(3.238.96.184) 您好!臺灣時間:2021/05/12 23:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭珮彤
論文名稱:高齡男性未參與樂齡學習因素之探索
指導教授:廖培鈞蔡奇助蔡奇助引用關係
指導教授(外文):Pei-Chun LiaoChi-Chu Tsai
口試日期:2020-06-30
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技系所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:10
中文關鍵詞:白旗兜蘭CONSTANSLEAFYFlowering Locus T
外文關鍵詞:Paphiopedilum spicerianumCONSTANSLEAFYFlowering Locus T
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
拖鞋蘭 (Paphiopedilum spp.) 是台灣重要的經濟花卉之ㄧ。本研究以白旗兜蘭 (Paphiopedilum spicerianum) 為材料,釣取控制開花之重要基因 CONSTANS (CO)、Flowering Locus T (FT) 和 LEAFY (LFY) ,並進一步進行基因表現分析。利用基因保守區域設計退化性引子選殖出 CO、FT 和 LFY 基因部分序列,再藉由各基因中間序列設計專一性引子,並使用 RACE (rapid amplification of cDNA ends) 技術釣取 CO 、FT 和 LFY 基因之序列全長,其中白旗兜蘭 CO 基因選殖出兩種基因型,CO-type 1 可轉譯出 291 個胺基酸,而 CO-type 2 未能釣取到 5’ 端起始碼位置;FT 和 LFY 基因分別轉譯出 177 和 480 個胺基酸。此外 CO-type 1 基因型可偵測到另外 5 種變異型轉錄物 (variant transcripts);LFY 基因可另外發現 7 種變異型轉錄物。進一步分析白旗兜蘭在不同光照環境及不同組織下 CO、FT 和 LFY 基因的表現情形,分析 CO-type 1、CO-type 2 和 FT 基因在長日照強光、弱光和短日照強光、弱光處理後基因的表現量差異,結果得知 CO-type 1 基因在長日照強光、弱光和短日照強光、弱光下 8 點鐘的表現量為最高,其表現量呈現清晨到黃昏遞減,黃昏至黑夜遞增的現象;而 CO-type 2 在長日照強光下清晨和夜晚的表現量較其他光照環境下來的高,而在長日照弱光和短日照強光、弱光之下,受光照時間和光強度的影響並不明顯;FT 基因在長日照下,黃昏至夜晚的表現量相較於其他時間點高的現象,短日照下,各時間點的表現量並沒有明顯的差異,其中發現,FT 基因在短日照下的表現量都比長日照下的表現量來的高。此外,也分析 CO-type 1、CO-type 2、FT 和 LFY 基因在幼葉、成熟葉片、花苞、萼片、花瓣、唇瓣、子房、苞片、花梗、柱頭、小頂芽及大頂芽中表現量的差異,結果得知 CO-type 1、CO-type 2、FT 和 LFY基因在不同組織中皆有表現,且 CO-type 1、CO-type 2 基因在成熟葉片、萼片和唇瓣表現量較高;FT 和 LFY 基因在幼葉組織中表現量稍微較高外,其他組織並沒有明顯的表現差異現象。由此推測,CO-type 1 基因型和 FT 基因可能受到光週期調控,分別造成在清晨時大量表現和短日照下大量累積之現象 。CO-type 1 和 CO-type 2 在成熟葉片、萼片和唇瓣表現量較高,推測其部位含有維管束組織所造成 CO-type 1 和 CO-type 2 的累積。本研究探討白旗兜蘭在不同光照環境及不同組織下 CO、FT 和 LFY 基因的表現情形,其促進開花之關鍵機制仍需進一步釐清,有助於未來研究白旗兜蘭開花的調控機制有所依據及參考。
Paphiopedilum is one of important economical orchids in Taiwan. According to previous studies, CONSTANS (CO)、LEAFY (LFY) and Flowering Locus T (FT) are the important genes for the regulation of flowering. Therefore, we are going to clone and characterize the CO、FT and LFY genes from Paphiopedilum spicerianum in the study. Firstly, three sets of degenerated primers were separately designed based on the conserved region of CO、FT and LFY genes for partial gene cloning by RT-PCR. Secondly, full-length sequences of CO、FT and LFY genes were separately revealed by 5’ and 3’ RACE analyses. There are two loci of CO gene. Them CO-type 1 gene encodes 291 a.a. for coding sequence (CDS) region; and CO-type 2 did not clone full-longth gene; FT and LFY genes respectively encode 177 a.a. and 480 a.a. for coding region. Based on 3’ RACE analyses, comparing the genomic DNA and transcripts sequence, we found that all of the CO-type 1 gene has five variant transcripts in the leaf tissues. However, the P. spicerianum do not have full-length LFY mRNA transcript instead of seven variant transcripts were found in the flower bud tissues. Based on Real-time PCR analyses, the CO and FT gene of P. spicerianum were expressed in long-day photoperiod/strong light intensity、long-day photoperiod/weak light intensity、short-day photoperiod/strong light intensity and short-day photoperiod/weak light intensity. The result suggested that the CO-type 1 gene expression highest in long-day photoperiod/strong light intensity、long-day photoperiod/weak light