跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃婷鈺
研究生(外文):Ting-Yu Huang
論文名稱:葡萄白藜蘆醇合成酶之分子選殖與蛋白質表達
論文名稱(外文):Molecular Cloning and Protein Expression of Stilbene Synthases from Vitis sp.
指導教授:徐志宏徐志宏引用關係
指導教授(外文):Douglas J.H. Shyu, Ph.D
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技系所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:139
中文關鍵詞:二苯乙烯合成酶白藜蘆醇植物抗毒素
外文關鍵詞:stilbene synthaseresveratrolphytoalexin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
二苯乙烯合成酶(STS,EC2.3.1.95),為白藜蘆醇的生物合成中的關鍵酵素,目前已知白藜蘆醇具有殺真菌劑,抗氧化劑,抗血小板聚集作用,和抗炎活性。研究顯示,經二苯乙烯合成酶生產的生產白藜蘆醇化合物主要成分為植物抗毒素,具防禦植物性真菌病原體之反應,是藥物學上具有重要性的高生物活性物質。白藜蘆醇衍生物自苯基丙酸路徑,已知對人體健康有正向影響,已被證實有助於治療阿爾茨海默氏症、糖尿病、冠狀動脈心臟疾病。本研究目的為使用微生物的生物系統去生產有價值的分子,利用生產白藜蘆醇的工程菌,可作為大量生產的一種重要方法。利用微生物的系統去生產白藜蘆醇以降低生產的成本,並且還可防止過度採集和天然資源的破壞。然而二苯乙烯路徑並不存在於細菌或酵母中,因此需要引入整個具功能性的途徑;且要考量到整個生產過程中所引入來自二苯乙烯路徑中的一個或兩個基因以及添加的前驅物,可能會明顯的限制獲得代謝物所需要的成本和效果。以野外生長的葡萄屬植物 DNA 為模板,設計二苯乙烯合成酶基因特異性引子並利用 PCR 選殖二苯乙烯合成酶基因的全長片段。共選殖到七個二苯乙烯合成酶基因,分別是 STS1, STS16, STS43, STS46, STS4, STS51 及 STS58。序列分析顯示這些二苯乙烯合成酶基因的全長片段皆包含了兩個 exons 以及一個 intron。二苯乙烯合成酶基因編碼區域的長度有 1,179 個核苷酸,將其選殖至具有 NcoI和XhoI限制酶切位的表達載體 pET28a 上。重組STS58蛋白質之分子量大小為 43 kDa,在大腸桿菌 BL21(DE3) 細胞中,藉由異丙基-β-D-硫代半乳糖苷 (IPTG) 之誘導可使重組STS58蛋白質大量表達;但本實驗中重組STS58蛋白質由於不正確的蛋白質折疊和轉譯後修飾,因此形成不溶性的聚集體。在未來,研究將集中於重組STS58 蛋白質在真核表現系統中的表達。
Stilbene synthase (STS, EC 2.3.1.95), a key enzyme in resveratrol (trans-3, 5, 40-trihydroxy-stillbene) biosynthesis, and resveratrol are known to have antifungal, antioxidant, anti-platelet aggregation, and anti-inflammatory activity. Recent studies showed that stilbene synthase could lead to the production of resveratrol compounds, which were major components of the phytoalexin response against fungal pathogens of plant and were highly bioactive substances of pharmaceutical interest. Resveratrol, derived from the phenylpropanoid pathway, is also known for its positive effect on human health. Resveratrol has been suggested for the treatment of Alzheimer’s disease, diabetic, and coronary heart disease. The objectives of this study are to use biological systems for the production of numerous valuable molecules in microorganisms. Engineering bacteria for resveratrol production might thus represent a valuable means for its production in large quantities. The microorganism production of resveratrol would lower the cost, and also prevent intensive cutting and decimation of the natural sources. However, as the stilbene pathway does not exist in bacteria, or in yeast, the entire functional pathway needs to be introduced. Thus, the introduction of only one or two genes from the stilbene pathway and supplementing the cells with a precursor might significantly limit the cost and effort required to obtain the desired metabolite, and should be taken into account when considering the entire production process. Isolation of genome DNA from wild-growing grape Vitis sp. and design of gene-specific primers of the grape stilbene synthases are used for the cloning the full-length stilbene synthases gene by PCR. Seven STS genes, including STS1, STS16, STS43, STS46, STS4, STS51 and STS58, respectively. Sequence analysis indicated that these full-length STS genes all contained two exons and one intron. The coding regions of STS genes are 1,179 nucleotides in length, and they are introduced into expression vector pET28a at NcoI and XhoI restriction sites. The recombinant STS58 proteins, with a molecular weight of 43 kDa, are highly expressed in Escherichia coliBL21(DE3) cells by isopropyl-β-D-thiogalactoside (IPTG) induction, but they are present as insoluble aggregates due to inappropriate protein folding and post-translational modification. In the future, studies have been focused on eukaryotic expression of the recombinant STS58 proteins.
摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 XIV
表目錄 XVII
第一章 前言 1
第二章 文獻回顧 5
2.1 野生山葡萄 5
2.1.1 山葡萄之分類地位 5
2.1.2 漢氏山葡萄之型態特徵、分佈及其用途 6
2.1.3 細本山葡萄之型態特徵、分佈及其用途 6
2.2 植物基因轉殖在醫藥上之應用 8
2.3 植物之二次代謝產物 9
2.4 中草藥ITS序列資料庫 11
2.5 白藜蘆醇 14
2.5.1 白藜蘆醇之來源 14
2.5.2 白藜蘆醇之化學性質 16
2.5.3 白藜蘆醇之生合成路徑 16
2.5.4 國內外白藜蘆醇的研究概況及發展 19
2.5.5 白藜蘆醇的生理功能 19
2.6 反式白藜蘆醇及其衍生物的分析方法 23
2.6.1 紫外光光度法 23
2.6.2 薄層層析-紫外分光光度法 24
2.6.3 螢光光度法 24
2.6.4 高壓液相色層分析法 25
2.6.5 氣相層析質譜分析儀 25
2.6.6 毛細管電泳法 25
2.6.7 非親水性毛細管電泳法 26
2.6.8 高錳酸鉀褪色分光光度法 26
2.7 原核表現系統 28
第三章 材料與方法 31
3.1實驗材料 31
3.1.1 藥品 31
3.1.2 實驗儀器 31
3.1.3 載體 32
3.1.4 DNA 分析用緩衝溶液 32
3.1.5 聚合酶連鎖反應(polymerase chain reaction; PCR)之引子 33
3.1.6 酵素 34
3.2 實驗架構 35
3.3 實驗方法 35
3.4 白藜蘆醇合成酶基因選殖 36
3.4.1 Genomic DNA 之萃取 36
3.4.2 設計引子 36
3.4.3 聚合酶連鎖反應之擴增 STS 基因 37
3.4.4 PCR 產物鑑定 37
3.4.5 DNA 切膠純化 37
3.4.6 yT&A Cloning 38
3.4.7 接合反應 (ligation) 38
3.4.8 轉型 (transformation) 39
3.4.9 plasmid DNA 小量萃取 40
3.4.10 限制酶確定重組基因 41
3.3.11 核酸定序 42
3.3.12 白藜蘆醇合成酶基因之序列分析 42
3.3.13 白藜蘆醇合成酶基因之 intron 序列分析 43
3.3.14 白藜蘆醇合成酶序列比對與分析 43
3.5 白藜蘆醇合成酶基因之exon1st 以及 exon2nd 個別 DNA 片段選殖 43
3.5.1 引子設計 44
3.5.2 聚核酶連鎖反應之擴增 STS genes 之exon1st 以及 exon2nd 個別 DNA 片段 45
3.5.3 STS genes 之exon1st 以及 exon2nd接合反應 (ligation) 47
3.5.4 DNA Clean-up 47
3.5.5 聚核酶連鎖反應之擴增 STS genes 之exon1st-exon2nd DNA 片段 48
3.5.6 PCR 產物鑑定 48
3.5.7 DNA 切膠純化 48
3.5.8 yT&A Cloning 49
3.5.9 接合反應 49
3.5.10 轉型 (transformation) 50
3.5.11 增殖含選殖片段之菌落 50
3.5.12 plasmid DNA 小量萃取 50
3.5.13限制酶確定重組基因 50
3.5.14 核酸定序 52
