跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝政平
研究生(外文):Jheng-Ping Sie
論文名稱:光電產業廢玻璃之卜作嵐反應特性研究
論文名稱(外文):A Study on Pozzolanic Characteristics of Waste Glass from Optoelectronic Industry
指導教授:林凱隆林凱隆引用關係
指導教授(外文):Kae-Long Lin
口試委員:王鯤生黃兆龍鄭大偉
口試委員(外文):Kuen-Sheng WangChao-Lung HwangTa-Wui Cheng
口試日期:2013-05-23
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:186
中文關鍵詞:TFT-LCD太陽能板輔助性膠結材料光電產業水膠比迴歸分析卜作嵐反應
外文關鍵詞:Thin Film Transistor Liquid Crystal DisplaySolar PanelSupplementary Cementitious MaterialOptoelectronic Industrywater-to-binderRegression Analysispozzolanic reaction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:1
本研究係利用TFT-LCD廢玻璃與太陽能板廢玻璃添加於水泥中作為輔助性膠結材料,以取代量 (0-40%)、於不同水膠比 (0.29-0.55)來製備漿體,利用初終凝時間、抗壓強度、孔隙結構、膠體空間比及非蒸發含水量來探討不同水化參數對於廢玻璃漿體的影響及相關性。廢玻璃漿體之微觀分析,則輔以XRD、FTIR、MIP、SEM及NMR來探討晶相物種、鍵結形式、孔隙大小及水化產物的變化,藉此評估TFT-LCD與太陽能板廢玻璃漿體之卜作嵐反應特性。結果顯示,TFT-LCD與太陽能板廢玻璃漿體在低水膠比 (0.29-0.38)和低取代量 (10-20%)時其抗壓強度發展良好,經鹼活化所產生的C-S-H膠體與C-A-H等水化產物,致使其晚期強度發展。TFT-LCD廢玻璃及太陽能板廢玻璃漿體於低水膠比為0.29與0.38時,孔隙大小隨著齡期的推移有明顯趨向膠孔 (<0.01 μm)移動。另外,經迴歸分析得知,毛孔與總孔對抗壓強度均呈負相關;膠體空間比及非蒸發含水量對抗壓強度之迴歸,呈現對數關係且存在高度相關性,R2皆為0.8以上。XRD與FTIR分析可發現卜作嵐水化產物如C-S-H、C-A-H及C-A-S-H的晶相。SEM觀察發現,TFT-LCD廢玻璃及太陽能面板廢玻璃漿體,係因卜作嵐反應進行,致使晚期結構逐漸緻密化。NMR分析結果,TFT-LCD廢玻璃及太陽能面板廢玻璃漿體之水化反應皆隨齡期而增加,且可以發現Q0峰會逐漸減少,而可代表水化產物之Q1與Q2峰則會隨之增加,係因水泥漿體中矽酸鈣之單矽酸根逐漸轉變為高濃縮之C-S-H膠體所貢獻,結果顯示,光電產業廢玻璃具作為卜作嵐材料之潛力。
This study investigated the pozzolanic reactions and engineering properties of waste film transistor liquid crystal displays (TFT-LCD) and solar panel waste glass -blended cements in relation to various replacement ratios (0–40%) and water-to-binder ratio (0.29-0.55). The waste glass blended cement (WGBC) pastes were subjected to setting time, compressive strength, pore structure, gel/space ratio and non-evaporable water content tests were also conducted. The microstructure of all samples was determined using XRD、FTIR、MIP、SEM and NMR. The goal of this study is to elucidate the pozzolanic characteristics of WGBC pastes containing waste glass when it is alkaline-activated, and to investigate its hydration products. The results indicated the compressive strengths of the WGBC pastes with 10-20% waste glass were was similar to those of OPC when the w/b ratios were 0.29-0.38. When the w/b ratios were 0.29-0.38, the capillary pore volume (<0.01 μm) of WGBC pastes decreased as curing time increased. The equation models variability in compressive strength, indicating a relatively strong correlation between the total pore volume, capillary pore volume, gel/space ratio, non-evaporable water content and compressive strength. The correlation coefficient (R2) is greater than 0.8. The hydration products of WGBC pastes, perhaps because of the initial attack of waste glass, which were involved mainly in the formation of C-S-H, C-A-H, C-A-S-H. This resulted in a very densified and homogeneous system, and a considerable increase in long-term strength. 