intensity、short-day photoperiod/strong light intensity and short-day photoperiod/weak light intensity at 8 O’clock, the expression decreasing from dawn to dusk and increasing from dusk to night. The expression of CO-type 2 gene expressed higher in long-day photoperiod/strong light intensity at 8 and 4 O’clock, and the CO-type 2 gene did not express significant difference in long-day photoperiod/weak light intensity、short-day photoperiod/strong light intensity and short-day photoperiod/weak light intensity. In addition, the FT genes did not significantly expression of differences phenomenon in long-day photoperiod/strong light intensity、long-day photoperiod/weak light intensity、short-day photoperiod/strong light intensity and short-day photoperiod/weak light intensity, and the FT gene expressed higher in short day period more than that of long-day period. Based on Real-time PCR analyses, the expression CO、FT and LFY genes of P. spicerianum can be detected in each of young leaf、leaf、flower bud、 sepal、petal、labial palps、ovary、bract、peduncle、stigma、young apical bud and apical bud tissues. The result suggested that the CO-type 1 and CO-type 2 expression are higher in leaf、sepal、labial palps tissues; The FT and LFY expression are higher in young leaf tissues. It is presumed that the CO-type 1 and FT are regulated by different photoperiods pathway; CO-type 1 and CO-type 2 expression are higher in leaf、sepal and labial palps tissues. This study was to investigate the Paphiopedilum spicerianum by CO、FT and LFY genes in a different environmental treatment and tissues. According to the study, the key faction of flowering in Paphiopedilum spicerianum is still not revealed. Temperature faction could the focused in the future.
VII
目錄
中文摘要 ........................................................................................................ I
Abstract ........................................................................................................ III
誌謝 ............................................................................................................. VI
1.前言 ............................................................................................................ 1
2. 前人研究................................................................................................... 2
2.1 拖鞋蘭之簡介 .................................................................................. 2
2.2 白旗兜蘭之簡介 .............................................................................. 3
2.3 植物開花在分子生物學之研究 ....................................................... 3
2.4 植物開花調控路徑 .......................................................................... 4
2.4.1 光週期路徑 (light-dependent pathway) .................................. 5
2.4.2 春化作用 (vernalization) ........................................................ 6
2.4.3 自發性調控路徑 (autonomous pathway) ................................ 7
2.4.4 吉貝素調控路徑 (gibberellin pathway) .................................. 8
2.5 CONSTANS 基因之研究 ................................................................ 10
2.5.1 CONSTANS 基因之分子調控機制 ....................................... 11
2.5.2 CONSTANS 同源基因在其他物種之研究............................ 12
2.6 LEAFY 基因之研究 ........................................................................ 13
