# 臺灣博碩士論文加值系統

(44.221.73.157) 您好！臺灣時間：2024/06/15 11:26

:::

### 詳目顯示

:

• 被引用:0
• 點閱:538
• 評分:
• 下載:8
• 書目收藏:1
 在本篇論文裡，將探討經由切換訊號之設計具區間時變延遲不確定離散切換系統的被動性分析及被動控制研究。另外將提出一些延遲相關LMI (Linear Matrices Inequality)穩定化準則來設計切換控制器及切換訊號，以保證具區間時變延遲離散切換系統的被動性。一些非負不等式(Nonnegative inequality)將被使用來改善所獲得結果的保守性。最後將以一些數值例子來說明我們主要結果之使用。
 In this dissertation, the switching signal and passive control designs of uncertain discrete switched systems with interval time-varying delay and linear fractional perturbations are investigated. Some LMI criteria are provided to design the switching signal to guarantee the passivity of discrete switched time-delay system. Some nonnegative inequalities are introduced to improve the conservativeness of the proposed results. Finally, some numerical examples are illustrated in respective chapter to show the main proposed results.
 CONTENTS摘要 ІABSTRACT Ⅱ致謝 ⅢCONTENTS ⅣLIST OF TABLE ⅤLIST OF FIGURES ⅥNOMENCLATURE ⅦCHAPTER 1 INTRODUCTION 11.1 Background and motivation 11.2 Brief sketch of the content 3CHAPTER 2 MATHEMATICAL PRELIMINARIES 4CHAPTER 3 PASSIVITY ANALYSIS FOR UNCERTAIN DISCRETE SWITCHED SYSTEMS WITH INTERVAL TIME-VARYING DELAY 53.1 Problem formulation and main results 53.2 Numerical examples 16CHAPTER 4 DESIGNS OF SWITCHING SIGNAL AND PASSIVE CONTROL FOR UNCERTAIN DISCRETE SWITCHED TIME-DELAY SYSTEMS 234.1 Problem formulation and main results 234.2 Numerical examples 36CHAPTER 5 CONCLUSIONS 43REFERENCES 44
 REFERENCES[BOYD.1] BOYD, S. P., GHAOUI, L. El, FERON, E., & BALAKRISHNAN, V. (1994) Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM.[CAL.1] CALCEV, G., GORE, R., & NEYER D. M. (1998) Passivity approach to fuzzy control systems, Automatica, 34, 2339-344.[CHUA.1] CHUA, L. O. (1999) Passivity and complexity. IEEE Transactions Circuits Systems, 46, 71-82.[DU.1] DU, D. (2010) filter for discrete-time switched systems with time-varying delays. Nonlinear Analysis: Hybrid Systems, 4, 782-790.[GU.1] GU, K., KHARITONOV, V. L., & CHEN, J. (2003) Stability of Time-Delay Systems. Boston, Massachusetts: Birkhauser.[IBR.1] IBRIR, S. (2008) Static output feedback and guaranteed cost control of a class of discrete-time nonlinear systems with partial state measurements. Nonlinear Analysis, 68, 1784-1792.[LI.1] LI, T., GUO, L., & SUN, C. (2007) Robust stability for neural networks with time-varying delays and linear fractional uncertainties. Neurocomputing, 71, 421-427.[LIEN.1] LIEN, C. H., YU, K. W., CHEN J. D., & CHUNG, L. Y. (2012) Switching signal design and passivity analysis for uncertain discrete switched systems with interval time-varying delay. IMA Journal Mathematical Control Information, 30, 251-263.[LIEN.2] LIEN, C. H., YU, K. W., CHUNG, Y. J., CHANG, H. C., CHUNG, L. Y., & CHEN J. D. (2011a) Exponential stability and robust control for uncertain discrete switched systems with interval time-varying delay. IMA Journal Mathematical Control Information, 28, 121-141.[LIEN.3] LIEN, C. H., YU, K. W., CHUNG, Y. J., CHANG, H. C., CHUNG, L. Y., & CHEN J. D. (2011b) Switching signal design for global exponential stability of uncertain switched nonlinear systems with time-varying delay. Nonlinear Analysis: Hybrid Systems, 5, 10-19.