29Si NMR spectrum indicated as the curing time increased, the relative intensity of the Q0 peak decreased. The Q1 and Q2 peak also increased with curing time. This is linked to an acceleration of the hydration kinetics with curing time, so that the anhydrous species were transformed into calcium silicate hydrate (C-S-H). These experimental results indicate using waste glass from optoelectronic industry as supplementary cementitious materials are feasible.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 前言 1
1-1 研究緣起 1
1-2 研究內容與目的 2
第二章 文獻回顧 3
2-1 TFT-LCD廢玻璃之來源特性與再利用現況 3
2-2 太陽能面板廢玻璃之來源特性與再利用現況 8
2-3 水泥之物化特性 18
2-4 卜作嵐材料之特性與應用 38
第三章 實驗材料與方法 48
3-1 實驗設計 48
3-2 實驗材料與設備 52
3-3 實驗方法 56
第四章 結果與討論 67
4-1 材料之基本特性分析 67
4-2 光電產業廢玻璃漿體之機械特性 73
4-3 光電產業廢玻璃漿體之水化參數分析 80
4-4 光電產業廢玻璃漿體之XRD分析 152
4-5 光電產業廢玻璃漿體之FTIR分析 156
4-6 光電產業廢玻璃漿體之TG/DTA分析 161
4-7 光電產業廢玻璃漿體之NMR分析 165
4-8 光電產業廢玻璃漿體之SEM分析 172
4-9 CO2減量及經濟效益 175
第五章 結論與建議 177
5-1 結論 177
5-2 建議 179
參考文獻 180

Aly M., Hashmi M. S. J., Olabi A.G., Messeiry M., Abadir E. F., Hussain A. I., Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar, Materials and Design, 33, 127-135, 2012.
Askarinejad A., Pourkhorshidi A. R., Parhizkar T., Evaluation the pozzolanic reactivity of sonochemically fabricated nano natural pozzolan, Ultrasonics Sonochemistry, 19, 119-124, 2012.
Bellmann F., Damidot D., Möser B., Skibsted J., Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate, Cement and Concrete Research, 40, 875-884, 2010.
Bignozzi M. C., Saccani A., Sandrolini F., Chemical–physical behaviour of matt waste in cement mixtures, Construction and Building Materials, 24, 2194-2199, 2010.
Bignozzi M. C., Saccani A., Sandrolini F., Matt waste from glass separated collection: An eco-sustainable addition for new building materials, Waste Management, 29, 329-334, 2009.
Bilim C., Properties of cement mortars containing clinoptilolite as a supplementary cementitious material, Construction and Building Materials, 25, 3175-3180, 2011.
Chen Y.L., Ko M.S., Lai Y.C., Chang J.E., Hydration and leaching characteristics of cement pastes made from electroplating sludge, Waste Management, 31, 1357-1363, 2011.
Collepardi M., Marchese B., Morphology and surface properties of hydrated tricalcium silicate pastes, Cement and Concrete Research, 2, 57-65, 1972.
Courard L., Darimont A., Schouterden M., Ferauche F., Willem X., Durability of mortars modified with metakaolin, Cement and Concrete Research, 33,473-1479, 2003.
Display Search, http://www.displaysearch.com.tw/, 2013.
Dyer T. D., Dhir R. K., Hydration reactions of cement combinations containing vitrified incinerator fly ash, Cement and Concrete Research, 34, 849-856, 2004.