2.6.1 LEAFY 同源基因在雙子葉植物之研究 ............................... 14
2.6.2 LEAFY 同源基因在單子葉植物之研究 ............................... 17
2.7 FLOWERING LOCUS T 基因之研究 ............................................. 18
2.7.1 FLOWERING LOCUS T 基因之分子調控機制 ................... 18
2.7.2 FLOWERING LOCUS T 同源基因在其他物種之研究 ........ 20
2.8 基因的表現 (gene expression)....................................................... 20
2.8.1 基因的轉錄 (transcription) .................................................. 21
2.8.2 後轉錄剪輯 (post-transcription splicing) ............................. 23
2.8.3 基因的順式與反式剪輯 ....................................................... 24
2.8.4 基因的轉譯 (translation) ..................................................... 26
2.8.5 選擇性剪切 (alternative splicing) ......................................... 28
2.8.6 選擇性加尾 (alternative polyadenylation) ............................ 29
3. 材料與方法 ............................................................................................. 31
VIII
3.1 植物材料 ........................................................................................ 31
3.2 總RNA 之萃取 (total RNA extraction) ......................................... 31
3.3 CONSTANS、LEAFY 和 FLOWERING LOCUS T 基因之中間片段
的選殖與分析 ................................................................................ 32
3.3.1 退化性引子 (degenerated primer) 之設計 .......................... 32
3.3.2 反轉錄酶反應 (reverse transcriptional reaction) .................. 32
3.3.3 聚合酶連鎖反應 (polymerase chain reaction) ..................... 33
3.3.4 電泳分析 .............................................................................. 33
3.3.5 DNA 電泳條帶之純化 (gel DNA purification) ..................... 33
3.3.6 接合作用 (ligation reaction) ................................................ 34
3.3.7 轉型作用 (transformation) ................................................... 34
3.3.8 塗碟與菌落之篩選 (blue &; white selection) ....................... 34
3.3.9 引子篩選 (PCR check) 及養菌 ........................................... 35
3.3.10 小量質體 DNA 之萃取與純化 (plasmid extraction) ........ 35
3.3.11 核酸定序分析 ..................................................................... 35
3.4 白旗兜蘭 CONSTANS、LEAFY 和 FLOWERING LOCUS T 基因
之選殖與分析,RACE (Rapid amplification of cDNA ends,
Chenchik et al., 1996) ..................................................................... 36
3.4.1 製備第一股 cDNA .............................................................. 36
3.4.2 5’ 端和3’ 端 cDNA 的增殖反應 ....................................... 36
3.5 DNA 的選殖與序列分析 ............................................................... 37
3.5.1 Genomic DNA 行限制酶作用 .............................................. 37
3.5.2 純化限制酶作用之 DNA .................................................... 37
3.5.3 Genome WalkerTM Adaptor 和切割過之 genomic DNA 的
接合 ....................................................................................... 38
3.5.4 Genome WalkerTM DNA PCR ................................................ 38
3.6 RT-PCR 分析基因表現量 ............................................................... 39
3.6.1 CONSTANS、LEAFY 和 FLOWERING LOCUS T 基因之表
現量分析 ................................................................................ 39
3.7 Real-Time PCR 相對定量分析 ...................................................... 39
