跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王耀宗
研究生(外文):Yao-tsung Wang
論文名稱:以濺鍍法製作ZnO/Cu2O異質接面之研究
論文名稱(外文):The Study of ZnO/Cu2O heterojunction prepared by Sputtering method
指導教授:高宗達
指導教授(外文):Tzung-ta Kao
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:異質接面氧化鋅氧化亞銅
外文關鍵詞:Cu2OheterojunctionZnO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:606
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化亞銅(Cu2O)/氧化鋅(ZnO)異質接面太陽能電池已經被廣泛的研究,目前最高的效率為約4%,是使用熱氧化法生長氧化亞銅。在過去的研究提到利用磁控濺鍍系統在氧化亞銅上沉積氧化鋅可能會有部分的氧化亞銅被還原成銅或是在有氧離子環境下被氧化為氧化銅。
因此,我們藉由磁控濺鍍系統來研究有關接面特性的影響,我們在氧化亞銅與氧化鋅中間沉積一層過渡層氧化銅(CuO)/鋅(ZnOx)並且與未沉積過度層之氧化亞銅(Cu2O)/氧化鋅(ZnO)比較。藉由氧化銅(CuO)/鋅(ZnOx)做為過渡層再利用熱氧化還原將接面氧化還原為氧化亞銅(Cu2O)/氧化鋅(ZnO),藉由此方法改善接面。接著藉由電流-電壓曲線(I-V),電容-電壓曲線(C-V),X光繞射儀(X-ray diffraction, XRD)、二次離子質譜儀(Secondary ion mass spectroscopy, SIMS)以及霍爾(Hall measurement)來量測p-n接面特性。分別計算出p-n接面只有單沉積氧化亞銅與氧化鋅以及由過渡層熱氧化還原氧化銅與氧化鋅的理想因子(ideal factor),飽和暗電流(saturation dark current) 和內建電位(build-in voltage),並由電流-電壓曲(I-V)線觀察起始電壓,利用霍爾量測薄膜載子濃動及遷移率,XRD觀察薄膜結晶方向以及SIMS分析縱深薄膜組成。由結果指出只有單沉積氧化亞銅與氧化鋅以及由過渡層熱氧化還原氧化銅與氧化鋅,其理想因子分別為2.9及3.38。
Cu2O/ZnO heterojunction solar cell has been extensively studied, the highest efficiency using the thermal oxidation Cu2O substrate up to now is about 4%. It have been known that part of the Cu2O could be reduced to metalic Cu or oxided to CuO due to the preferential oxygen plasma during the magnetron sputtering deposition of ZnO on Cu2O.
Therefore, we have adopted an intermediate layer of CuO/ZnOx between the Cu2O and ZnO layers deposited by magnetron sputtering to study the influence on the junction properties, which are compared to those in the as-deposited Cu2O/ZnO junction, the CuO/ZnOx juction as a buffer layer and using thermal redox formation of Cu2O / ZnO to improve device junction by this method. The properties of p-n heterojunctions have been characterized by measuring the current-voltage(I-V), capacitance-voltage(C-V), Secondary ione mass spectroscopy(SIMS), X-ray diffraction(XRD) and Hall measurement. The ideality factor, saturation dark current and build-in voltage of p-Cu2O/n-ZnO heterojunctions of the as-deposited samples and the thermal annealing samples with CuO/ZnOx intermediate layer are calculated and formed by I-V curve observe the turn-on voltage, using Hall measurement thin film carrier concentration and mobility, XRD(x-ray diffraction) observation of thin film crystalline direction, and also the use of SIMS analysis thin film high depth resolution composition. The ideality factors of the as-deposited sample and thermal annealing sample with intermediate layer are 3.38 and 2.9, respectively.