Esteves L. P., On the hydration of water-entrained cement–silica systems: Combined SEM, XRD and thermal analysis in cement pastes, Thermochimica Acta, 518, 27-35, 2011,
Federico L. M., Chidiac S. E., Waste glass as a supplementary cementitious material in concrete - Critical review of treatment methods, Cement & Concrete Composites, 31, 606-610, 2009.
Fierens P., Verhaegen J. P., Hydration of tricalcium silicate by water vapour, Cement and Concrete Research, 5, 587-596, 1975.
Fierens P., Verhaegen J. P., Hydration of tricalcium silicate in paste - Kinetics of calcium ions dissolution in the aqueous phase, Cement and Concrete Research, 6, 337-342, 1976.
Fierens P., Verhaegen J. P., Induction period of hydration of tricalcium silicate, Cement and Concrete Research, 6, 287-292, 1976.
Frías M., Cabrera J., Pore size distribution and degree of hydration of MK-Cement pastes, Cement and Concrete Research, 30, 561-569, 2000.
Fthenakis V. M., End-of-life management and recycling of PV modules, Energy Policy, 28, 1051-1058, 2000.
Goňi S., Frias M., Vegas I., García R., Vigil de la Villa R., Effect of ternary cements containing thermally activated paper sludge and fly ash on the texture of C–S–H gel, Construction and Building Materials, 30, 381-388, 2012.
Goñi S., Frias M., Vegas I., García R., Vigil de la Villa R., Effect of ternary cements containing thermally activated paper sludge and fly ash on the texture of C–S–H gel, Construction and Building Materials, 30, 381–388, 2012.
H.F.W. Taylor, Cement Chemistry, Thomas-Telford, London, 1997
H.M. Jennings, Aqueous solubility relationships for two types of calcium silicate hydrate, J. Am. Ceram. Soc. 69 (8) (1986) 614–618.
Halamickova P., Detwiler R.J., Bentz D.P., Garboczi E.J., Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter, Cement and Concrete Research, 25, 790-802, 1995.
Haugsten K. E., Gustavson B., Environmental properties of vitrified fly ash from hazardous and municipal waste incineration, Waste Management, 20, 167-176, 2000.
Jons E. S., Osbaeck B., The effect of cement composition on strength described by a strength-porosity model, Cement and Concrete Research, 12, 167-178, 1982.
Kadri E. H., Kenai S., Ezziane K., Siddique R., Schutter G. D., Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar, Applied Clay Science, 53, 704-708, 2011.
Kadri E.H., Kenai S., Ezziane K., Siddique R., Geert De Schutter e, Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar, Applied Clay Science, 53, 704-708, 2011.
Karamberi A., Moutsatsou A., Participation of coloured glass cullet in cementitious materials, Cement & Concrete Composites, 27, 319-327, 2005.
Khatib J.M., Clay R.M., Absorption characteristics of metakaolin concrete, Cement and Concrete Research, 34 (1), 19-29, 2004.
Khatib J.M., Wild S., Sulfate resistance of metakaolin mortar, Cement and Concrete Research, 28 (1), 83-92, 1998.
Kiattikomol K., Jaturapitakkul C., Songpiriyakij S, Chutubtim S., A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials, Cement and Concrete Composites, 23, 335-343, 2001.
Lam L., Wong Y. L., Poon C. S., Degree of hydration and gel/space ratio of high-volume fly ash/cement systems, Cement and Concrete Research, 30, 747-756, 2000.
Lin F., Meyer C., Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure, Cement and Concrete Research, 39, 255-265, 2009.
Maraghechi H., Shafaatian S. M. H., Fischer G., Rajabipour F., The role of residual cracks on alkali silica reactivity of recycled glass aggregates, Cement & Concrete Composites, 34, 41-47, 2012.
Martínez-Ramírez S., Fernández-Carrasco L., Carbonation of ternary cement systems, Construction and Building Materials, 27, 313-318, 2012.
Matos A. M., Sousa-Coutinho J., Durability of mortar using waste glass powder as cement replacement, Construction and Building Materials, 36, 205-215, 2012.
