と応用開発。食品と開発 29(8): 16-21。
王曉芹、王貴波、李曉輝。2002。創面敷料及其對癒合的影響研究進展。中國臨床康復 6(4): 574-5。
牟中原、陳家俊。2000。奈米材料研究發展。科學發展月刊28(4): 281-8。
行政院衛生署。2007。免洗筷中過氧化氫之檢驗方法。96.09.26署授食字第0961800308號公告。
吳仲韋。2002。不同分子量之幾丁聚醣與纖維素摻合於薄膜製程及物性之研究。國立中央大學化材工程與材料工程系碩士論文。桃園。台灣。
吳東和、林慶福。1994。Nata-被遺忘的機能性食品。食品工業 26(6): 42-7。
李宗洋。1997。以化學法製備幾丁寡糖之探討;幾丁聚醣膜之物性及其生物分解性。國立台灣海洋大學水產食品科學系碩士論文。基隆。台灣。
李嘉豪。2006。含纖維母細胞生長因子2之PU/水膠複材促進傷口癒合之研究。南台科技大學化學工程與材料工程研究所碩士論文。台南。台灣。
周俊吉。2001。膠原蛋白為基材之創傷敷料研究。國立陽明大學醫學工程研究所碩士學位論文。台北。台灣。
林子雄。2006。不織布/幾丁聚醣薄膜複合敷料之製程技術及其性能評估。逢甲大學紡織工程研究所碩士論文。台中。台灣。
林怡君。2007。以酵素法產製之幾丁聚醣水解務特性及其抗菌活性之研究。國立宜蘭大學食品科學系研究所碩士論文。宜蘭。台灣。
林麗真。1993。傷口癒合。藥學雜誌 9(4): 1-19。
胡普紅、朱全剛、孫華軍、高瑋。2000。醫用輔料的分類及特點。解放軍藥學學報 16(3): 147-67。
范麗霞、王錫彬。2004。細菌纖維素生物理化特性及其應用。海南醫學院學報 17(4): 93-8。
許芥萍。2011。細菌性纖維素與水解明膠胜肽奈米複合薄膜復水及抗氧化能力之研究。國立宜蘭大學食品科學系研究所碩士論文。宜蘭。台灣。
陳榮輝。2001。幾丁質、幾丁聚醣的生產製造檢測與應用。科學發展月刊 29(10): 776-87。
陳秀金、曹健、湯克勇。2003。膠原蛋白和明膠在食品中的應用。鄭州工程學院學報 23(1): 66-9。
陳輝煌。2011。食品奈米科技-基礎與應用。新文京開發出版股份有限公司,台北。台灣。
黃煌展。2008。添加干擾物質原位培養以修飾細菌性纖維素之結構。國立宜蘭大學食品科學系研究所碩士論文。宜蘭。台灣。
黃穎斐。2004。生醫敷料及人工皮膚。科學發展 380: 24-9。
楊紓榕。2011。開發重組細菌性纖維素奈米複合薄膜及其物理性質之探討。國立宜蘭大學食品科學系碩士論文。宜蘭。台灣。
楊淑惠。1998。蓮霧汁生產細菌性纖維素之研究。中國農業研究 47(4): 408-18。
蕭卉羚。2011。調控細菌性纖維製備之奈米生物材料複合抗菌效果。國立宜蘭大學食品科學系研究所碩士論文。宜蘭。台灣。
謝貞建、焦士蓉、李愷、童永鑫。2009。RP-HPLC法測定不同產地枳實中的柚皮苷、橙皮苷及新橙皮苷。西華大學學報(自然科學版) 28(2): 65-7。
簡永浩。2000。幾丁聚醣之發酵製程及規模放大。國立清華大學化學工程所碩士論文。新竹。台灣。
譚育浚。2000。以天然交聯劑Genipin交聯幾丁聚醣材料的體外及體內性質評估。國立中央大學化學工程研究所碩士論文。桃園。台灣。
Alvarez OM, Patel M, Booker J, Markowitz L. 2004. Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients. Wounds 16(7): 224-33.
