跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宜生
研究生(外文):Yi-Sheng Lin
論文名稱:基於粒子群最佳化演算法之模糊滑動模式控制研究
論文名稱(外文):The Study of Fuzzy Sliding Mode Control System Based on Particle Swarm Optimization Method.
指導教授:俞克維俞克維引用關係郭昭霖
指導教授(外文):Ker-Wei YuChao-Lin Kuo
口試委員:連長華林義隆張偉德
口試委員(外文):Chang-Hua LienYih-Lon LinWei-Der Chang
口試日期:2013-06-28
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:輪機工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:116
中文關鍵詞:粒子群聚最佳化演算法滑動模式控制同步
外文關鍵詞:Particle swarm optimization algorithmSliding mode controlSynchronization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:490
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出一種改良型適應壓縮因子粒子群聚最佳化演算法(Modified adaptive fuzzy with a constriction factor particle swarm optimization, I-AFPSO )。利用演算法中群體最佳位置與個體最佳位置來獲得搜索能力參數,此參數與所設定之模糊規則庫輸入至模糊控制系統更新加速度係數,以此方式讓粒子於不同之情況下能動態調控其特性與趨勢,進一步改善演算法之精確度與效率性。本文完整建構I-AFPSO並以五種知名的多極值測試函數,於三種不同的維度下實驗以驗證演算法之效能。而後本文介紹適應型模糊滑動模式應用於Lorenz-Chen系統同步問題之控制,其控制方式為利用迫近模式讓主系統與從系統之誤差狀態趨至滑動平面,並於滑動模式下利用適應性方式預估模糊滑動補償器之輸出量。經數值模擬可看出此控制方式可以解決Lorenz-Chen系統同步問題,讓主-從系統之信號能於一穩定之誤差範圍內達到同步。最後本文將整合I-AFPSO於滑動模式系統中以做進一步優化,藉由訓練滑動控制器內可調控之正向常數並於演算法內計算誤差適應值,而訓練後所獲得之常數使模糊滑動控制器能讓信號獲得更小之誤差,即系統能得到更精確之同步。
In this paper, the modified particle swarm optimization method which combines modified adaptive fuzzy with a constriction factor (I-AFPSO) is investigated. The capacity parameters of I-AFPSO calculated by the best position of each particles and the best position of the group are inputted to fuzzy control system with fuzzy rule base for on-line updating the accelerating coefficients, which can dynamically adapt the characteristic of particle trend to improve the accuracy and efficiency of proposed algorithm. Furthermore, the adaptive fuzzy sliding mode control scheme for Lorenz-Chen systems synchronization is also investigated in this thesis. In this scheme, the approaching mode demanded to drive the error states of Lorenz-Chen systems to the sliding surface based on an adaptive fuzzy system to output controller in sliding mode. Some numerical simulations are provided to demonstrate the main results. Finally, I-AFPSO is applied in AFSMC to training the positive variable and counting the fitness for reducing the error signal value and more precise in the synchronizations characteristic.
摘 要...............................................................I
ABSTRACT...........................................................II
致 謝.............................................................III
目 錄..............................................................IV
圖 目 錄..........................................................VII
表 目 錄...........................................................XI
符 號 目 錄.......................................................XII
第一章 緒 論.......................................................1
1.1 前 言...........................................................1
1.2 研究動機與目的..................................................4
1.3 論文章節及架構..................................................5
第二章 粒子群聚最佳化演算法.........................................7
2.1 最佳化理論......................................................7
2.2 智能群.........................................................11
2-3 粒子群聚最佳化演算法...........................................14
2.3.1 發展背景.....................................................14
2.3.2 基礎理論與原理...............................................14
2.3.3 PSO執行程序與數學式表示......................................15
2.3.4 PSO運作流程與流程圖..........................................17
2-4 慣性權重式粒子群聚最佳化演算法.................................20
2-5 壓縮因子式粒子群聚最佳化演算法.................................22
第三章 適應型壓縮因子式粒子群優化演算法............................23
3.1 模糊控制簡介...................................................24
3.2 模糊適應型壓縮因子式粒子群最佳化...............................26
3.3 改良模糊適應型壓縮因子式粒子群最佳化...........................29
第四章 數值模擬與結果..............................................35
4.1 Spherical測試函數結果..........................................36
4.2 Ackley測試函數結果.............................................40
4.3 Griewank測試函數結果...........................................44
4.4 Rosenbrock 測試函數結果........................................48
4.5 Quadric測試函數結果............................................52
第五章 I-AFPSO優化適應性模糊滑動模式控制器於渾沌同步系統之應用.....56
5.1 滑動模式控制簡介...............................................56
5.2 標準型滑動模式控制設計.........................................59
5.3 積分型滑動模式控制器設計.......................................63
5.4 模糊適應型滑動模式控制器.......................................67
5.5 渾沌理論.......................................................71
5.6 Lorenz渾沌系統.................................................72
5.7 Chen 渾沌系統..................................................74
5.8 渾沌同步系統控制器設計.........................................76
5.9 I-AFPSO應用於改良渾沌同步滑動控制器............................83
第六章 結論與未來展望..............................................89
6.1 結論...........................................................89
6.2 未來展望.......................................................90
參考文獻...........................................................91


參考文獻

[1] Avriel Mordecai, “Nonlinear Programming: Analysis and Methods”, Dover Publishing, 2003.