目錄
中文摘要.........................................................................................................................I
Abstract.......................................................................................................................III
誌謝..............................................................................................................................IV
目錄.............................................................................................................................. V
圖目錄.......................................................................................................................VIII
表目錄..........................................................................................................................XI
第一章、 序論..............................................................................................................1
1.1前言......................................................................................................................1
1.2 研究目的.............................................................................................................2
第二章、 文獻回顧......................................................................................................3
2.1 氧化亞銅簡介.....................................................................................................3
2.2 氧化鋅簡介.........................................................................................................5
2.3 氧化亞銅/氧化鋅異直接面太陽能電池文獻回顧............................................7
第三章、原理................................................................................................................12
3.1 電漿與濺鍍.......................................................................................................12
3.1.1 電漿............................................................................................................12
3.1.2 濺鍍原理....................................................................................................14
3.2 反應式磁控濺鍍...............................................................................................14
3.2.1 磁控濺鍍....................................................................................................14
3.2.2 反應式濺鍍................................................................................................14
3.3 薄膜沉積機制...................................................................................................15
3.4 化學反應方程式...............................................................................................16
3.5 熱力學與吉布斯自由能...................................................................................17
3.5.1 熱力學........................................................................................................17
3.5.2 吉布斯自由能............................................................................................19
第四章、實驗方法與分析設備....................................................................................21
4.1 實驗方法...........................................................................................................21
4.1.1 玻璃基板前處理........................................................................................22
4.1.2 鍍膜程序及参數設定................................................................................23
4.1.3 熱退火參數設定........................................................................................26
4.2 設備與分析儀器...............................................................................................26
4.2.1 反應式磁控濺鍍系統................................................................................26
4.2.2 快速熱退火(RTA)......................................................................................28
4.2.3 場發射掃描式電子顯微鏡(FESEM)........................................................29
4.2.4 X光繞射分析儀..........................................................................................31
4.2.5 表面輪廓儀(α-step)...................................................................................32
4.2.6 電流-電壓特性量測(I-V measurement)....................................................33
4.2.7 霍爾量測儀(Hall measurement)................................................................34
4.2.8 質譜分析儀(SIMS)....................................................................................35
第五章、實驗結果與討論............................................................................................37
5.1 濺鍍薄膜...........................................................................................................37
5.1.1 銀電極參數探討........................................................................................37
5.1.2 氧化亞銅參數探討....................................................................................37
5.1.3 氧化銅参數探討........................................................................................39
5.1.4 鋅薄膜參數探討........................................................................................41
5.1.5 氧化鋅薄膜參數探討................................................................................41
5.1.6 ITO薄膜參數探討......................................................................................43
5.1.7 ZnO-Cu2O霍爾量測...................................................................................43
5.2 氧化銅與鋅-氧化還原探討..............................................................................44
5.2.1 熱力學觀點探討實驗可行性....................................................................44
5.2.2 氧化亞銅(CuO)-鋅(Zn)熱氧化還原.........................................................45
5.2.3 ZnO/Zn/CuO/Cu2O氧化還原ZnO/Cu2O分析...........................................49
5.2.4 ZnO/ ZnOx/CuO/Cu2O熱氧化還原ZnO/Cu2O SIMS分析......................52
5.3 氧化亞銅與氧化鋅 p-n接面電性分析...........................................................54
5.3.1 Cu2O/ZnO I-V&C-V曲線...........................................................................54
5.3.2 Cu2O/ZnO 計算理想因子、障壁高度及飽和暗電流................................57
第六章、結論................................................................................................................59