3.7.1 SYBR Green PCR 進行相對定量分析 .................................. 40
IX
4. 結果 ........................................................................................................ 41
4.1 CONSTANS 基因之選殖 ................................................................ 41
4.1.1 CONSTANS 基因中間 cDNA 片段之選殖 ......................... 41
4.1.2 CONSTANS 基因全長之選殖與分析 ................................... 41
4.1.3 白旗兜蘭 CONSTANS 基因差異性剪輯 (alternative
splicing, AS)及差異性加尾的分析 ...................................... 43
4.2 LEAFY 基因之選殖 ........................................................................ 43
4.2.1 LEAFY 基因中間 cDNA 片段之選殖 ................................. 43
4.2.2 LEAFY 基因全長之選殖與分析 ........................................... 44
4.2.3 白旗兜蘭 LEAFY 基因差異性剪輯 (AS) 和差異性加尾的
分析 ...................................................................................... 45
4.3 FLOWERING LOCUS T 基因之選殖 ............................................. 46
4.3.1 FLOWERING LOCUS T 基因中間 cDNA 片段之選殖 ...... 46
4.3.2 FLOWERING LOCUS T 基因全長之選殖 ........................... 47
4.3.3 白旗兜蘭 FLOWERING LOCUS T 基因序列與 DNA 層
次分析 .................................................................................. 47
4.4 白旗兜蘭 CONSTANS、FLOWERING LOCUS T 及 LEAFY 基因
表現分析 ........................................................................................ 48
4.4.1 白旗兜蘭葉片之 CONSTANS 和 FLOWERING LOCUS T
在不同處理條件之基因表現分析 ....................................... 48
4.4.2 白旗兜蘭 CONSTANS、FLOWERING LOCUS T 和 LEAFY
基因不同組織表現分析 ....................................................... 50
4.4.3 白旗兜蘭 CONSTANS 和 FLOWERING LOCUS T 基因開
花與未開花組織表現分析 ................................................... 51
4.4.4 白旗兜蘭 CONSTANS、FLOWERING LOCUS T 和 LEAFY
基因不同溫度下表現分析 ................................................... 51
4.5 核苷酸序列親緣演化分析 ............................................................. 52
5. 討論 ........................................................................................................ 53
5.1 白旗兜蘭 CONSTANS 和LEAFY 基因的轉錄物多型性之探討 ... 53
5.2 CONSTANS 和 FLOWERING LOCUS T 基因表現分析之探討 ... 56
5.3 CONSTANS、FLOWERING LOCUS T 和 LEAFY 基因在不同組織
X
表現之分析 ........................................................................................... 59
6. 結論 ........................................................................................................ 62
參考文獻 ................................................................................................... 102
作者簡介 ................................................................................................... 137
圖 1. 阿拉伯芥開花調控路徑示意圖 ........................................................ 63
圖 2. 白旗兜蘭 (Paphiopedilum spicerianum) 植株外觀 ......................... 64
圖 3. 白旗兜蘭成熟葉片之總 RNA 進行 RACE 分析所得 CO- type 1
基因片段之複製產物 ...................................................................... 65
圖 4. 白旗兜蘭成熟葉片之總 RNA 進行 RACE 分析所得 CO- type 2
基因片段之複製產物 ...................................................................... 66
圖 5. 白旗兜蘭成熟葉片之 CO-type 1 基因型之轉錄物多型性示意圖. 67
圖 6. 以白旗兜蘭年輕花苞之總 RNA 進行 RACE 分析所得LEAFY
基因片段之複製產物 ...................................................................... 68
圖 7. 白旗兜蘭年輕花苞之 LEAFY 基因所表現的 7 種轉錄物多型性
示意圖 .............................................................................................. 69
