跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/18 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周佳緯
研究生(外文):Chou, Chiawei
論文名稱:太陽能發電系統
論文名稱(外文):Study and Implementation of Solar Power Generation System
指導教授:吳晉昌楊奇達楊奇達引用關係
指導教授(外文):Wu, Jinn-ChangYang, Chyida
口試委員:吳晉昌楊奇達黃世傑白富升
口試委員(外文):Wu, Jinn-ChangYang, Chyida
口試日期:2013-01-17
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:64
中文關鍵詞:多階電能轉換器太陽能發電系統市電並聯
外文關鍵詞:Multilevel inverterSolar power generation systemGrid-connected
相關次數:
  • 被引用被引用:3
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
本論文將發展一新式太陽能發電系統,其由一太陽能電池陣列、一個直流/直流電能轉換器與一個七階直流-交流轉換器組成,直流/直流電能轉換器結合升壓直流/直流電能轉換器與一順向式轉換器以將太陽能陣列輸出電壓轉換成兩個成倍數關係之獨立電壓,七階直流-交流轉換器由電容選擇電路與橋式電能轉換器疊接而成,電容選擇電路將直流/直流電能轉換器輸出之兩個電壓轉換成三階直流電壓供給橋式電能轉換器,橋式電能轉換器再進一步將其轉換成具有七階變化之交流電壓,並產生與市電電壓同相位之弦波電流注入市電,達成單位功因。本文所發展之七階直流-交流轉換器僅由六個電力電子開關組成,其電路架構簡單,且同一時間只有一個電力電子開關作高頻切換即可產生七階的輸出電壓,因此可有效的減少切換損失、提升效率、降低輸出濾波電感,本文並將發展以數位信號處理器晶片為基礎的具七階輸出電壓之太陽能發電系統雛型,以驗證其功能。
In this thesis, a new solar power generation system is proposed. The proposed new solar power generation system is composed of a solar cell array, a DC/DC power converter and a seven-level DC-AC inverter. The DC/DC power converter integrates a DC-DC boost converter and a forward converter to convert the output voltage of solar power source to two independent voltages which become the multiple relations. The seven-level DC-AC inverter is configured by a capacitor selection circuit and a full-bridge power converter connecting in cascade. The capacitor selection circuit converts the two output voltages of DC-DC power converter to a three-level DC voltage, and the full-bridge power converter further converts this three-level DC voltage to a seven-level AC voltage synchronous with the utility voltage. In this way, the new solar power generation system will be controlled to generate a sinusoidal output current injecting into the utility. The sinusoidal output current of new solar power generation system is in phase with the utility voltage so as to perform unity power factor. Since the proposed seven-level DC-AC inverter contains only six power electronic switches, the circuit configuration is simplified. Only one power electronic switch is switched in high frequency at the same time to generate the seven-level output voltage; thus reducing the switching power loss and improving the power efficiency. Moreover, the inductance of output filter inductor is also reduced due to the seven-level output voltage. A digital signal processor based prototype is developed and tested to verify the performance of the proposed new renewable solar power system.