参考文獻......................................................................................................................60

















圖目錄
圖2-1:氧化亞銅赤銅礦結構………………………………………………………….4
圖2-2:氧化鋅纖鋅礦結構…………………………………………………………….5
圖2-3:ZnO薄膜厚度對Cu2O/ZnO太陽能電池影響…….....................…………….10
圖2-4: AZO/ZnO/Cu2O結構能帶圖........................................………………………10
圖2-5: n-AZO/nondoped ZnO/ p-Cu2O太陽能電池結構示意圖.................………..11
圖2-6:緩衝層厚度及氧分壓對AZO/Non-doped ZnO/Cu2O……................12
圖3-1:電漿-離子化......................................................................................................12
圖3-2:電漿-激發鬆弛….............................................................................................13
圖3-3:電漿-分解…......................................................................................................13
圖3-4:薄膜沉積機制說明圖…...................................................................................15
圖3-5:系統與外界能量交換時∆E…...........................................................................17
圖3-6:容器體積膨脹時,系統所做的功為Px∆V…..................................................18
圖3-7:兩沒錢幣的樣是為一正一反時,系統熵值大於樣式相同時…....................19
圖4-1:實驗流程….......................................................................................................21
圖4-2:實驗流程圖…...................................................................................................22
圖4-3:真空濺鍍系統…...............................................................................................27
圖4-4:腔体內部構造……...........................................................................................27
圖4-5:物體在不同溫度下進行退火的硬度及溫度關係圖………...........................28
圖4-6: ULVCA RHL-610P退火爐機台………….....................................................29
圖4-7:電子束狀及試片所產生訊號……...................................................................30
圖4-8:FESEM……......................................................................................................31
圖4-9:XRD..................................................................................................................32
圖4-10表面輪廓儀(α-step)…….................................................................................33
圖4-12:霍爾量測系統…….........................................................................................34
圖4-13:飛行時間二次離子質譜儀……….................................................................36
圖5-1:Cu2O/Ag I-V曲線圖………............................................................................37
圖5-2:直流:70w 氬氣:15sccm 氧氣:1.5sccm 不同濺鍍壓力….............................38
圖5-3:氧化亞銅(Cu2O)上視圖……….......................................................................39
圖5-4:直流:70w 氬氣:15sccm 濺鍍壓力7mtorr 不同氧流量………....................40
圖5-5:氧化銅上視圖……...........................................................................................40
圖5-6:射頻:30w 氬氣:15sccm 濺鍍壓力7mtorr……..............................................41
圖5-7:射頻:30w 氬氣:15sccm 濺鍍壓力7mtorr 鋅薄膜XRD圖….......................42
圖5-8為氧化鋅上視圖……........................................................................................42
圖5-9:ITO與ZnO歐姆接觸I-V曲線……….............................................................43
圖5-10:氧化銅/鋅未進行熱氧化還原…....................................................................46
圖5-11:熱氧化還原-時間&溫度….............................................................................46
圖5-12: 250℃進行熱氧化還原0.5 - 3小時…...........................................................48
圖5-13: 350℃進行熱氧化還原0.5 - 3小時…….......................................................48
圖5-14: 450℃進行熱氧化還原0.5 - 3小時…...........................................................49
圖5-16:未進行熱氧化還原ZnO/Zn/CuO/Cu2O/Ag…...............................................50
圖5-17:進行3hr 25℃熱氧化還原ZnO/Zn/CuO/Cu2O/Ag…....................................50
圖5-18:黑色曲線為未熱氧化還原前,紅色曲線為熱氧化還原後….......................51
圖5-19:為熱氧化還原後剖面圖….............................................................................51
圖5-20:ZOCA熱氧化還原SIMS分析……...............................................................53
圖5-21:ZZCA熱氧化還原SIMS分析……................................................................53
圖5-22:ZOCA、ZZCA及ZCA I-V曲線圖比較圖…..................................................55
圖5-23: ZOCA、1/C2-V曲線.......................................................................................55
圖5-24: ZZCA、1/C2-V曲線........................................................................................56
圖5-25: ZCA、1/C2-V曲線..........................................................................................56
圖5-26:ZCA、ZZCA、ZOCA ln(I)-V曲線圖...............................................................57

























表目錄
表2-1:氧化亞銅基本特性(25℃)..................................................................................4
表2-2:氧化鋅基本特性(25℃)......................................................................................6
表4-1: Ag 參數設定...................................................................................................23
表4-2: Cu2O 參數設定...............................................................................................24
表4-3: CuO 參數設定................................................................................................24
表4-4: Znx+Oy 參數設定............................................................................................25
表4-5: ZnO 參數設定.................................................................................................25
表4-6: ITO 參數設定.................................................................................................25
表4-7:退火溫度與時間參數設定...............................................................................26
表5-1:Cu2O-ZnO霍爾量測結果.................................................................................43
表5-2:Thermodynamic standard potential for Cu2O, CuO, ZnO and........
related substance............................................................................................45
表5-3: ZnO/Cu2O起始電壓及內建電位....................................................................54
表5-4: ZnO/Cu2O理想因子、障壁高度以及飽和暗電流..........................................57
[1] Y. Nishi, T. Miyata, T. minami, J. Vac. Sci. Technol. A 30, 04D103 (2012).