Méducin F., NoïkC., Rivereau A., Zanni H., Complementary analyses of a tricalcium silicate sample hydrated at high pressure and temperature, Cement and Concrete Research, 32, 65-70, 2002.
Mehta P.K., Concrete-Structure, Material, and Properties, Prentice Hall, Englewood Cliffs, 1986.
Moesgaard M., Herfort D., Steenberg M., Kirkegaard L. F., Yue Y., Physical performances of blended cements containing calcium aluminosilicate glass powder and limestone, Cement and Concrete Research, 41, 359-364, 2011.
Moropoulou A., Bakolas A., Aggelakopoulou E., Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis, Thermochimica Acta, 420, 135-140, 2004.
Ogawa K., Uchikawa H., Takemoto K., The mechanism of the hydration in the system C3S-pozzolana, Cement and Concrete Research, 10, 683-696, 1980.
Park Y. J., Heo J., Vitrification of fly ash from municipal solid waste incinerator, Journal of Hazardous Materials, B91, 83-93, 2002.
Pomakhina E., Deneele D., Gaillot A. C., Paris M., Ouvrard G., 29Si solid state NMR investigation of pozzolanic reaction occurring in lime-treated Ca-bentonite, Cement and Concrete Research, 42, 626-632, 2012.
Ryu H., Kang J., Han Y., Kim D., Park J. J., Park W. K., Yang M. S., Indium-Tin Oxide/Si Contacts with In- and Sn-Diffusion Barriers in Polycrystalline Si Thin-Film Transistor Liquid-Crystal Displays, Journal of ELECTRONIC MATERIALS, 32, 919-924, 2003.
Schneider M., Romer M., Tschudin M., Bolio H., Sustainable cement production - present and future, Cement and Concrete Research, 41, 642-650, 2011.
Schwarz N., DuBoisM., Neithalath N., Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes, Cement & Concrete Composites, 29, 656-666, 2007.
Schwarz N., Neithalath N., Influence of a fine glass powder on cement hydration: Comparison to fly ash and modeling the degree of hydration, Cement and Concrete Research, 38, 429-436, 2008.
Shia C., Wua Y., Rieflerb C., Wangc H., Characteristics and pozzolanic reactivity of glass powders, Cement and Concrete Research, 35, 987-993, 2005.
Siddique R., Chahal N., Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar, Resources, Conservation and Recycling, 55, 739-744, 2011.
Singh N. B., Hydrothermal synthesis of b-dicalcium silicate (β-Ca2SiO4), Progress in Crystal Growth and Characterization of Materials, 52, 77-83, 2006.
Toledo Filho R. D., Goncalves J. P., Americano B. B., Fairbairn E.M.R., Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil, Cement and Concrete Research, 37, 1357-1365, 2007.
Vigil de la Villa R., Fernandez R., Garcia R., Villar-Cocina E., Frias M., Pozzolanic activity and alkaline reactivity of a mordenite-rich tuff, Microporous and Mesoporous Materials, 126, 125-132, 2009.
Wang H. Y., The effect of the proportion of thin film transistor–liquid crystal display (TFT-LCD) optical waste glass as a partial substitute for cement in cement mortar, Construction and Building Materials, 25, 791-797, 2011.
Yılmaz B., Olgun A., Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone, Cement & Concrete Composites, 30, 194-201, 2008.
Zanni H., Rassem-Bertolo R., Masse S., Lorenzo Fernandez, Pedro Nieto, Bruno Bresson, A spectroscopic NMR investigation of the calcium silicate hydrates present in cement and concrete, Magnetic Resonance Imaging, Volume 14, Issues 7–8, 1996, Pages 827-831
Zeng Q., Li K., Fen-chong T., Dangla P., Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes, Construction and Building Materials, 27, 560-569, 2012.
Zeng Q., Li K., Fen-chong T., Dangla P., Pore structure characterization of cement pastes blended with high-volume fly-ash, Cement and Concrete Research, 42, 194-204, 2012.