3.5.15 白藜蘆醇合成酶基因之序列分析 52
3.5.16 生物資訊分析方法 52
3.6 白藜蘆醇合成酶基因 (STS58) 選殖至原核表達載體 54
3.6.1 選殖載體之製備與純化 54
3.6.2 STS58 基因與選殖載體之接合作用 54
3.6.3 轉型 55
3.6.4 限制酶確認重組基因 55
3.6.5 核酸定序 55
3.7 原核系統進行白藜蘆醇合成酶表達 56
3.7.1 重組載體轉型至蛋白質表達菌株 56
3.7.2 白藜蘆醇合成酶 STS58 基因之誘導 56
3.7.3 最佳化白藜蘆醇合成酶誘導條件測試 57
第四章 結果與討論 60
4.1 白藜蘆醇合成酶 STS 基因選殖 60
4.1.1 葡萄屬植物 Genomic DNA 之萃取 60
4.1.2 葡萄屬植物 ITS 序列分析結果 60
4.1.3 聚合酶連鎖反應之擴增 STS genes 基因 60
4.1.4 白藜蘆醇合成酶基因選殖至 yT&;A 載體 60
4.2. 葡萄屬植物白藜蘆醇合成酶基因之序列分析 (含intron) 66
4.2.1 白藜蘆醇基因含 intron 之核苷酸序列片段 67
4.2.2 白藜蘆醇基因之 intron 序列比對 67
4.2.3 白藜蘆醇基因扣除 intron 之核苷酸序列片段 68
4.3 白藜蘆醇基因核苷酸序列比對 68
4.4 白藜蘆醇合成酶胺基酸序列比對與分析 68
4.5 STS58之exon1st-exon2nd 選殖至 yT&;A 載體 92
4.5.1 白藜蘆醇合成酶基因之exon1st 以及 exon2nd 個別 DNA 片段選殖 92
4.5.2聚核酶連鎖反應之擴增 STS58 之exon1st-exon2nd DNA 片段 92
4.5.3 STS58之exon1st-exon2nd 選殖至 yT&;A 載體 92
4.6 白藜蘆醇合成酶基因 STS58 核苷酸序列比對 98
4.7 原核表達之白藜蘆醇合成酶基因選殖與表達 101
4.7.1白藜蘆醇合成酶基因選殖至 pET28a 載體 101
4.7.2 確認白藜蘆醇合成酶基因選殖至 pET28a 載體 101
4.7.3 白藜蘆醇合成酶基因最佳化表現條件測定 105
4.7.3.1 白藜蘆醇合成酶基因於不同時間點下之重組蛋白質表達 105
4.7.3.2 白藜蘆醇合成酶基因於不同溫度下之重組蛋白質表達...........................................................................................113
4.7.3.3 白藜蘆醇合成酶基因於不同濃度 IPTG 下之重組蛋白質表達..........................................................................116
4.8 白藜蘆醇合成酶 3D 結構預測 119
第五章 結論 124
參考文獻 126
附錄 137
作者簡介 139

王生陽、徐麗芬、楊寧蓀。(2004)。植物基因轉殖在醫藥上的應用。植物基因轉殖之原理與應用。植物生物技術教學資源中心主編。
王 華、尉亞輝。(1999)。葡萄酒中白藜蘆醇的FIPLC測定。西北農業大學學報。27, 81-87。
江珊珊、劉忠芳、劉紹璞。(2009)。高錳酸鉀褪色分光光度法測定白藜蘆醇。西南大學學報(自然科學版)。第31卷第3期。76~70 頁。