ASTM. 2002. Standard test methods for tensile properties thin plastic sheeting. American Society for Testing and Materials D 882-902.
Bajpai SK, Sharma S. 2004. Investigation of swelling/degradation behavior of alginate beads crosslinked with Ca2+ and Ba2+ ion. React Funct Polym 59: 129-40.
Bajpai SK, Tankhiwale R. 2006. Investigation of dynamic release of vitamin B2 from calcium alginate/chitosan multilayered beads: Part II. React Funct Polym 66: 1565-74.
Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL. 2007. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mat Sci Eng C 28: 515-8.
Bentley AK, Ress DJG, Rizza C, Brownlee GG. 1986. Defective propeptide processing of blood clotting factor IX caused by mutation of arginine to glutamine at position-4. Cell 45(3): 343-8.
Bianchi ML, Crisol R, Schuchardt U. 1999. Bleaching of commercial pulps with H2O2 catalyzed by heteropolyacids. Bioresource Technol 68: 17-21.
Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A. 2007. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28: 3478-88.
Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R. 2006. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Release 113: 43-56.
Brown AJ. 1886. XLIII.On an acetic ferment which forms cellulose. J Chem Soc 49: 432-9.
Brown RMJr, Willison JHM, Richardson CL. 1976. Cellulose biosynthesis on Acetobacter xylinum: visualization of the site of synthesis and direct measurement of in vivo process. P Natl Acad Sci 73: 4565-69.
Cannon RE, Anderson SM. 1991. Biogenesis of bacterial cellulose. Crit Rev Microbiol 17: 435-47.
Celleno L, Tamburi F. 2009. Structure and function of the skin. Nutr Cosmet: 3-45.
Chen RH, Hwa HD. 1995. Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane. Carbohydr Polym 29: 353-8.
Chen MC, Liu CT, Tsai HW, Chang Y, Sung HW. 2009. Mechanical properties, drug eluting characteristics and in vivo performance of a genipin-crosslinked chitosan polymeric stent. Biomaterials 30: 5560-70.
Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P. 2011. Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85: 548-53.
Chirkov SN. 2002. The antiviral of chitosan (Review). Appl Biochem Micro 38: 1-8.
Choi YS, Hong SR, Lee SB, Lee YM, Song KW, Park MH. 2001. Study on gelatin-based sponges. Part III: A comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as wound dressing in full-thickness skin defect of rat. J Mater Sci 12(1): 67-73.
Chung TW, Yang J, Akaike T, Cho KY, Nah JW, Kim SI, Cho CS. 2002. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 23(14): 2827-34.
Ciechańska D. 2004. Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text in East Eur 48: 69-72.
Clear K, Whistler RL, BeMiller JN. Polysaccharides and their derivaties. 1993. Academic Press Inc: 10543.
Colombo P, Catellani PL, Peppas NA, Maggi L, Conte U. 1992. Swelling characteristics of hydrophilic matrices for controlled release. New dimensionless number to describe the swelling and release behavior. Int J Pharm. (88): 99-109.
Cook W. 1986. Alginate dental impression materials: chemistry, structure, and properties. J Biomed Mater Res 20(1): 1-24.
Cutler S, Somerville C. 1997. Cellulose synthesis: cloning in silicon. Plant Physiol 7: 108-11.
Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. 2001. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53: 135-59.
Czaja W, Krystynowicz A, Bielecki S, Brown RM. 2006. Microbial cellulose-the natural power to heal wounds. Biomaterials 27(2): 145-51.
Deshpande MV. 1986. Enzymatic degradation of chitin and its biological applications. J Sci Ind Res. 45: 27381.
Eloy R, Brack A, Dorme N, Cornillac AM. 1992. Physical and biological properties of a new synthetic amino acid copolymer used as wound dressing. J Biomed Mater Res 26: 695-712.
Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Berglund LA, Salmen L. 2010. Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81: 394-401.
Fras L, Joshansson LS, Stenius P, Laine J, Stana-Kienschek K, Ribitsch V. 2005. Analysis of the oxidation of cellulose fibres by titration and XPS. Colloid Surface A: 101-108.
