(3.236.222.124) 您好!臺灣時間:2021/05/13 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:魏建益
研究生(外文):Wei, Jian-Yi
論文名稱:考量多產品與多包裝於水泥儲運站之車輛指派問題
論文名稱(外文):Vehicle Dispatching Problem for Cement Silos with Multi-Products and Multi-Packages
指導教授:蘇泰盛蘇泰盛引用關係
指導教授(外文):Su, Tai-Sheng
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:工業管理系所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:77
中文關鍵詞:水泥儲運站車輛指派多包裝模糊多目標線性規劃
外文關鍵詞:cement silosvehicle dispatching problemmulti-packagefuzzy multi-objective linear programming
相關次數:
  • 被引用被引用:2
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
摘要
學號:M10057022
論文名稱:考量多產品與多包裝於水泥儲運站之車輛指派問題
總頁數:77頁
學校名稱:國立屏東科技大學 系(所)別:工業管理系
畢業時間及摘要別:101學年度第2學期碩士論文學位摘要
研究生:魏建益 指導教授:蘇泰盛 博士
本研究探討水泥儲運站車輛運輸指派問題,由於運輸過程所派遣的水泥車輛會因各類水泥包裝而不同,須指派不同類型的水泥運輸車,且因相當的決策參數具模糊性及各需求點之需求量不確定,派遣不同的車型會影響運輸成本是水泥儲運站運送作業考量的重要因素。本研究的目即探討水泥車輛運輸指派問題,考量多產品、多包裝、多車型及多配送點,同時顧及運輸成本與運送車次為目標,利用模糊多目標線性規劃法,建立一個水泥儲運站之車輛最佳指派模式,藉由一實務案例驗證模式之正確性,再針對重要決策參數進行敏感度分析,指派結果提供調度員作為車輛規劃決策時之參考。
關鍵字:水泥儲運站、車輛指派、多包裝、模糊多目標線性規劃

Abstract
Student ID:M10057022
Title of thesis: Vehicle Dispatching Problem for Cement Silos with Multi-Products and Multi-Packages
Total pages: 77
Name of Institute: Department of Industrial Management National Pingtung University of Science and Technology
Graduate date:2013 Degree Conferred:Master Degree
Name of student:Wei, Jian-Yi Adviser:Su, Tai-Sheng
The contents of abstract in this thesis:
This paper investigated the vehicle transport cement storage station assignment problem. Due the dispatch of cement by transport vehicles because of the various types of cement packaging, different types of cement and different demands, there are many points of uncertainty. Sending different car models affects transportation costs and transportation resources, among other cement storage decision factors. This paper considered multi-cement transport models, multi-packaging of cement, multi-products of cement and transport vehicle related-costs. This paper proposes a fuzzy multi-objective linear programming (FMOLP) model for solving the vehicle dispatch problem of cement silos in a fuzzy environment.

Keywords: cement silos, vehicle dispatching problem, multi-package,fuzzy multi-objective linear programming

目錄
摘要 I
Abstract II
誌 謝 III
目錄 IV
第一章 緒 論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3研究範圍與限制 3
1.4 研究架構與流程 3
第二章 文獻探討 6
2.1 水泥產品特性及製造流程 6
2.1.1 水泥產品種類 6
2.1.2 水泥包裝與水泥運輸流程 8
2.2 水泥運輸車指派之相關文獻 9
2.3 模糊多目標規劃之相關研究 13
第三章 模式建構 16
3.1 問題描述與現況做法 16
3.1.1 問題描述 16
3.1.2 現況作法 18
3.1.3 簡例說明 19
3.2 研究限制與假設 19
3.3 模式建構 21
3.4 模糊多目標規劃模式 23
3.5 模糊多目標規劃模式 24
第四章 案例分析 28
4.1 個案介紹 28
4.2 單一目標函數模式之結果分析 32
4.2.1 單目標模式一測試結果分析 32
4.2.2 單目標模式二測試結果分析 41
4.3 模糊多目標模式結果分析 51
4.4 敏感度分析 56
4.4.1需求量變動對 與 之影響 56
4.4.2運輸成本變動對 與 之影響 59
4.4.3 目標函數一 變動對輸出解造成的影響 61
4.4 目標函數二 變動對輸出解造成的影響 64
4.5 結果分析 67
第五章 結論與建議 69
5.1 結論 69
5.2 建議 70
參考文獻 71