目錄
摘要............................................................................................................................ I
Abstract .................................................................................................................... II
誌謝......................................................................................................................... IV
目錄........................................................................................................................... V
圖目錄.................................................................................................................. VIII
表目錄..................................................................................................................... XI
符號說明................................................................................................................ XII
第一章 緒論........................................................................................................ 1
1-1 前言 ........................................................................................................ 1
1-2 研究目的 ................................................................................................ 1
1-3 論文大綱 ................................................................................................ 3
第二章 太陽能發電系統 ................................................................................... 4
2-1 太陽能電池之特性 ................................................................................ 4
2-2 電流控制式電能轉換器 ........................................................................ 6
2-3 最大功率追蹤 ........................................................................................ 7
第三章 直流/交流電能轉換器 .......................................................................... 9
3-1 電力電子開關之切換切換損失 ............................................................ 9
3-2 半橋式電能轉換器 .............................................................................. 11
3-3 全橋式電能轉換器 .............................................................................. 13
3-3.1 雙極性切換 ............................................................................... 14
3-3.2 單極性切換 ............................................................................... 15
3-4 傳統五階直流/交流電能轉換器 ......................................................... 16
3-4.1 五階二極體箝位式電能轉換器 ............................................... 16
3-4.2 五階飛輪電容式電能轉換器 ................................................... 19
3-4.3 五階橋式疊接電能轉換器 ....................................................... 21
3-5 傳統七階直流/交流電能轉換器 ......................................................... 23
3-5.1 七階二極體箝位式電能轉換器 ............................................... 23
3-5.2 七階飛輪電容式電能轉換器 ................................................... 26
3-5.3 七階橋式疊接電能轉換器 ....................................................... 28
第四章 新式太陽能發電系統 ......................................................................... 31
4-1 太陽能發電系統 .................................................................................. 31
4-2 新型七階直流/交流電能轉換器 ......................................................... 32
4-2.1 七階直流/交流電能轉換器操作原理 ...................................... 32
4-2.2 新型七階直流/交流電能轉換器之控制方塊 .......................... 37
4-3 直流/直流電能轉換器 ......................................................................... 38
4-3.1 直流/直流電能轉換器之操作原理 .......................................... 38
4-3.2 直流/直流電能轉換器控制方塊 ............................................ 39
4-3.3 最大功率追蹤方法 ................................................................. 40
第五章 硬體雛型與實測結果 ......................................................................... 43
5-1 類比週邊電路 ...................................................................................... 43
5.1.1 電流感測.................................................................................... 43
5.1.2 電容電壓感測............................................................................ 44
5.1.3 市電電壓感測............................................................................ 44
5.1.4 驅動電路.................................................................................... 45
5-2 數位控制器 .......................................................................................... 46
5-2.1 市電相位鎖相程序 ................................................................... 47
5-2.2 太陽能發電系統控制流程 ....................................................... 48
5-3 電力電路 .............................................................................................. 49
5-4 實測結果 .............................................................................................. 51
5-4.1 太陽能發電系統實測結果 ....................................................... 52
5-4.2 最大功率追蹤實測結果 ........................................................... 57
5-4.3 太陽能發電系統效率測試 ....................................................... 59
第六章 結論...................................................................................................... 61
6-1 總結 ...................................................................................................... 61
6-2 未來研究方向 ...................................................................................... 62
參考文獻.................................................................................................................. 63
[1]Liserre, M., Sauter, T., & Hung, J. Y. (2010). Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics. Industrial Electronics Magazine, IEEE, 4(1), 18-37.
[2]Mohan, N.、Undeland, T. M.(2007). Power electronics: Converters, applications, and design John Wiley & Sons.
[3]Rodriguez, J., Lai, J. S., & Peng, F. Z. (2002). Multilevel inverters: A survey of topologies, controls, and applications. Industrial Electronics, IEEE Transactions on, 49(4), 724-738.
[4]蔣文榮. (2009)。市電倂聯型太陽能發電系統電能換器控制之研究. 國立高雄應用科技大學電機工程系,
[5]吳財福、張健軒、電機工程、陳裕愷、電機工程. (2000)。太陽能供電與照明系統綜論. 全華。
[6]Desai, H. P., & Patel, H. (2007). Maximum power point algorithm in PV generation: An overview. Power Electronics and Drive Systems, 2007. PEDS'07. 7th International Conference on, 624-630.
[7]Esram, T., & Chapman, P. L. (2007). Comparison of photovoltaic array maximum power point tracking techniques. Energy Conversion, IEEE Transactions on, 22(2), 439-449.
[8]Harada, K., & Zhao, G. (1993). Controlled power interface between solar cells and AC source. Power Electronics, IEEE Transactions on, 8(4), 654-662.
[9]Liu, S., & Dougal, R. A. (2002). Dynamic multiphysics model for solar array. Energy Conversion, IEEE Transactions on, 17(2), 285-294.
