跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/29 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林韋成
研究生(外文):Wei-Cheng Lin
論文名稱:使用H型多模共振腔之寬頻濾波器設計
論文名稱(外文):Design of Wideband Bandpass Filter Using H-type Resonator
指導教授:趙世峰
指導教授(外文):Shih-Fong Chao
口試委員:陸瑞漢鄧卜華陳錡楓
口試委員(外文):Jui-Han LuPu-Hua DengChi-Feng Chen
口試日期:2014-01-20
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:56
中文關鍵詞:帶通濾波器陷波濾波器可調式濾波器多模共振腔微帶線
外文關鍵詞:Bandpass filtersNotched filtersTunable filtersMultiple-mode resonatorMicrostrip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出了一新式H 型多模共振腔來實現寬頻帶通濾波器,藉由讓該H 型共振腔奇偶模共振頻率均勻地分佈於設計頻寬內,並利用指叉式饋入耦合線提高耦合量來完成寬頻帶通濾波器。我們設計了兩個分別為比例頻寬35% 與80% 之寬頻帶通濾波器且闡述了完整的設計流程。除此之外,我們基於此架構設計了寬頻陷波濾波器,藉由控制指叉饋入耦合線的長度差,可以設計缺陷帶出現之頻率。最後在H 型共振腔上可變電容二極體,利用不同偏壓來調整共振頻率出現位置來完成可調式寬頻帶通濾波器設計,電路量測結果與模擬結果皆有良好之一致性。
In this thesis, a new H -type multi-m ode resonator is proposed to realize wideband bandpass filters. The wideband response is formed by equally distributing the evenand odd-m ode resonant frequencies with the passband. Moreover, the inter-digital feeding structure is also used to enhance the input/output coupling. Two design examples of 35% and 80% fractional bandwidth are given, and the design procedure is also illustrated. A wideband filter with a notch band is also come up based on the H -type resonator. By adjusting the length difference between the inter-digital feeding lines, the location of the notch band can be controlled. Finally, a wideband filter with tunable bandwidth is achieved by adding varactor diodes to the H -type resonator. The bandwidth of the wideband filter can be adjusted by applying different voltage to the diodes to re-allocate the even- and odd-m ode resonant frequencies. The measurement results all agree well with the simulations.
一、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 章節概要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
二、微帶線共振腔構成濾波器之理論與探討. . . . . . . . . . . . . . . . . . . 3
2.1 基礎濾波器理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 微帶線共振腔之原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 微帶線共振腔之結構. . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 奇偶模分析法. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 微帶線共振腔構成之帶通濾波器. . . . . . . . . . . . . . . . . . . . . 15
三、寬頻帶通濾波器之設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 H型微帶線共振腔之特性. . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 H型微帶線共振腔奇模態響應. . . . . . . . . . . . . . . . . . 21
3.2.2 H型微帶線共振腔偶模態響應. . . . . . . . . . . . . . . . . . 22
3.2.3 H型共振腔傳輸零點位置. . . . . . . . . . . . . . . . . . . . . 26
3.2.4 H型共振腔整體設計圖. . . . . . . . . . . . . . . . . . . . . . 27
3.3 由H型微帶線共振腔構成之寬頻帶通濾波器設計. . . . . . . . . . . . 30
3.3.1 間隙耦合式寬頻帶通濾波器. . . . . . . . . . . . . . . . . . . 30
3.3.2 具缺陷帶之寬頻濾波器. . . . . . . . . . . . . . . . . . . . . . 36
四、頻寬可調式寬頻帶通濾波器. . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 可調式H型微帶線共振腔. . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 頻寬可調式寬頻帶通濾波器設計. . . . . . . . . . . . . . . . . . . . . 49
4.3.1 電路架構設計. . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 模擬與量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . 51
五、結論與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
[1] C. Saavedra, “Compact low-pass filter using a slow-wave structure,” Circuits and Systems, vol. 3, pp. 161–163, 2002.
[2] L.-H. Hsieh and K. Chang, “Compact lowpass filter using stepped impedance hairpin resonator,” Electronics Letters, vol. 37, pp. 899–900,
2001.
[3] S. B. Cohn, “Parallel-coupled transmission-line-resonator filters,” IEEE Trans. Microwave Theory Tech., vol. 6, pp. 223–231, 1958.
[4] R. Garg and I. Bahl, “Characteristics of coupled microstriplines,” IEEE Trans. Microwave Theory Tech., vol. 27, pp. 700–705, 1979.