[LIU.1] LIU, Y., WANG, Z., & WANG, W. (2012) Reliable filtering for discrete time-delay systems with randomly occurred nonlinearities via delay-partitioning method. Signal Processing, 91, 713-727.[MAH.1] MAHMOUD, M. S. (2008) Delay-dependent filtering of a class of switched discrete-time state delay systems. Signal Processing, 88, 2709-2719.[MAH.2] MAHMOUD, M. S. (2010) Switched Time-Delay Systems. Boston, Springer-Verlag.[MAH.3] MAHMOUD, M. S. (1998) Passive control synthesis for uncertain time-delay systems. Proceedings of the 37th IEEE Conference on Decision & Control, Tampa, Florida, USA, 4139-4143.[MAH.4] MAHMOUD, M. S. (2009) Delay-dependent dissipativity of singular time-delay systems,” IMA Journal Mathematical Control Information, 26, 45-58.[MAH.5] MAHMOUD, M. S., NOUNOU, H. N., & XIA, Y. (2010) Robust dissipative control for internet-based switched systems. Journal of the Franklin Institute, 347, 154-172.[MAH.6] MAHMOUD, M. S., & XIE, L. (2000) Positive real analysis and synthesis of uncertain discrete time systems. IEEE Transactions Circuits Systems, I: Fundamental Theory and Applications, 47, 403-406.[MAH.7] MAHMOUD, M. S., & XIE L. (2001) Passivity analysis and synthesis for uncertain time-delay systems. Journal of Mathematical Problem in Engineering, 7, 455-484.[MAH.8] MAHMOUD, M. S., & ZRIBI, M. (2002) Passive control synthesis for uncertain systems with multiple-state delays. Journal of Computers and Electrical Engineering, Special Issue on Time-delay Systems, 28, 195-216.[PAI.1] PAIROTE S., & PHAT V. N. (2007) Exponential stability of switched linear systems with time-varying delay. Electronic Journal Differential Equations, 159, 1-10.[PHAT.1] PHAT, V. N., BOTMART, T., & NIAMSUP, P. (2009) Switching design for exponential stability of a class of nonlinear hybrid time-delay systems. Nonlinear Analysis: Hybrid Systems, 3, 1-10.[PHAT.2] PHAT, V. N., & RATCHAGIT, K. (2011) Stability and stabilization of switched linear discrete-time systems with interval time-varying delay. Nonlinear Analysis: Hybrid Systems, 5, 605-612.[QIAN.1] QIAN, W. (2010) Improved stability analysis on delayed neural networks with linear fractional uncertainties. Applied Mathematics Computation, 217, 3596-3606.[SHEN.1] SHEN, H., XU, S., LU, J., & ZHOU, J. (2012) Passivity based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays. Journal of the Franklin Institute, 349, 1665-1680.[SUN.1] SUN, X. M., WANG, W., LIU, G. P., & ZHAO J. (2008) Stability analysis for linear switched systems with time-varying delay. IEEE Transactions on Systems, Man,and Cybernetics, B., 38, 528-533.[SUN.2] SUN, Y. G., WANG, L., & XIE G. (2007) Delay-dependent robust stability and control for uncertain discrete-time switched systems with mode-dependent time delays. Applied Mathematics Computation, 187, 1228-1237.[SUN.3] SUN, Z., & GE, S. S. (2005) Switched Linear Systems Control and Design. London: Springer-Verlag.[XI.1] XIANG, W., & XIA, J. (2011) finite-time control for switched nonlinear discrete-time systems with norm-bounded disturbance. Journal of the Franklin Institute, 348, 331-352.[XIE.1] XIE, L., & FU, M. (1998) Passivity analysis and passification for uncertain signal processing systems. IEEE Transactions Signal Processing, 46, 2394-2403.