[10]劉景富. (2004)。太陽能光電系統電池組充電器之研製. 國立彰化師範大學,
[11]Asiminoaei, L., Teodorescu, R., Blaabjerg, F., & Borup, U. (2005). A digital controlled PV-inverter with grid impedance estimation for ENS detection. Power Electronics, IEEE Transactions on, 20(6), 1480-1490.
[12]Armstrong, M., Atkinson, D. J., Johnson, C. M., & Abeyasekera, T. D. (2005). Low order harmonic cancellation in a grid connected multiple inverter system via current control parameter randomization. Power Electronics, IEEE Transactions on, 20(4), 885-892.
[13]Jou, H. L., Chiang, W. J., & Wu, J. C. (2007). Virtual inductor-based islanding detection method for grid-connected power inverter of distributed power generation system. Renewable Power Generation, IET, 1(3), 175-181.
[14]張建偉. (2009)。太陽能電池最大功率點追蹤之研究. 國立成功大學,
[15]Koutroulis, E., & Kalaitzakis, K. (2006). Design of a maximum power tracking system for wind-energy-conversion applications. Industrial Electronics, IEEE Transactions on, 53(2), 486-494.
[16]Daniel W. Hart. 王順忠 譯. (1998)。電力電子學. 東華書局。
[17]Hu, B., Tao, S., & Chang, L. (2008). Pulse width modulation strategies and a novel mixed control method for diode-clamped five-level inverter. Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on, 1649-1652.
[18]Ashaibi, A., Finney, S., Williams, B., & Massoud, A. (2010). Switched mode power supplies for charge-up, discharge and balancing dc-link capacitors of diode-clamped five-level inverter. Power Electronics, IET, 3(4), 612-628.
[19]Khajehoddin, S., Bakhshai, A., & Jain, P. (2006). Modeling and analysis of 5-level diode-clamped and flying-capacitors converters. Industrial Electronics, 2006 IEEE International Symposium on, , 2 1408-1413.
[20]Shukla, A., Ghosh, A., & Joshi, A. (2008). Improved multilevel hysteresis current regulation and capacitor voltage balancing schemes for flying capacitor multilevel inverter. Power Electronics, IEEE Transactions on, 23(2), 518-529.
[21][ ]Shanthi, B., & Natarajan, S. (2009). Comparative study on unipolar multicarrier PWM strategies for five level flying capacitor inverter. Control, Automation, Communication and Energy Conservation, 2009. INCACEC 2009. 2009 International Conference on, 1-7.
[22]McGrath, B. P., & Holmes, D. G. (2009). Natural capacitor voltage balancing for a flying capacitor converter induction motor drive. Power Electronics, IEEE Transactions on, 24(6), 1554-1561.
[23]Hua, C. C., Wu, C. W., & Chuang, C. W. (2009). A novel dc voltage charge balance control for cascaded inverters. Power Electronics, IET, 2(2), 147-155.
[24]Tolbert, L., & Ozpineci, B. (2011). Multilevel cascade h-bridge inverter dc voltage estimation through output voltage sensing. Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, 185-189.
[25]Villanueva, E., Correa, P., Rodriguez, J., & Pacas, M. (2009). Control of a single-phase cascaded H-bridge multilevel inverter for grid-connected photovoltaic systems. Industrial Electronics, IEEE Transactions on, 56(11), 4399-4406.
[26]TMS320C28x CPU and Instruction Set Reference Guide. Literature Number: SPRU430E Revised January 2009
[27]Hua, C., Lin, J., & Shen, C. (1998). Implementation of a DSP-controlled photovoltaic system with peak power tracking. Industrial Electronics, IEEE Transactions on, 45(1), 99-107.
[28]Nilsson, J. W.、Riedel, S. A.(2009)。Electric circuits Prentice Hall。
[29]Muhammad H. Rashid. 張天錫 譯. (2004)。電力電子學. 東華書局。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top