[5] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/Microwave applications. Wiley-Interscience, 2001.
[6] G. Matthaei, N. Fenzi, R. Forse, and S. Rohfing, “Hairpin-comb filters for hts and other narrow-band applications,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1226–1231, 1997.
[7] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 28, pp. 1413–1417, 1980.
[8] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1078–1085, 1997.
[9] Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling schemes,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 3779–3785, 2006.
[10] C.-F. Chen, “Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators,” IEEE Microw Wireless Compon. Lett., vol. 22, pp. 357–359, 2012.
[11] C. F. Chen, “A compact reconfigurable microstrip dual-band filter using varactor-tuned stub-loaded stepped-impedance resonators,” IEEE Microw Wireless Compon. Lett., vol. 23, pp. 16–18, 2013.
[12] C.-F. Chen, T.-M. Shen, R.-B. Wu, and T.-Y. Huang, “Design of compact quadruplexer based on the tri-mode net-type resonators,” IEEE Microw Wireless Compon. Lett., vol. 21, pp. 534–536, 2011.
[13] C.-F. Chen, T.-M. Shen, T.-Y. Huang, and R.-B. Wu, “Design of multimode net-type resonators and their applications to filters and multiplexers,” IEEE Trans. Microwave Theory Tech., vol. 59, pp. 848–856, 2011.
[14] Z. Zhang and F. Xiao, “An uwb bandpass filter based on a novel type of multi-mode resonator,” IEEE Microw Wireless Compon. Lett., vol. 22, pp. 506–508, 2012.
[15] Y.-C. Chiou, J.-T. Kuo, and E. Cheng, “Broadband quasi-chebyshev bandpass filters with multimode stepped-impedance resonators (sirs),” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 3352–3358, 2006.
[16] H. Shaman and J.-S. Hong, “Asymmetric parallel-coupled lines for notch implementation in uwb filters,” IEEE Microw Wireless Compon. Lett., vol. 17, pp. 516–518, 2007.
[17] S. W. Wong and L. Zhu, “Implementation of compact uwb bandpass filter with a notch-band,” IEEE Microw Wireless Compon. Lett., vol. 18, pp. 10–12, 2008.
[18] F. Wei, Q. Y. Wu, X. W. Shi, and L. Chen, “Compact uwb bandpass
filter with dual notched bands based on scrlh resonator,” IEEE Microw Wireless Compon. Lett., vol. 21, pp. 28–30, 2011.
[19] H. Zhu and Q.-X. Chu, “Ultra-wideband bandpass filter with a notchband using stub-loaded ring resonator,” IEEE Microw Wireless Compon. Lett., vol. 23, pp. 341–343, 2013.
[20] D. M. Pozar., Microwave Engineering. John Wiley and Sons, 2005.
[21] S. Butterworth, “On the theory of filter amplifiers,” Experimental wireless and the wireless engineer, vol. 7, pp. 536–541, 1930.
[22] J. R. Pierce, An Introduction to Information Theory: Symbols, Signals & Noise. Dover Publications, 1980.
[23] G. Matthaei, “Design of wide-band (and narrow-band) band-pass microwave filters on the insertion loss basis,” IEEE Trans. Microwave Theory Tech., vol. 8, pp. 580–593, 1960.
[24] L. Zhu, S. Sun, and W. Menzel, “Ultra-wideband (uwb) bandpass filters using multiple-mode resonator,” IEEE Microw Wireless Compon. Lett., vol. 15, pp. 796–798, 2005.
[25] C.-W. Tang and M.-G. Chen, “A microstrip ultra-wideband bandpass filter with cascaded broadband bandpass and bandstop filters,” IEEE Trans. Microwave Theory Tech., vol. 55, pp. 2412–2418, 2007.
[26] M.-F. Lei and H. Wang, “An analysis of miniaturized dual-mode bandpass filter structure using shunt-capacitance perturbation,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 861–867, 2005.
[27] X. Huang, Q. Feng, and Q. Xiang, “Bandpass filter with tunable bandwidth using quadruple-mode stub-loaded resonator,” IEEE Microw Wireless Compon. Lett., vol. 22, pp. 176–178, 2012.
[28] Y.-C. Chiou and G. Rebeiz, “A quasi elliptic function 1.75v2.25 ghz 3- pole bandpass filter with bandwidth control,” IEEE Trans. Microwave Theory Tech., ol. 60, pp. 244–249, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