Fontana JD, Souza AM, Fontana CK. 1990. Acetobacter cellulose pellicle as a temporary skin substitube. Appl Biochem Biotechnol 24: 253-64.
Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, Weiss JP. 2004. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci 101: 4186-91.
Gurny R, Doelker E, Peppas NA. 1982. Modelling of drug sustained release of water soluble drugs from porous, hydrophobic polymers. Biomaterials 3 (1): 27-32.
Haskins JF, Hogsed MJ. 1950. The alkaline oxidation of cellulose. I. Mechanism of the degradative oxidation of cellulose by hydrogen peroxide in presence of alkali. Alli Chem Dye Crop 1: 1947-8.
Hage R, Lienke A. 2006. Bleach and oxidation catalysis by manganese–1,4,7-triazacylononane complexes and hydrogen peroxide. J Mol Catal 251: 150-8.
Ho YC, Mi FL, Sung HW, Kuo PL. 2009. Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. Int J Pharm 376: 69-75.
Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ. 2006. Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60: 1710-3.
Howling GI, Dettmar PW, Goddard PA, Hampson FC, Dornish M, Wood EJ. 2002. The effect of chitin and chitosan on fibroblast-populated collagen lattice contraction. Biotechnol Appl Biochem 36: 247-53.
Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ. 2006. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27: 4661-70.
Iguchi M, Yamanaka S, Budhiono A. 2000. Bacterial cellulose-a masterpiece of nature's arts. J Mater Sci 35(2): 261-70.
Kawaguchi K, Kikuchi S, Hasegawa H, Maruyama H, Morita H, Kumazawa Y. 1999. Suppression of lipopolysaccharide-induced tumor necrosis factor-release and liver injury in mice by naringin. European J Phazm 368: 245-50.
Kent RA, Stephens RS, Westland TA. 1991. Bacterial cellulose fiber provides an alternative for thickening and coating. Food Technol 45: 108.
Kienzle-Sterzer C, Rha CK. 1985. Flow behavior of a cationic biopolymer: chitosan. Polym Bull 13: 1-6.
Kifune K. 1992. Clinical application of chitin artificial skin. Elsevier Appl Sci: 9-13.
Kim UJ, Kuga S, Wada M, Okano T, Kondo T. 2000. Periodate oxidation of crystalline cellulose. Biomacromol 1(3): 488-92.
Kim J, Cai Z, Chen Y. 2010. Biocompatible bacterial cellulose composites for biomedical application. J Nanotech Eng Med 1: 1-6.
King AH, Glicksman M. 1983. Brown seaweed extracts (alginates). Food Hydrocolloid 2: 115-82.
Kingkaew J, Jatupaiboon N, Sanchavanakit N, Pavasavt P, Phisalaphong M. 2010. Biocompatibility and growth of human keratinocytes and fibroblastes on biosynthesized cellulose-chitosan films. J Biomater Sci 21: 100921.
Kittur FS, Kumar KR, Tharanathan RN. 1998. Functional packaging properties of chitosan films. Z Lesbensm Unters Forsch A 206: 44-7.
Klemm D, Schumann D, Kramer F, Hesler N, Hornung M, Schmauder HP, Marsch S. 2006. Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205: 49-96.
Knorr D. 1984. Use of chitinous polymer in food. Food Technol 38: 85-97.
Kokabi M, Sirousazar M, Hassan ZM. 2007. PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43: 773-81.
Kramer F, Klemm D, Schumann D, Hebler N, Wesarg F, Fried W, Stadermann D. 2006. Nanocellulose polymer composites as innovative pool for biomaterial development. Macromolecular Symposia 244: 136-48.
Kumar ABV, Vardaraj MC, Gowda LR, Tharanathan RN. 2005. Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochem J 391(2): 167-75.
Lawrie G, Keen I, Drew B, ChandlerTA, Rintoul L, Fredericks P, Grøndahl L. 2007. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8: 253-341.