[2] Magnus R Hestenes, Eduard Stiefel, “Methods of Conjugate Gradients for Solving Linear Systems”, Journal of Research of the National Bureau of Standards, vol. 49, pp. 409-436, 1952.
[3]Geem, Z. W., Kim, J. H., Loganathan, G. V., “A New Heuristic Optimization Algorithm: Harmony Search”, Simulation, vol. 76, pp. 60-68, 2001.
[4]Holland, J. H., “Outline for a Logical Theory of Adaptive System”, Journal of the Association for Computing Machinery, vol. 3, no. 3, pp. 297-314, 1962.
[5]Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., “Optimization by Simulated Annealing”, Science, vol. 220, no. 4598, pp. 671-680, 1983.
[6]Yang, F. C., Wang, Y. P., “Water Flow-Like Algorithm for Object Grouping Problems”, Journal of the Chinese Institute of Industrial Engineers, vol. 24, no. 6, pp. 475-488, 2007.
[7]Beni, G., Wang, J., “Swarm Intelligence in Cellular Robotic Systems, Proceed”, NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26–30, 1989.
[8]Erol Şahin, “Swarm Robotics: From Sources of Inspiration to Domains of Application”, Lecture Notes in Computer Science, Vol. 3342, pp. 10-20, 2005.
[9]Miller, P.,林俊宏 譯,群的智慧—向螞蟻、蜜蜂、飛鳥學習組織運作絕技,天下遠見,台北市,2010。
[10]Eberhart, R. C., Kennedy, J., “A New Optimizer Using Particle Swarm Theory”, Proceedings of the 6^th International Symposium on Micro Machine and Human Science, pp. 39-43, Nagoya, Japan, IEEE, Piscataway, NJ, USA, 1995.
[11]Eberhart, R. C., Shi, Y., “Particle Swarm Optimization: Developments Applications and Resources”, Proceedings of the IEEE Conference on Evolutionary Computation, vol. 1, pp. 81-86, Soul, 2001.
[12]Eberhart, R. C., Shi, Y., “Guest Editorial Special Issue on Particle Swarm Optimization”, IEEE Transactions on Evolutionary Computation, vol. 8, Particle Swarm Optimization, pp. 202-203, Institute of Electrical and Electronics Engineers Inc, 2004.
[13]Kennedy, J., Eberhart, R. C., Shi, Y., “Swarm Intelligence”, San Francisco: Morgan Kaufmann Publishers, 2011.
[14]Kennedy, J., “The Particles Swarm: Social Adaptation of Knowledge”, Proceedings of the 1997 International Conference on Evolutionary Computation, pp. 303-308, Indianapolis, IN, USA, IEEE, Piscataway, NJ, USA, 1997.
[15]Kennedy, J., Eberhart, R. C., “Particle Swarm Optimization”, Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948, Perth, Australia, IEEE, Piscataway, NJ, USA, 1995.
[16]Shi, Y., Eberhart, R. C., “Parameter Selection in Particle Swarm Optimization”, Lecture Notes in Computer Science, vol. 1447, pp. 591, 1998.
[17]Xiaohui, H., Eberhart, R. C., Shi, Y., “Recent Advances in Particle Swarm”, Proceedings of the 2004 Congress on Evolutionary Computation, vol. 1, pp. 90-97, Institute of Electrical and Electronics Engineers Inc, 2004.
[18]Clerc, M., Kennedy, J., “The Particle Swarm : Explosion, Stability, and Convergence in a Multidimensional Complex Space”, Proceedings of the Congress of Evolutionary Computation, vol. 6, pp. 58-73, Washington DC, IEEE, Piscataway, USA, 1999.
[19]Kennedy, J., “Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Optimization Performance”, Proceedings of the 1999 Congress of Evolutionary Computation, vol. 3, pp. 1931-1938. Washington DC, IEEE, Piscataway, NJ, USA, 1999.
[20]Lorenz, E. N., “Deterministic Nonperiodic Flow”, Journal of the Atmospheric Sciences, vol. 20, no.2, pp. 130-141, 1963.
[21]Jang, M. J., Chen, C. L., Chen, C. K., “Sliding Mode Control of Hyperchaos in Rölsser Systems”, Chaos, Solitons & Fractals, vol. 14, no. 9, pp. 1465-1476, 2002.
[22]Kuo, C. L., Yau, H. T., Pu, Y. C., “Design and Implement of a Digital PID Controller for a Chaos Synchronization System by Evolutionary Programming”, Journal of Applied Sciences, vol. 8, no. 3, pp. 2420-2427, 2008.