[2] W. M. Sears, E. Fortin, and J. B. Webb, Thin Solid Films, 103, 303 (1983).
[3] S. M. Chou, M. H. Hon, I. C. Leu, and Y. H. Lee, J. Electro-chem. Soc, 155, 11, H923-H928 (2008).
[4] W. Y. Ching, Y. N. Xu, and K.W. Wong, Phys. Rev. B 40, 7684 (1989).
[5] T. ITO, H. Yamaguchi, K. Okabe, T. Masumi, and J. Mater, Sci. 33, 3555 (1998).
[6] J. M. Zuo, M .O’Keeffe, and J. C. H. Spence, Nature vol. 401, 49-52 (1999).
[7] Otfried Madelung, Semiconductors, Data Handbook, Springer, 3rd. edition (2004).
[8] G. P. Pollack, D. Trivich, J. Appl. Phys, 46, 163 (1975).
[9] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
[10] B. J. Jin, S. Im, and S. Y. Lee, Thin Solid Films, Vol. 366, 107-110 (2000).
[11] S. B. Ogale, Thin films and Heterostructures for oxide electronic
Chapter 10, 303 (2005).
[12] D. C. Look, Mat. Sci. Eng. B80, 383 (2001).
[13] J. F. Wager, Science 300, 1245 (2003).
[14] K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, M. Yano, Appl. Phys. Lett. 87, 112106 (2005).
[15] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, T. Sakurai, Sol. Energy 80,715 (2006).
[16] J. J. Loferski, J. Appl. Phys. 27, 777 (1956).
[17] C. A. Dimitriadis, L. Papadimitriou, N. A. Economou, J. Mat. Sci. Lett. 2, 691
(1983).
[18] L. C. Olsen, F. W. Addis, W. Miller, Sol. Cells 7, 247 (1982-1983).
[19] J. Herion, E. A. Niekisch, G. Scharl, Sol. Energ. Mater. 4, 101 (1980).
[20] L. Papadimitriou, N. A. Economou D. Trivich, Sol. Cells 3, 73 (1981).
[21] A. E. Rakhshani, Solid State Electron. 29, 7 (1986).
[22] T. Minami, MRS Bull. 38 , August (2000).
[23] R. G. Gordon, MRS Bull. 52, August (2000).
[24] J. Q. Xie, J. W. Dong, A. Osinsky, P. P. Chow, Y. W. Heo, D. P. Norton, S. J. Pearton,X. Y. Dong, C. Adelmann, C. J. Palmstrom, Mater. Res. Soc. Symp. P. 891, 407 (2006).
[25] K. Ellmer, J. Phys. D. Appl. Phys. 34, 3097 (2001).
[26] S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N.
Fujiwara, H. Kobayashi, K. Matsubara, S. Niki, Phys. Status. Solidi. 1, 1067 (2004).
[27] M. Izaki, T. Shinagawa, K. Mizuno, Y. Ida, M. Inaba, A. Tasaka, J. Phys. D Appl.
Phys. 40, 3326 (2007).
[28] T. Miniami, H. Tanaka, T. Shimakwa, T. Miyata, and H. Sato, Jpn. J. Appl. Phys.
43, L917-L919 (2004).
[29] S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki, phys. stat. 4, 1067–1070 (2004).
[30] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul, and T. Sakura, Sol. Energ. 80, 715-722 (2006).
[31] A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, Appl. Phys. Lett. 88, 163502 (2006).
[32] S.S. Jeong, A. Mittiga , E. Salza, A. Masci, and S. Passerini, Electrochimica Acta, 53, 2226–2231 (2008).