圖 8. 白旗兜蘭成熟葉片之總 RNA 進行 RACE 分析所得
FLOWERING LOCUS T 基因片段之複製產物 .............................. 70
圖 9. 利用 RT-PCR 檢測白旗兜蘭長日照強光的條件下,在 8、12、16、
20、24、4 點鐘成熟葉片之 CO-type 1、CO-type 2 和 FT 基因
的表現量 .......................................................................................... 71
圖 10. 利用RT-PCR 檢測白旗兜蘭長日照弱光的條件下,在 8、12、16、
20、24、4 點鐘成熟葉片之 CO-type 1、CO-type 2 和 FT 基因
的表現量 ........................................................................................ 72
圖 11. 利用Real-time PCR 檢測白旗兜蘭在長日照強光、弱光和短日照
強光、弱光的條件下,8、12、16、20、24、4 點鐘成熟葉片之
CO-type 1 基因的表現量及其變化 .............................................. 73
圖 12. 利用Real-time PCR 檢測白旗兜蘭在長日照強光、弱光和短日照
強光、弱光的條件下,8、12、16、20、24、4 點鐘成熟葉片之
CO-type 2 基因的表現量及其變化 .............................................. 74
圖 13. 利用Real-time PCR 檢測白旗兜蘭在長日照強光、弱光和短日照
強光、弱光的條件下,8、12、16、20、24、4 點鐘成熟葉片之
FT 基因的表現量及其變化 .......................................................... 75
圖 14. 利用RT-PCR 檢測白旗兜蘭短日照強光的條件下,在 8、12、16、
II
20、24、4 點鐘成熟葉片之 CO-type 1、CO-type 2 和 FT 基因
的表現量 ........................................................................................ 76
圖 15. 利用RT-PCR 檢測白旗兜蘭短日照弱光的條件下,在 8、12、16、
20、24、4 點鐘成熟葉片之 CO-type 1、CO-type 2 和 FT 基因
的表現量 ........................................................................................ 77
圖 16. 利用 RT-PCR 分析白旗兜蘭各部位組織 CO-type 1 和 CO-type
2 基因表現量 ................................................................................ 78
圖 17. 利用 Real-time PCR 分析白旗兜蘭各部位組織 CO-type 1 基因
表現量 ............................................................................................ 79
圖 18. 利用 Real-time PCR 分析白旗兜蘭各部位組織 CO-type 2 基因
表現量 ............................................................................................ 80
圖 19. 利用 RT-PCR 分析白旗兜蘭各部位組織 LFY 和 FT 基因表現
量 .................................................................................................... 81
圖 20. 利用 Real-time PCR 分析白旗兜蘭各部位組織 FT 基因表現量
........................................................................................................ 82
圖 21. 利用 Real-time PCR 分析白旗兜蘭各部位組織 LFY 基因表現
量 .................................................................................................... 83
圖 22. 利用 Real-time PCR 分析白旗兜蘭,4 組植株 (S1-S4) 分蘖後
開花與分蘖後未開花之葉片組織,檢測 CO-type 1、CO-type 2
和 FT 基因表現分析…………………………………………... 84
圖 23. 利用 Real-time PCR 分析不同溫度下,白旗兜蘭 CO-type 1、
CO-type 2、FT 和 LFY 基因葉片組織表現分析……………….85
圖 24. 白旗兜蘭與其他物種之 CO 基因的核苷酸序列親緣關係圖 ...... 86
圖 25. 白旗兜蘭與其他物種之 LEAFY 基因的核苷酸序列親緣關係圖 87
圖 26. 白旗兜蘭與其他物種之 FT 基因的核苷酸序列親緣關係圖 ...... 88
圖 27. 利用 Real-time PCR 檢測白旗兜蘭在長日照強光的條件下,8、
12、16、20、24、4 點鐘成熟葉片之 CO-type 1、CO-type 2 和
FT 基因的表現量及其變化 .......................................................... 89
圖 28. 利用 Real-time PCR 檢測白旗兜蘭在長日照弱光的條件下,8、
12、16、20、24、4 點鐘成熟葉片之 CO-type 1、CO-type 2 和
FT 基因的表現量及其變化 .......................................................... 90
III
圖 29. 利用Real-time PCR 檢測白旗兜蘭在短日照強光的條件下,8、
12、16、20、24、4 點鐘成熟葉片之 CO-type 1、CO-type 2 和
FT 基因的表現量及其變化 .......................................................... 91
圖 30. 利用Real-time PCR 檢測白旗兜蘭在短日照弱光的條件下,8、
12、16、20、24、4 點鐘成熟葉片之 CO-type 1、CO-type 2 和
FT 基因的表現量及其變化 .......................................................... 92
表 1. 實驗中使用之退化性引子序列 ........................................................ 93