[23]郭乃仁、黃曉泐、郭昭霖、林瑞昇,適應性模糊滑動模式應用於Duffing-Holmes 系統同步控制, 第17屆模糊理論及其應用研討會, pp. 66-70,高雄,2009。
[24]Kuo, C. L., “Design of a Fuzzy Sliding-mode Synchronization Controller for Two Different Chaos Systems”, Computers and Mathematics with Application, vol. 61, pp. 2090-2095, 2011.
[25]蘇昱豪,具隨機粒子與微調機制式粒子群最佳化於多極值函數問題之研究,碩士論文,國立台灣科技大學機械工程系,台北,2004。
[26]Robinson, J., Sinton, S., Rahmat-Samii, Y., “Particle swarm,genetic algorithm, and their hybrids: Optimization of a profiled corrugated horn antenna”, IEEE Antennas and Propagation Society, AP-S International Symposium, pp. 314-317, San Antonio, TX, USA , 2002.
[27]Shi, Y., Eberhart, R. C., “A Modified Particle Swarm Optimizer”, Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69-73, Anchorage, AK, USA, IEEE, Piscataway, NJ, USA, 1998.
[28]Shi, Y., Eberhart, R. C., “Empirical Study of Particle Swarm Optimization”, Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, pp. 1945-1950, Washington, DC, IEEE, Piscataway, NJ, USA, 1999.
[29]Zadeh, L. A., “Fuzzy sets”, Information and Control, vol. 8, pp. 338-353, 1965.
[30]Wang, L. X., “A Course In Fuzzy Systems And Control”, Prentice-Hall, NJ, USA, 1997.
[31]Bellman, R. E., Zadeh, L. A., “Decishion-making in a Fuzzy Environment”, Management Science, vol. 17, no. 4, pp. 141-164, 1970.
[32]Tung, S. L., Juang, Y. T., Lee, W. H., Chiu. H.C., “An Improved Particle Swarm Optimization for Exponential Stabilization of a Singular Linear Time-Varying System”, Expert Systems with Applications, vol. 38, pp. 13425-13431, 2011.
[33]Juang, Y. T., Tung, S. L., Chiu. H.C., “An Improved Particle Swarm Optimization Algorithm with Adaptive Fuzzy Strategy”, The Cross-Strait Information Technology Conference, vol. 11, pp. 128-133, Jhongli, Taiwan, 6-10 December 2009.
[34]Tung, S. L.,“Stability and Stabilization for Second-Order Time-Varying Systems Based on PSO Algorithm”, Department of Electrical Engineering, National Central University, Taoyuan, Taiwan, 2011.
[35]Rosenbrock, H. H., “An Automatic Method for Finding the Greatest or Least Value of a Function”, The Computer Journal, vol. 3, pp. 175-184, 1960.
[36]Emelyanov, S. V., “Variable Structure Control Systems”, Moscow, Nauka(in Russian), 1967.
[37]Utkin, V. L., “Sliding Modes and Their Application in Variable Structure Systems”, Imported Publications, Incorporated, Moscow, Nauka(in Russian), 1978.
[38]吳慶恩,比例積分型滑動模式控制器應用於船舶航向控制,碩士論文,高雄海洋科技大學,高雄,台灣,2004。
[39]林建宏,合成型滑動模式控制於雙旋轉翼系統之應用,碩士論文,高雄海洋科技大學,高雄,台灣,2004。
[40]Slotine, J. J. E., Li, W., “Applied Nonlinear Control”, Prentice-Hall, Taipei, Taiwan, 2005.
[41]Chern, T. L., Wu, Y. C., “Design of Integral Variable Structure Controller and Application to Electrohydraulic Position Servo Control System”, IEE Proceedings part D, vol. 138, no. 5, pp. 439-444, 1991.
[42]Suytino, J., Kobayashi, F. H., Dote, Y., “Variable-Structured Robust Controller by Fuzzy Logic for Servomotors”, IEEE Transactions on Industrial Electronics, vol. 40, pp. 80-88, 1993
[43]Kim, S. W., Lee, J. J., “Design of a Fuzzy Controller with Fuzzy Sliding Surface”, Fuzzy Sets Systems, vol. 7, pp. 359-367, 1995.
[44]Chen, G. R., Lu, J. H., “Dynamic Analysis, Control and Synchronization of Lorenz System Families”, Beijing: Science Press, pp. 9-130 , China, 2003.
[45]張國山,一個基於Chen系統的新混沌系統的分析跟同步,物理學報,vol. 61,no.11,110503,中國,2012。
[46]毛鵬偉,Chen系統的自適應控制跟同步,碩士論文,陝西科技大學,陝西,中國,2009。
[47]Vanecek, A., Celikovsky, S., “Control Systems: From Linear Analysis to Synthesis of Chaos”, Prentice, London, 1996.
[48]Oud, W., Nijmeijer, H., Pogromsky, A., “Experimental Results on Huygens synchronization”, Proceedings of 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France, 2006.
[49]Pecora, L. M., Carroll, T. L., “Synchronization in Chaotic Systems”, P. R. Lett.64, 821, 1990.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top