[33] T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsien, and I-Cherng Chen, Sxripta Materialia, 57, 53-56 (2007).
[34] J. W. Chen, D. C. Perng, and J. F. Fang, Sol. Energ. Mater. Sol. Cells 95, 2471–2477 (2011).
[35] T. Minami, Y. Nishi, T. Miyata, and J. Nomoto, Appl. Phys. Express, 4, 062301 (2011).
[36] C. C. Chen, L. C. Chen, and Y. H. Lee Advances in Condensed Matter Physics Volume 2012, Article ID 129139, 5 pages (2012).
[37] 劉柏村, 半導體製程技術SM01講義, chapter8 (2008).
[38] W. D. Westwood, Reactive Sputter Deposition, Handbook of Plasma Processing Technology, Springer-Verlag Berlin Heidelberg, U.S.A , Chap.9 (1999).
[39] R. K. Grupta, N. Shridhar, M. Katiyar, Material Science in Semicomductor Processing, 5, 11-15 (2002).
[40] S. J. Chen, Y. C. Liu, J. G. Ma, D. X. Zhao, Z. Z. Zhi, Y. M. Lu, J. Y. Zhang, D. Z. Shen, X. W. Fan, J. Cry. Growth, 240, 467-472 (2002).
[41] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, J. Appl. Phys. 94. 354 (2003).
[42] C. L. Kuo, R.C. Wang, J.L. Huang, C.P. Liu, C.K. Wang, S.P. Chang, W.H. Chu, C.H. Wang, C.H. Tu, Nanotechnology, 20, 365603 (2009).
[43] H. Nichev, O. Angelov, M. Sendova-Vassileva, D. Dimova-Malinovska, AIP Conf. Proc. 1203. 600 (2009).
[44] N. Zhang, K. Yu, L. Li, Z. Zhu, Appl. Surf. Sci. 254. 5736 (2008).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 18. 林聰舜:〈叔孫通「起朝儀」的意義──劉邦卡理斯瑪支配的轉變〉,《哲學與文化》,第20卷12期,1993年12月,頁1154~1161。
2. 18. 林聰舜:〈叔孫通「起朝儀」的意義──劉邦卡理斯瑪支配的轉變〉,《哲學與文化》,第20卷12期,1993年12月,頁1154~1161。
3. 17. 林聰舜:〈三種不同謀士的典型:張良、陳平、范增〉,《中華文化復興月刊》,1988年11月,頁60~66。
4. 17. 林聰舜:〈三種不同謀士的典型:張良、陳平、范增〉,《中華文化復興月刊》,1988年11月,頁60~66。
5. 17. 林聰舜:〈三種不同謀士的典型:張良、陳平、范增〉,《中華文化復興月刊》,1988年11月,頁60~66。
6. 18. 林聰舜:〈叔孫通「起朝儀」的意義──劉邦卡理斯瑪支配的轉變〉,《哲學與文化》,第20卷12期,1993年12月,頁1154~1161。
7. 16. 林素英:〈從史記論張良的生命智慧〉,《花蓮師院學報》,2000年6月,頁231~247。
8. 16. 林素英:〈從史記論張良的生命智慧〉,《花蓮師院學報》,2000年6月,頁231~247。
9. 16. 林素英:〈從史記論張良的生命智慧〉,《花蓮師院學報》,2000年6月,頁231~247。
10. 12. 阮芝生:〈論留侯與三略(下)〉,《食貨月刊》,1981年6月,頁93~121。
11. 12. 阮芝生:〈論留侯與三略(下)〉,《食貨月刊》,1981年6月,頁93~121。
12. 12. 阮芝生:〈論留侯與三略(下)〉,《食貨月刊》,1981年6月,頁93~121。
13. 11. 阮芝生:〈論留侯與三略(上)〉,《食貨月刊》,1981年5月,頁54-71。
14. 11. 阮芝生:〈論留侯與三略(上)〉,《食貨月刊》,1981年5月,頁54-71。
15. 11. 阮芝生:〈論留侯與三略(上)〉,《食貨月刊》,1981年5月,頁54-71。