參考文獻
中文部分:
1.王英財(1996),東泥(石)西運之儲運最適規劃,國立成功大學資源工程研究所碩士論文。
2.王鈺婷(2009)。運用多目標規劃探討混凝土預拌車派遣配送問題,國立成功大學交通管理科學研究所碩士論文。
3.朱子豪(2001),單一物流中心車輛途程問題求解模式之空間分析研究,國立台灣大學地理環境資源研究所碩士論文。
4.江孝頤(2007),隨機旅行時間下混凝土生產作業及拌合車調派決策之研究,國立中央大學土木工程學系碩士論文
5.周振源(2005),以供應鏈理論探討營建業作業績效-以預拌廠物料配送為例,國立台灣科技大學營建工程系碩士論文。
6.林明正(1997),模糊線性規劃應用於水泥整體儲運規劃,國立成功大學資源工程研究所碩士論文。
7.林唐裕(1996),台灣水泥產品儲運問題及因應對策之研究,台灣銀行季刊,185-214。
8.林恩仕(2003),以派遣中心為基礎之預拌混凝土廠派車模式,國立成功大學土木工程研究所碩士論文。
9.陳信廷(2012),模糊多目標線性規劃應用於水泥儲運站水泥車輛運輸指派,國立屏東科技大學工業管理系碩士論文。
10.陳百傑(2002),以啟發式演算法求解時窗限制車輛途程問題,中原大學工業工程研究所碩士論文。
11.陳奉君(2005),供應鏈理論應用於預拌混凝土廠產銷成本之研究,國立雲林科技大學營建工程系碩士論文。
12.陳銘樺(2011),散裝水泥車運輸指派最佳化之研究,國立中央大學土木工程學系碩士論文。
13.陸海文(2005),模糊多資源配置的運輸規劃,崑山科技大學企業管理系,行政院國家科學委員會專題研究計畫成果報告。
14.張恭文(2008),隨機旅行時間下拌合廠臨時性故障之混凝土生產與拌合車派遣規劃之研究,國立中央大學土木工程學系碩士論文。
15.黃思銘(2010),預拌混凝土廠運輸車輛調度決策最佳化模式之研究,國立中央大學土木工程研究碩士論文。
16.黃木才(1995),貨櫃運輸公司車輛排程問題之研究-模糊多目標遺傳演算法之應用,國立交通大學交通運輸研究所碩士論文。
17.黃佩芬(2009),單機排程下的運輸指派策略,國立嘉義大學運輸與物流工程研究所碩士論文。
18.曹家瑞(1999),物流業配送系統之車輛指派與路徑規劃,國立台北科技大學生產系統工程與管理研究所碩士論文。
19.趙宏逵(1985),市區預拌混凝土廠商生產排程車輛調派與路線問題之研究,國立交通大學交通運輸研究所碩士論文。
20.賴威伸(2007),預拌混凝土生產與拌合車派遣整合模式之研究,國立中央大學土木工程學系碩士論文。