何政坤、張淑華、蔡錦瑩。(2003)。利用生物反應器培養臺灣紅豆杉細胞生產紫杉醇。林業研究專訊。20~23 頁。
李承榆。(2007)。中草藥ITS序列資料庫之開發與應用。藥用植物之開發與利用研討會專刊。41~53 頁。
侯幸怡 (2005)。Acarviosyl Transferase 酵素基因選殖、表現及活性測試。國立成功大學生物科技研究所碩士論文。
馬 亭、李攻科、李曉東。(2001)。葡萄酒中白藜蘆醇的固相萃取GC / MS法測定及其生理活性的初步研究。高等學校化學學報。1023〜1027 頁。
郭順宇。(2008)。慢談白藜蘆醇。輔英醫訊第59期。
陳榮五、張隆仁、洪爭坊、郭肇凱 (2007)。藥用植物之開發與利用研討會專刊(特刊 82 號)。行政院農業委會臺中區農業改良場。41 ~ 85頁。
陳裕星、蔡奇助、易美秀 (2004)。彰化花卉博覽會花卉新科技海報展專刊。187~189頁。
陳 憲、林美羨,、陳國南。(2006)。毛細管電泳 - 安培檢測法同時測定白藜蘆醇及虎杖甙。福州大學學報。第34卷第6期。903~907 頁。
張 敏、曹 庸、於華忠、彭密軍、龔竹瓊、李 貴。(2005)。虎杖提取物中白藜蘆醇的螢光分析研究。分析試驗室。第24卷第5期。15~18 頁。
張隆仁、陳盈君、郭肇凱、陳榮五。(2007)。新興藥用植物的開發與利用。藥用植物之開發與利用研討會專刊。57~81 頁。
張永勳、何玉鈴、邱年永、陳忠川 (2000)。台灣原住民藥用植物彙編,第二版第一刷。行政院衛生署中醫藥委員會。244 頁。
單輝君、張名位、張瑞芬、池建偉、張雁、魏振承。(2008)。花生根中白藜蘆醇提取工藝的優化。農業機械學報。第39卷第2期。
楊明曄、張芝瑞和陳良宇。(2011)。由白藜蘆醇調控細胞週期探討多酚物質的防癌效果。
楊新玲。(2010)。神奇的天然營養素白藜蘆醇可預防老化及多種慢性病。中國醫訊。59~63頁。
鄭湘娟、餘淑嫻、徐曉芳、萬南紅、李玉琳、張小強。(2008)。紫外分光光度法測定虎杖中自藜蘆醇的含量。時珍國醫國藥。第19卷第8期。
鄭妍鵬、李曉東、莫金恒、謝天堯,李鳳屏、李 娜。2002。非水介質毛細管電泳電檢測虎杖中的白藜蘆醇。18, 585。
鄭琳枝、鄭元鑫、鄭元春 (1996)。常見的藥草。國家圖書館出版品預行編目資料,台灣省立博物館。
劉業經、呂福原、歐辰雄 (1988)。臺灣樹木誌。國立中興大學農學院叢書。
劉新榮、高麗萍、夏 濤、鄒偉偉、陳恩昊。(2008)。薄層層析 - 紫外分光光度法測定葡萄果皮中白藜蘆醇及白藜蘆醇苷。生物學雜誌。第25卷第5期。1063~1065 頁。
黎耀基、張耀南。(2007)。台灣中藥草產業之機會與挑戰。藥用植物之開發與利用研討會專刊。7~17 頁。
蔡奇助、黃柄龍 (2004)。高雄區農業改良場研究彙報。第 15 卷第 2 期。
蔡奇助、黃柄龍、蘇育彥 (2005)。高雄區農業改良場研究彙報。第 16 卷第 1 期。
薛桂青 (2011) 杏鮑菇漆氧化酶之功能性表達與特性分析。國立屏東科技大學生物科技研究所碩士論文。
蘇遠志 (2003) 後基因體時代之生物技術:第十章微生物系統。教育部顧問室「生物技術科技教育改進計畫」。醫藥基因生物技術教學資源中心。
Aebersold R., and Goodlett D. R., (2001). Mass spectrometry in proteomics. Chem. Rev. 101, 269-295.