Li J, Wan Y, Li Y, Liang H, Wang J. 2009. Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29: 1635-42.
Li Y, Chen XG, Liu CS, Liu CG, Meng XH, Yu LJ, Kenendy JF. 2007. Physicochemical characterization and antibacterial property of chitosan acetates. Carbohydr Polym 67: 227-32.
Lin KW, Mei MY. 2000. Influences of gums, soy protein isolate, and heating temperatures on reduced-fat meat batters in a model system. J Food Sci 65(1):48-52.
Lin SB, Hsu CP, Chen LC, Chen HH. 2009. Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocoll 23: 2195-203.
Liu H, Du Y, Wang X, Sun L. 2004. Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95: 147-55.
Lower SE. 1984. Polymers from the sea chitin and chitosan. Manufacturing Chemist 55: 73-5.
MaenoS, Niki Y, Matsumoto H, Morika H, Yatabe T, Funayama A. 2005. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26: 484755.
Martinez Y, Retuert J, YazdaniPedram M, Colfen H. 2004. Hybrid ternary organic–inorganic films based on interpolymer complexes and silica. Polym 45(10): 3257-65.
Maneerung T, Tokura S, Rujiravanit R. 2008. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohy Polym 72: 43-51.
Mast BA. 1992. Scarless wound healing in the mammalian fetus. Surg Gynecol Obstet 174(5): 441-54.
Menachen C, Aharon E. 1969. Oxidaton of cellulose by hydrogen peroxide. Cell Chem Technol 3(1): 9-20.
Meng X, Tian F, Yang J, He CN, Xing N, Li F. 2010. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Master Sci: Mater Med 21: 175159.
Mi FL, Sung HW, Shyu SS. 2002. Drug release from chitosan-alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydr Polym 48(1): 61-72.
Millon LE, Wan WK. 2006. The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res, Part B Appl Biomater 79B: 245-53.
Miyake K. 2007. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19: 3-10.
Moe ST, Breaek GS, Elgsaeter A, Smidsrod O. 1993. Swelling of covalently cross-linked alginate gels: Influence of ionic solutes and nonpolar solvents. Micromolecule 26: 3589-97.
Morris ER, Cutler AN, Ross-Murphy SB, Ress DA. 1981. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr Polym 1: 5-21.
Morris VJ, Mitchell JR, Ledward DA. 1986. Gelation of polysaccharides: Functional properties of food macromdecules. Elsevier Appl Sci: 121-70.
Muzzarelli, R, Rocchetti, R. 1985. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr Polym 5(6): 461-72.
Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S. 2004. High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14(11): 1124-8.
Nakagaito AN, Yano H. 2005. Novel high-strength biocomposites based on microfibrillated cellulose having nanoorder-unit web-like network structure. Appl Phys A 80:155-9.
Nwe N, Furuike T, Tamura H. 2010. Selection of a biopolymer based on attachment, morphology and proliferation of fibroblast NIH/3T3 cells for the development of a biodegradable tissue regeneration template: Alginta, bacterial cellulose and gelatin. Proc Bio 45: 457-66.
Okiyama A, Motoki M, Yamanaka S. 1993. Bacterial celluloseⅡ -processing of the gelatinous cellulose for food materials. Food Hydrocolloid 6(5): 479-87.
Park GB. 1978. Burn wound coverings: A review. Biomater Artif Cell 6: 1-35.
Paul JW, John MH, Hans-Joachin GJ, Ronald DH. 2000. Fermentation of a bacterial cellulose/xylan composite by mixed ruminal microflora; Implications for the role of polysaccharide matrix interactions in plant cell wall biodegradability. J Agr Food Chem 48: 1727-33.
Peng S, Zheng Y, Wu J, Wu Y, Ma Y, Song W, Xi T. 2011. Preparation and characterization of degradable oxidized bacterial cellulose reacted with nitrogen dioxide. Polym Bull 10: 1007/s00289-011-0550-8.
Petruzzelli GJ, Johnson JT. 1994. Skin grafts. Otolaryngol Clin 27(1): 25-37.