表 2. 實驗中使用之專一性引子序列 ........................................................ 94
表 3. 白旗兜蘭 CONSTANS、FLOWERING LOCUS T 和 LEAFY 基因
的選殖片段之序列分析 .................................................................. 97
表 4. 白旗兜蘭 CO-type 1 基因全長與其它物種之胺基酸序列比對 .... 98
表 5. 白旗兜蘭 CO-type 2 基因部分序列與其它物種之胺基酸序列比
對 ..................................................................................................... 99
表 6. 白旗兜蘭 LEAFY 基因全長與其它物種之胺基酸序列比對 ....... 100
表 7. 白旗兜蘭 FLOWERING LOCUS T 基因全長與其它物種之胺基酸
序列比對 ........................................................................................ 101

李哖 (2002) 蝴蝶蘭:繁殖、生育特性、產期調節及產後品質。財團法人台灣區花卉發展協會,台北台灣。 p. 109。
李哖 (2003) 蘭花類:葉蘭、國蘭、拖鞋蘭、文心蘭及其他蘭類。財團法人台灣區花卉發展協會,台北台灣。p. 439。
許伊琍 (2007) 仙履蘭巴菲爾屬賞花圖鑑。日月文化出版股份有限公司,p. 33-47。
蔡瑜卿 (2010) 九十九年報:99年人工培植拖鞋蘭登記及出口管理現況。行政院農委會種苗改良繁殖場。P. 94。
葉德平、羅毅波 (2006) 中國蘭科兜蘭屬新記錄種—白旗兜蘭。植物分類學報 44 : 471-473。
郭家緯 (2007) 探討阿拉伯芥中 E3 RING finger 基因與文心蘭中CONSTANS (CO)-like 基因調控植物發育及開花之特性。國立中興大學,生物科技學研究所。
孫永偉、廖文毅、沈翰祖、劉明宗、廖玉珠、蔡瑜卿、蕭吉雄、陳駿季(2005) 分子標記在仙履蘭品種鑑定上之應用。植物種苗 7: 1-10.
蔣明南 (1988) 園藝作物開花創始之研究。中國園藝,34: 1-12。
Ahearn, K. P., H. A. Johnson, D. Weigel and D. R. Wagner (2001) NFL1, a Nicotiana tabacum LEAFY-like gene, controls meristem initiation and floral structure. Plant and Cell Physiology 42: 1130-1139.
Ahn, J. H., D. Miller, V. J. Winter, M. J. Banfield, J. H. Lee, S. Y. Yoo, S. R. Henz, R. L. Brady and D. Weigel (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. The EMBO Journal 25: 605-614.
Ahn, S. H., M. Kim and S. Buratowski (2004) Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3’ end processing. Molecular Cell 13: 67-76.
An, H., C. Roussot, P. Suarez-Lopez, L. Corbesier, C. Vincent, M. Pineiro, S. Hepworth, A. Mouradov, S. Justin, C. Turnbull and G. Coupland (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131: 3615-3626.
Ansari, A. and M. Hampsey (2005) A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Development 19: 2969-2978.
Anthony, R. G., P. E. James and B. R. Jordan (1993) Cloning and sequence analysis of a flo/lfy homologue isolated from cauliflower (Brassica oleracea L. var. botrytis). Plant Molecular Biology 22: 1163-1166.
Akhtar, A. and S. M. Gasser (2007) The nuclear envelope and transcriptional control. Nature Reviews Genetics 8: 507-517.
Alexandrov, N. N., M. E. Troukhan, V. V. Brover, T. Tatarinova, R. B. Flavell and K. A. Feldmann (2006) Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Molecular Biology 60: 69-85.
Araki, T. (2001) Transition from vegetative to reproductive phase. Current Opinion in Plant Biology 4: 63-68.
Asano, K., J. Clayton, A. Shalev and A. G. Hinnebusch (2000) A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNAMet is an important translation initiation intermediate in vivo. Genes Development 14: 2534-2546.
Ausin, I., C. Alonso-Blanco, J. A. Jarillo, L. Ruiz-Garcia and J. M. Martinez-Zapater (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genetics 36: 162-166.
Ayoubi, T. A. Y. and E. J. M. Van De Ven (1996) Regulation of gene expression by alternative promoters. The Journal of the Federation of American Societies for Experimental Biology 10: 453-460.
Ayre, B. G. and R. Turgeon (2004) Graft Transmission of a Floral Stimulant Derived from CONSTANS. Plant Physiology 135: 2271-2278.