Belotti D., Vergani V., Drudis T., Borsotti P., Pitelli MR., Viale G., Giavazzi R., and Taraboletti G., (1996) The microtubule-affecting drug paclitaxel has antiangiogenicactivity. Clin Cancer Res. 2, 1843–1849.
Beekwilder J., Wolswinkel R., Jonker H., Hall R., C. H. Ric de Vos, and Bovy A., (2006) Production of Resveratrol in Recombinant Microorganisms. Appl. Environ. Microbiol. 72, 5670–5672.
Belhadj A., Telef N., Saigne C., Cluzet S., Barrieu F., Hamdi S., and Mérillon J. M., (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol. Bioch. 46, 493–499.
Bertelli A. A. E., Giovannini L., Giannessi D., Migliori M., Bernini W., Fregoni M., and Bertelli A., (1995) Antiplatelet activity of synthetic and natural resveratrol in red wine. Int. J. Tissue React. 17, 1-3.
Crozier A., Clifford M. N., and Ashihara H., (eds)(2006) Plant Secondary Metabolites. Oxford: Blackwell Publishing Ltd.
Crozier R. H., Agapow P. M., and Dunnett L. J., (2006). Conceptual issues in phylogeny and conservation: a reply to Faith and Baker. Evol. Bioinf. Online. 2, 197-199.
Das S. and Das D. K., (2007) Resveratrol: a therapeutic promise for cardiovascular diseases. Recent Pat Cardiovasc Drug Discov. 2, 133-8.
Diekmann O. E., Bak R. P. M., Stam W. T., and Olsen J. L., (2001) Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Mar. Biol. 139, 221-233.
Donnez D., Jeandet P., Cle´ment C., and Courot E., (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol. 27, 706-713.
Filippini F, Rossi R, Marin O, Trovato M, Costantino P, Downey PM, Lo Schiavo F, and Terzi M., (1996) A plant oncogene as a phosphatase. Nature. 379, 499–500.
French C., Moore K. E., and Ward J., (1996) Development of a simple method for the recovery of recombinant proteins from the Escherichia coli periplasm. Enzyme Microb Technol. 19, 332-338.
Giorcelli A., Sparvoli F., Mattivi F., Tava A., Balestrazzi A., Vrhovsek U., Calligari P., Bollini R., and Confalonieri M., (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic. Res. 13:203–214.
Gottlieb J. A., and Luce J. K (1972) Cancer Chemother Rep. 56, 103-105.
Hain R., Bieseler B., Kindl H., Schröder G., and Stöcker R. (1990) Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol. 15, 325-35.
Hochstrasser D. F., (1998) Proteome in perspective. Clin. Chem. Lab. Med. 36, 825-836.
Huang L. L., Xue Z., and Zhu Q. Q., (2006) Method for the production of resveratrol in a recombinant oleaginous microorganism. WO 125000 A2.
Huang L. L., Xue Z., and Zhu Q. Q., (2007) Method for the production of resveratrol in a recombinant bacterial host cell. US 0031951 A1.
Ilia M., Beasley C., Meijer D., Kerwin R., Cotter D., Everall I. and Price J., (2002) Expression of Oct-6, a POU III Domain Transcription Factor, in Schizophrenia. Am J Psychiatry. 159, 1174-82.
Ito K., Suzuki K., Estes P., Ramaswami M., Yamamoto D., and Strausfeld N. J., (1998) The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn. Mem. 5, 52--77.
Jang M., Cai L., Udeani G. O., Slowing K. V., Thomas C. F., Beecher C. W. W., Fong H. H. S., Farnsworth N. R., Kinghorn A. D., Mehta R. G., Moon R. C., and Pezzuto J. M., (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 275, 218–220.