Phisalaphong M, Jatupaiboon N. 2008. Biosynthesis and characterization of bacterial cellulose-chitosan film. Carbohy Polym 74: 482-8.
Rehman ZU. 2006. Citrus peel extract–A natural source of antioxidant. Food Chem 99: 450-4.
Richard AF, Clark MD.1993. Basic of cutaneous wound repair. J Dermatol Surg Oncol 19: 693-706.
Ross P, Mayer R, Benziman M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1): 35-58.
Shahidi F, Janak KVA, Joen YJ. 1999. Food applications of chitin and chitosans. Trends Food Sci Technol 10(2): 37-51.
Shin CM, Shieh YT, Twu YK. 2009. Preparation and characterization of cellulose/chitosan blend film. Carbohy Polym 78: 169-74.
Shoda M, Sugano Y. 2005. Recent advances in bacterial cellulose production. Biotechnol Biopro Eng 10: 18.
Singer AJ, Clark MD, Richard AF. 1999. Cutaneous wound healing. N Engl J Med 341: 738-46.
Tai TS, SheuWH, Lee WJ, Yao HT, Chiang MT. 2000. Effect of chitosan on the plasma lipoprotein concentration in subjects having type II diabetes with hypercholesterolemia. Diabetes Care 23: 1793-4.
Tavis MJ, Thornton J, Danet D. 1978. A new composites skin prosthesis. Burns (7): 123.
Tarvainen T, Malin M, Barragan I, Tuominen J, Seppala J, Jarvinen K. 2006. Effects of incorporated drugs on degradation of novel 2,2-bis(2-oxazoline) linked poly(lactic acid) films. Int. J. Pharm. 310: 162-7.
Thomas A, Harding KG, Moore K. 2001. Alginate from wound dressing activate human macrophage to secrete tumour necrosis factor-α. Biomaterials (21): 1797-802.
Thornton JR, Emmett PM, Heaton KW. 1983. Diet and gall stones: effects of refined and unrefined carbohydrate diets on bile cholesterol saturation and bile acid metabolism. Gut 24(1): 2-6.
Tongwen X, Binglin H. 1998. Mechanism of sustained drug release in diffusion-controlled polymer matrix-application of percolation theory. Int J Pharm 170: 139-49.
Tsai GJ, Su WH. 2000. Antibacterial activity of a chitooligosacchatides mixture prepared by cellulose digestion of shrimp chitosan and its application to milk preservation. J Food Prot 63: 747-52.
Turkov J, Brod C, Stamberg J. 1986 Proteolytic dry biopolymeric composition for treatment of wounds, and method of using same. U.S. Patent 19: 1-6.
Vandamme E. 1996. Bacteria in front mirror: Biocosmetics vis microbial synthesis. Agro Food Industry: 38.
Walker D.1996. Back to basics: Choosing the correct wound dressing. American J Nursing 96: 35-9.
Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ. 2006. Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol 66: 1825-32.
Wang Y, Challa P, Epstein DL, Yuan F. 2004. Controlled release of ethacrynic acid from poly (lactide-co-glycolide) films for glaucoma treatment. Biomaterials 25: 4279-85.
Wiegand C, Elsner P, Hipler U, Klemm D. 2006. Protease and ROS activities influenced by a composite of bacterial cellulose and collagen typeⅠin vitro. Cellulose 13: 689–96.
Winter GD. 1963. Effect of air drying on the surface of a wound. Nature 197: 91-2.
Wojciech C, Alina K, Stanislaw BR. Malcolm Brown Jr. 2006. Microbial cellulose—the natural power to heal wounds. Biomaterials 27: 145-51.
Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M. 2005. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2): 153-5.
Yotsuyanagi T, Yoshioka I, Segi N, Ikeda K. 1991. Acid-induced and calcium-induced gelation of alginic acid:bead formation and pH dependent swelling. Chem Pharm Bull 39: 1072-4.
Zhang S, Gonsalves KE. 1998. Influence of the chitosan surface profile on the nucleation and growth of calcium carbonate films. Langmuir 14: 6761-66.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