Beaudoing, E. and D. Gautheret (2001) Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Research 11: 1520-1526.
Ben-Naim, O., R. Eshed., A. Parnis, P. Teper-Bamnolker, A. Shalit, G. Coupland, A. Samach and E. Lifschitz (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. The Plant Journal 46: 462-476.
Bentley, D. L. (2005) Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Current Opinion in Cell Biology 17: 251-256.
Berget, S. M. (1995) Exon recognition in vertebrate splicing. The Journal of Biological Chemistry 270: 2411-2414.
Bernier, G. and C. Perilleux (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal 3: 3-16.
Black, D. L. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry 72: 291-336.
Blackman, B. K., D. A. Rasmussen, J. L. Strasburg, A. R. Raduski, J. M. Burke, S. J. Knapp, S. D. Michaels and L. H. Rieseberg (2011) Contributions of flowering time genes to sunflower domestication and improvement. Genetics 187: 271-287.
Blazquez, M. A., C. Ferrandiz, F. Madueno and F. Parcy (2006) How floral meristems are built. Plant Molecular Biology 60: 855-870.
Blazquez, M. (2000) Flower development pathways. Journal of Cell Science 113: 3547-3548.
Blazquez, M. A., L. N. Soowal, I. Lee and D. Weigel (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124: 3835-3844.
Blazquez, M. A., R. Green, O. Nilsson, M. R. Sussman and D. Weigel (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell 10: 791-800.
Blumenthal, T. and K. Steward (1997) In C. elegans II (Priess, J.R., ed.) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. pp. 117-146.
Bonen, L. (1993) Trans-splicing of pre-mRNA in plants, animals, and protists. The Journal of the Federation of American Societies for Experimental Biology 7: 40-46.
Bonen, L. (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8: 26-34.
Bomblies, K., R. L. Wang, B. A. Ambrose, R. J. Schmidt, R. B. Meeley and J. Doebley (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130: 2385-2395.
Boss, P. K., R. M. Bastow, J. S. Mylne, and C. Dean (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell 16: S18-S31.
Bourgeois, C. F., F. Lejeune and J. Stevenin (2004) Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of premessenger RNA. Progress in Nucleic Acid Research and Molecular Biology 78: 37-88.
Brown, C. R. and P. A. Silver (2007) Transcriptional regulation at the nuclear pore complex. Current Opinion in Genetics &; Development 17: 100-106.
Bradley, D., O. Ratcliffe, C. Vincent, R. Carpenter and E. Coen (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275: 80-83.
Bruce, S. R., R. W. Dingle and M. L. Peterson (2003) B-cell and plasma-cell splicing differences: a potential role in regulated immunoglobulin RNA processing. RNA 9: 1264-1273.
Caceres, J. F., T. Misteli, G. R. Screaton, D. L. Spector and A. R. Krainer (1997) Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. The Journal of Cell Biology 138: 225-238.
Carle-Urioste, J. C., C. H. Ko, M. I. Benito and V. Walbot (1994) In vivo analysis of intron processing using splicing-dependent reporter gene assays. Plant Molecular Biology 26: 1785-1795.
Carmona, M. J., P. Cubas and J. M. Martinez-Zapater (2002) VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiology 130: 68-77.
Cash, C. 1991. The Slipper Orchids. Timber Press, Inc. Hong Kong. pp.228
Chen, L., J. C. Cheng, L. Castle and Z. R. Sung (1997) EMF genes regulate Arabidopsis inflorescence development. The Plant Cell 9: 2011-2024.
Chenchik, A., L. Diachenko, F. Moqadam, V. Tarabykin, S. Lukyanov, and P. D. Siebert (1996) Full-length cDNA cloning and determination of mRNA 5' and 3' ends by amplification of adaptor-ligated cDNA. Biotechniques 21: 526-534.
Coen, E. S., J. M. Romero, S. Doyle, R. Elliott, G. Murphy and R. Carpenter (1990) floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311-1322.