英文部分:
21.Arikan, R. and Güngö, Z., (2009). “Modeling of a manufacturing cell design problem with fuzzy multi-objective parametric programming.” Mathematical and Computer Modelling, 50, pp. 407-420.
22.Amid, S.H. and O’Brien., (2010). “A weighted max-min model for fuzzy multi-objective supplier selection in a supply chain.” International Journal Production Economics, 131, pp. 139-145.
23.Bellman, R.E. and Zadeh, L. A., (1970). “Decision-making in a fuzzy environment.” Management Science, 17, pp. 141-164.
24.Bitar, S.D.B., Junior C.T.D.C., Barreiros, J.A.L. and Neto, J.C.D.L., (2009). “Expansion of isolated electrical systems in the Amazon: An approach using fuzzy multi-objective mathematical programming.” Energy Policy, 37, pp. 3899-3905.
25.Borges, A.R. and Antunes, C.H., (2002). “A weight space-based approach to fuzzy multiple-objective linear programming.” Decision Support Systems, 34, pp. 427-443.
26.Chanas, S., (1983). “The use of parametric programming in FLP.” Fuzzy Sets and Systems, 11, pp. 243-251.
27.Chang, N.B. and Wang, S.F., (1995). “A locational model for the site selection of solid waste management facilities with traffic congestion constrains.” Civil Engineering Systems, 11, pp. 287-306.
28.Christiansen, M., Fagerholt, K., Nygreen, B. and Ronen, D., (2012). “Ship routing and scheduling in the new millennium.” European Journal of Operational Research.
29.Dusan, T., (1994). “Fuzzy sets theory applications in traffic and transportation.” European Journal of Operational Research, 74, pp. 379-390.
30.Feng, C.W. and Wu, H.T., (2000). “Using genetic algorithms to optimize the dispatching schedule of RMC cars.” Proceeding of the17th international symposium on automation and robust in construction, Taipei, Taiwan, pp. 927-932.
31.Hannan, E.L., (1981). “Linear programming with multiple fuzzy goals.” Fuzzy Sets and Systems, 6, pp. 235-248.
32.Javadi, B., Saidi-Mehrabad, M., Haji, A. and Mahdavi, R., (2008). “No-wait flow shop scheduling using fuzzy multi-objective linear programming.” Journal of The Franklin Institute, 345, pp. 452-467.
33.Karsak, E.E. and Kuzgunkaya O., (2002). “A fuzzy multiple objective programming approach for the selection of a flexible manufacturing system.” International Journal of Production Economics, 79, pp. 101-111.
34.Liang, T.F., (2006). “Distribution planning decisions using interactive fuzzy multi-objective linear programming.” Fuzzy Sets and Systems, 157, pp. 1303-1316.
35.Liang, T.F., (2010). “Application of fuzzy goal to project management decisions with multiple goals in uncertain environments.” Expert Systems with Applications, 37, pp. 8499-8507.
36.Liang, T.F. and Cheng, H.W., (2009). “Application of fuzzy sets to manufacturing/distribution planning decisions with multi-product and multi-time period in supply chains.” Expert Systems with Applications, 36, pp. 3367-3377.
37.Lin, P.C., Wang, J., Huang, S.H. and Wang, Y.T., (2010). “Dispatching ready mixed concrete trucks under demand postponement and weight limit regulation.” Automation in Construction, 19, pp. 798-807.
38.Lu, M., Anson, M., Tang, S.L. and Ying, Y.C., (2003). “A practical simulation solution to planning concrete plant operations in Hong Kong.” Journal of Construction Engineering and Management, 129(5), pp. 547-554.
39.Luhandjula, M., (1982). “Compensatory operators in fuzzy programming withmultiple objectives.” Fuzzy Sets and Systems, 8, pp. 245-252.
40.Mitsuo, G., Kenichi, I., Yinzhen, L. and Erika, K., (1995). “Solving bicriteria solid transportation Problem with fuzzy numbers by A Genetic Algorthm. ” Computers ind.eng, 29(4), pp. 537-541.
41.Sakawa, M., (1988). “An interactive fuzzy satisficing method for multiobjective linear fractional programming problems.” Fuzzy Sets and Systems , 28, pp. 129-144.
42.Tan, R.R., Ballacillo, J.A.B. Aviso, K.B. and Culaba, A.B., (2009). “A fuzzy multiple-objective approach to the optimization of bioenergy system footprints.” Chemical Engineering Research and Design, 87, pp. 1162-1170.
43.Teng, J.Y. and Tzeng, G.H., (1993). “Transportation Investment Project Selection with Fuzzy Multi-objective.” Transportation Planning and Technology, 17, pp. 91-112.
44.Tzeng, G.H., Teodorović, D. and Hwang, M.J., (1996). “Fuzzy bicriteria multi-index transportation problems for coal allocation planning of Taipower.” European Journal of Operational Research, 95, pp. 62-72.
45.Wang, R.C. and Liang T.F., (2004). “Application of fuzzy multi-objective linear programming to aggregate production planning.” Computers &; Industrial Engineering, 46, pp. 17-41.
46.Yan, S., Lai, W. and Chen, M., (2008). “Production scheduling and truck dispatching of ready mixed concrete.” Transportation Research Part E, 44, pp. 164-179.
47.Yücel, A. and Güneri, A.F., (2011). “A weighted additive fuzzy programming approach for multi-criteria supplier selection.” Expert Systems with Applications, 38, pp. 6281-6286.
48.Zadeh, L.A., (1965) “Fuzzy set.” Information and Control, 8, pp. 38-53.
49.Zayed, T.M., and Minkarah, I., (2004). “Resource allocation for concrete batch plant operation: case study.” Journal of Construction Engineering and Management, 130, pp. 560-569.
50.Zeng, X., Kang, S., Li, F., Zhang, L. and Guo P., (2010). “Fuzzy multi-objective linear programming applying to crop area planning.” Agricultural Water Management, 98, pp. 134-142.
51.Zimmermann, H.J., (1978). “Fuzzy programming and linear programming with several objective functions.” Fuzzy Sets and Systems, 1, pp. 45-56.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