Zhang N., Liu X., Sun H., Li L., Pozzolanic behaviour of compound-activated red mud-coal gangue mixture, Cement and Concrete Research, 41, 270-278, 2011.
台灣水泥公司,http://www.taiwancement.com,2012。
江鴻銘、蔡尚林,『光電業資源化應用技術手冊:薄膜電晶體液晶顯示器』,經濟部工業局,台北 (2003)。
行政院環保署,http://www.epa.gov.tw/,2012。
吳貴淳,太陽能電池的材料回收處理與再利用研究,國立交通大學精密與自動化工程學程,碩士論文,新竹 (2006)。
李宗彥,都市垃圾焚化飛灰熔渣粉體對不同型態水泥之卜作嵐反應行為,國立中央大學環境工程研究所,碩士論文,中壢 (2001)。
李清華、吳宗勳、陳明俊、彭御賢,廢液晶顯示器資源再生處理技術評析,工業污染防治,經濟部工業局,第91期,第138-150頁 (2004)。
沈政儒,焚化飛灰與下水污泥灰共熔之操作特性與卜作嵐材料特性之研究,碩士論文,國立中央大學環境工程學研究所,(2005)。
沈得縣,高爐熟料與飛灰之卜作嵐反應機理及對水泥漿體巨微觀性質影響之研究,博士論文,國立台灣工業技術學院工程技術研究所營建工程,台北 (1991)。
周建佑,背光模組產業的協同設計與供應,國立中央大學管理學院高階主管企管碩士班,碩士論文,中壢 (2011)。
林仁益,水泥水化參數間基本性質演繹模式之研究,國立台灣工業技術學院工程技術研究所營建工程學程,博士論文,台北 (1991)。
林凱隆,都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究,博士論文,國立中央大學環境工程學研究所,(2002)。
林維明,蒸氣催化水泥單礦物之水化機理,國立交通大學土木工程研究所,博士論文,新竹 (1997)。
范振軒,TFT-LCD廢玻璃/氟化鈣污泥熱處理資材化為絕緣玻璃陶瓷之研究,國立台灣大學環境工程研究所,碩士論文,台北 (2010)。
高瑛紜、劉蘭萍、王義基,『液晶面板製造業廢棄物資源化現況評析』,綠基會通訊,2008,第6-9頁。
張仁杰,廢玻璃混合廢棄多孔材料燒製多孔陶瓷對環境調濕性能之研究,國立宜蘭大學環境工程研究所,碩士論文,宜蘭 (2011)。
張添晉、陳烱力、廖原篁,廢液晶顯示器及太陽能模組回收管理與物質流分析,工業污染防治,第108期,第103-128頁 (2008)。
陳子秦,『清潔生產指標與國內汽車業清潔生產發展概況』,產基會,台北 (2008)
黃兆龍,『混凝土性質與行為』,詹式書局 (1997)。
黃尊謙,都市垃圾焚化飛灰熔融處理取代部分水泥之研究,碩士論文,國立中央大學環境工程研究所,中壢 (2000)。
塗耕業,水泥漿體添加卜作嵐材料之水化特性研究,國立中興大學土木工程研究所,碩士論文,台中 (2007)。
楊素華, 蔡泰成,『太陽光能發電元件 - 太陽能電池』, 科學發展月刊,第390期,第50頁 (2005)。
經濟部能源局,『2010年能源產業技術白皮書』,台北 (2010)。
經濟部能源局,http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx
廖原篁,台灣地區太陽能電池與太陽能板流佈與管理之研究,國立台北科技大學環境工程與管理研究所,碩士論文,台北 (2009)。
劉俊杰,水泥將體孔隙與水灰比及抗壓強度關係之研究,碩士論文,國立台灣工業技術學院工程技術研究所營建工程,台北 (2000)。
蔡獻逸,液晶顯示器用玻璃基板,科學發展,第406期,第32-37頁,2006。
龔人俠,『水泥化學概論」,台灣水泥同業公會,台北 (1977)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top