Jang M. H., Piao X. L., Kim H. Y., Cho E. J., Baek S. H., Kwon S. W., and Park J. H., (2007) Resveratrol oligomers from Vitis amurensis attenuate β-amyloid-induced oxidative stress in PC12 cells. Biol. Pharm. Bull. 30, 1130-1134.
Jeandet P., Bessis R., Maume B. F., Meunier P., and Trollat P., (1995) Effect of enological practices on the resveratrol isomer content of wine. J. Agric. Food Chem. 43, 316-319.
Jez J. M., Austin M. B., Ferrer J., Bowman M. E., Schröder J., and Noel J. P., (2000) Structural control of polyketide formation in plantspecific polyketide synthases. Chem Biol. 12, 919–930.
Jez J. M., Bowman M. E., and Noel J. P., (2001) Structure-guided programming of polyketide chain-length determination in chalcone synthase. Biochemistry. 40, 14829–14838.
Jun H., Zhang L. S., Li J. T., Shi L. J., Xie C. J., You M. S., Yang Z. M., Liu G. T., Sun Q. X., and Liu Z. Y., (2009) Molecular dissection of core parental cross Triumph/Yanda 1817 and its derivatives in wheat breeding program. Acta Agron. Sin. 35, 1395-1404.
Katsuyama Y., Funa N., Miyahisa I., and Horinouchi S., (2007) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Biol. 14, 613–621.
Kimura Y., Kozawa M., Baba K., and Hata K. (1983) New constituents of the roots of Polygonum cuspidatum. Planta Med. 48, 164-168.
Kimura Y., Ohminam H., Okuda H., Baba K., Kozawa M., and Arichi S., (1983) Effects of stilbene components of roots of Polygonum ssp. on liver injury in peroxidized oil-fed rats. Planta Med. 49, 51-54.
Kindl H., (1985) Biosynthesis of stilbenes, in: T. Higuchi (Ed.), Biosynthesis and Biodegradation of Wood Components, Academic Press, New York, pp. 349–377.
Kiselev K. V., Dubrovina A. S., and Bulgakov V. P., (2009) Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. Appl. Microbiol. Biotechnol. 82, 647-55.
Kiselev K. V., Dubrovina A. S., Veselova M. V., Bulgakov V. P., Fedoreyev S. A., Zhuravlev Y. N., (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol. 128, 681–69.
Kodan A., Kuroda H., and Sakai F., (2002) A stilbene synthase from Japanese red pine (Pinus densiflora): implications for phytoalexin accumulation and down-regulation of flavonoid biosynthesis. Proc Natl Acad Sci USA. 99, 3335-3339.
Langcake P. and Pryce R. J., (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 9, 77-86.
Langcake P. and Pryce R. J., (1977) A new class of phytoalexins from grapevines . Experientia. 33, 151-152.
Langcake P., (1981) Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, ϵ-viniferin, α-viniferin, and pterostilbene. Physiol. Plant Pathol. 18, 213-226.
Lee J. L., Everitt B. J., Thomas K. L. (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science. 304, 839–843.
Lim C. G., Fowler Z. L., Hueller T., Schaffer S., and Koffas M. A. G., (2011) High-Yield Resveratrol Production in Engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77, 3451–3460.
Liu Z., Zhuang C., Sheng S., Shao L., Zhao W., and Zhao S., (2011) Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity. Plant Cell Rep. 30, 2027-2036.
Marquez L. M., Miller D. J., MacKenzie J. B., and van Oppen M. J. H., (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol. Biol. Evol. 20, 1077-1086.
Mergulhao, F. J., Summers, D. K., and Monteiro, G. A., (2005). Recombinant protein secretion in Escherichia coli. Biotechnol Adv, 23, 177-202.
Medina M., Weil E., and Szmant A. M., (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar. Biotech. 1, 89-97.
Moon H. J., Xiang L. P., Hyun Y. K., Eun J. C., Seung H. B., Sung W. K., and Jeong H. P., (2007) Resveratrol Oligomers from Vitis amurensis Attenuate β-Amyloid-Induced Oxidative Stress in PC12 Cells. Biol. Pharm. Bull. 30, 1130—1134.