[WANG.1] WANG, D., SHI, P., WANG, J., & WANG, W. (2012) Delay-dependent exponential filtering for discrete-time switched delay systems. International Journal Robust Nonlinear Control, 22, 1522-1536.[WANG.2] WANG, D., SHI, P., WANG, J., & WANG, W. (2013) Delay-dependent filtering for discrete-time switched systems with a time-varying delay. Lecture Notes in Control and Information Sciences, 445, 35-46.[WU.1] WU, Z. G., SHI, P., SU, H., & CHU, J. (2011a) Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time delays. IEEE Transactions Neural Networks, 22, 1566-1575.[WU.2] WU, Z. G., SHI, P., SU, H., & CHU, J.(2011b) Delay-dependent stability analysis for switched neural networks with time-varying delay. IEEE Transactions Systems, Man,and Cybernetics, B., 41, 1522-1530.[YANG.1] YANG, J., LUO, W., LI, G., & ZHONG S. (2010) Reliable guaranteed cost control for uncertain fuzzy neutral systems. Nonlinear Analysis: Hybrid Systems, 4, 644-658.[ZHA.1] ZHANG, B., ZHENG, W. X., & XU, W. S. (2009a) On passivity analysis of fuzzy time-varying delayed systems. Proceedings of the 7th Asian Control Conference, Hong Kong, China, 1034-1039.[ZHA.2] ZHANG, L., SHI, P., & BASIN, M. (2008) Robust stability and stabilisation of uncertain switched linear discrete time-delay systems. IET Proceedings Control Theory Applications, 2, 606-614.[ZHA.3] ZHANG, W. A., & YU, L. (2009) Stability analysis for discrete-time switched time-delay systems. Automatica, 45, 2265-2271.[ZHA.4] ZHANG, Z., MOU, S., LAM, J., and GAO, H. (2009b) New passivity criteria for neural networks with time-varying delay. Neural Networks, 22, 864-868.[ZHAO.1] ZHAO, H., CHEN, Q., & XU, S.(2009) H-infinity guaranteed cost control for uncertain Markovian jump systems with mode-dependent distributed delays and input delays. Journal of the Franklin Institute, 346, 945-957.[ZHAO.2] ZHAO, H., XU, S., & ZOU, Y. (2010) Robust H-infinity filtering for uncertain Markovian jump systems with mode-dependent distributed delays. International Journal Adaptive Control Signal Processing, 24, 83-94.[ZHAO.3] ZHOU, Q., XU, S., CHEN B., & CHU, Y. (2011) Fuzzy H-infinity filtering for nonlinear Markovian jump neutral delayed systems. International Journal Systems Science, 42, 767-780.[ZHU.1] ZHU, J., ZHANG, Q., & YUAN, Z. (2010) Delay-dependent passivity criterion for discrete-time delayed standard neural network model. Neurocomputing, 73, 1384-1393.[ZHU.2] ZHU, X. L., & YANG G. H. (2008) Jensen inequality approach to stability analysis of discrete time systems with time-varying delay. Proceedings of American Control Conference, 1644-1649.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 具H∞性能之時變時間延遲不確定切換系統 簡易切換訊號設計方法 2 經由切換訊號之設計探討具區間時變延遲不確定離散切換H∞系統性能分析及H∞控制之研究

 無相關期刊

 1 經由切換訊號之設計探討具區間時變延遲不確定離散切換H∞系統性能分析及H∞控制之研究 2 具H∞性能之時變時間延遲不確定切換系統 簡易切換訊號設計方法 3 以延遲分割法探討具區間時變時間延遲之不確定離散切換系統強健穩定性之研究 4 雙圓盤混沌系統之實現與應用 5 以延遲分割法探討具區間時變時間延遲及IQC性能之不確定Neutral系統強健可靠性控制之研究 6 具線性分數擾動之T-S模糊時間延遲系統穩定化之研究 7 具時變時間延遲不確定切換系統之穩定性分析及強健控制之研究 8 冷卻水塔自動控制在節能應用上之研究 9 以無線網路技術完成船舶遠端即時監控系統之研究 10 智慧型門禁及出勤管理系統之研究 11 混沌系統同步控制及其在無線數位影音通訊保密之研製 12 智慧型裝置即時監控系統之建置 -以船艙溫度控制為例 13 以船舶故障為例之雲端影音社群Q&A平台與手機APP設計與實現 14 具時變時間狀態延遲不確定切換系統之強健控制及保證代價值控制之研究 15 延遲神經網路穩定性分析之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室