Odorico D., and Miller D., (1997) Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): patterns of variation consistent with reticulate evolution. Mol. Biol. Evol. 14, 465-473.
Perdue R. E., Jr., Smith R. L., Wall M. E., Hartwell J. L., and Abbott B. J., (eds) (1970) Camptotheca acuminata Decaisne (Nyssaceae). Source of camptothecin, an antileukemic alkaloid. Agr. Res. Serv. Tech. Bull. 1415, 1-26.
Renaud S., and de Lorgeril M., (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 339, 1523-1526.
Rodriguez-Lanetty M., and Hoegh-Guldberg O., (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western Pacific. Mol. Ecol. 11, 1177-1189.
Samarjit D. and Dipak K. D., (2007) Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets 6, 168-173.
Shomura Y., Torayama I., Suh D. Y., Xiang, T. Kita A., Sankawa U., and Miki K., (2005) Crystal structure of stilbene synthase from Arachis hypogaea. Func. Bioinfor. 60, 803-806.
Sorensen, H. P., and Mortensen, K. K., (2005). Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 115, 113-128.
Sydor T., Schaffer S., and Boles, E., (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl. Environ. Microbiol. 76, 3361-3363.
Stervbo U., Vang O. and Bonnesen C., (2007) A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chem. 101, 449-457.
Suh D. S., Choi E. H., Yamazaki T. and Harada K., (1995). Studies on the transposition rates of mobile genetic elements in a natural population of Drosophila melanogaster. Mol. Biol. Evol. 12, 748--758.
Sultanbawa M. U. S., Surendrakumar S. and Bladon P., (1987) Distichol an Antibacterial Polyphenol from Shorea disticha. Phytochem. 26, 799-801.
Takabayashi M., Carter D. A., Lopez J. V., and Hoegh-Guldberg O., (2003) Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral Reefs. 22, 17-22.
van Oppen, M. J. H., Willis, B. L., van Rheede T., and Miller D. J., (2002) Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Mole. Ecol. 11, 1363-1376.
Wall M. E., Wani M. C., Cook C. E., Palmer K. H., McPhail A. T., and Sim G. A., (1966) Plant antitumor agents I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Ame.Chem. Soc. 88, 3888-3890.
Wang J., Lou P., Lesniewski R., and Henkin J., (2003) Paclitaxel at ultra low concentrations inhibits angiogenesis without affecting cellular microtubule assembly. Anticancer Drugs. 14, 13–19.
Wang S. Y., Chen C. T., Wang C. Y., and Chen P., (2007) Resveratrol content in strawberry fruit is affected by preharvest conditions. J Agric Food Chem. 55, 8269-74.
Wang W., Tang K., Yang H. R., Wen P. F., Zhang P., Wang H. L., and Huang W. D., (2010) Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol Biochem. 48, 42-52.
Wang W., Wan S. B., Zhang P., Wang H. L., Zhan J. C., and Huang W. D., (2008) Prokaryotic expression, polyclonal antibody preparation of the stilbene synthase gene from grape berry and its different expression in fruit development and under heat acclimation. Plant Physiol. Biochem. 46, 1085-1092.
Watts K. T., Lee P. C. and Schmidt-Dannert C., (2006) Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotech. 6, 22.
Wei V. N., (2001) Molecular evolution of the ribosomal internal transcribed spacer 2 in Acropora (cnidaria; scleractinia): effects of paralogy and ancestral polymorohism. MS thesis, National Taiwan University, Taipei, Taiwan.
Wilkins M. R., Sanchez J. C., Gooley A. A., Appel R. D., Humphery-Smith I., Hochstrasser D. F., and Williams K. L., (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13, 19-50.
Yang, H. B., Fang R. C., and Chin T. L., (1999) Ericaceae(1). In: Fang, RC(ed.), Angiospermae, Dicotyledoneae, Flora Reipublicae Popularis Sinica. Tomus. 57. Science Press, Beijing

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top