Corbesier, L., C. Vincent, S. Jang, F. Fornara, Q. Fan, I. Searle, A. Giakountis, S. Farrona, L. Gissot, C. Turnbull and G. Coupland (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030-1033.
Corbesier, L. and G. Coupland (2006) The quest for florigen: a review of recent progress. Journal of Experimental Botany 57: 3395-3403.
Cremer, F. and Coupland, G. (2003) Distinct photoperiodic responses are conferred by the same genetic pathway in Arabidopsis and in rice. Trends in Plant Science 8: 405-407
Crick, F. H. C. (1958) On protein synthesis. Symposia of the Society for Experimental Biology. 12: 138-163.
Crick, F. H. C. (1970) Central dogma of molecular biology. Nature 227: 561-563.
Dallaire, F., S. Dupuis, S. Fiset and B. Chabot (2000) Heterogeneous nuclear ribonucleoprotein A1 and UP1 protect mammalian telomeric repeats and modulate telomere replication in vitro. The Journal of Biological Chemistry 275: 14509-14516.
Dattaa, S., G. H. C. M. Hettiarachchia, X.W. Dengb and M. Holm (2006) Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. The Plant Cell 18: 70-84
Davis, R. E. (1993) Spliced leader RNA trans-splicing in Metazoa. Parasitology Today 12: 33-40.
Davis, S. J. (2002) Photoperiodism: The Coincidental Perception of the Season. Current Biology 12: R841-R843
De Vries, H., U. Ruegsegger, W. Hubner, A. Friedlein, H. Langen and W. Keller (2000) Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. The EMBO Journal 19: 5895-5904.
Degnin, C. R., M. R. Schleiss, J. Cao and A. P. Geballe (1993) Translational inhibition mediated by a short upstream open reading frame in the human cytomegalovirus gpUL4 (gp48) transcript. Journal of Virology. 67: 5514-5521.
Dekker, J., K. Rippe, M. Dekker and N. Kleckner (2002) Capturing chromosome conformation. Science 295: 1306-1311.
Chatterjee, T. K. and R. A. Fisher (2000) Novel alternative splicing and nuclear localization of human RGS12 gene products. The Journal of Biological Chemistry 275: 29660-29671.
Dill, A., and T. Sun (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159: 777-785.
Dinesh-Kumar, S. P. and B. J. Baker (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proceedings of the National Academy of Sciences of the United States of American 97: 1908-1913.
Dinkins, R. D., S. M. Majee, N. R. Nayak, D. Martin, Q. Xu, M. P. Belcastro, R. L. Houtz, C. M. Beach and A. B. Downie (2008) Changing transcriptional initiation sites and alternative 5'- and 3'-splice site selection of the first intron deploys Arabidopsis protein isoaspartyl methyltransferase2 variants to different subcellular compartments. The Plant Journal 55: 1-13.
Dong, Z. C., Z. Zhao, C. W. Liu, J. H. Luo, J. Yang, W. H. Huang, X. H. Hu, T. L. Wang and D. Luo (2005) Floral patterning in Lotus japonicus. Plant Physiol 137: 1272-1282.
Dornelas, M. C., and A. P. Rodriguez (2005) The rubber tree (Hevea brasiliensis Muell. Arg.) homologue of the LEAFY/FLORICAULA gene is preferentially expressed in both male and female floral meristems. Journal of Experimental Botany 56: 1965-1974.
Dunlap J. C. and J. J. loros (1999) Molecular beses for circadian clocks. Cell 96: 271-290.
Edwalds-Gilbert, G. and C. Milcarek (1995) Regulation of poly(A) site use during mouse B-cell development involves a change in the binding of a general polyadenylation factor in a B-cell stage-specific manner. Molecular and Cellular Biology 15: 6420-6429.
Fan C. Y., J. M. Yin, B. Wang, Y. F. Zhang and Q. Yang (2010) Molecular cloning and expression analysis of a FT homologous genefrom Solanum tuberosum. Agricultural Sciences in China 9: 1133-1139.
Fankhauser, C. and D. Staiger (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216: 1-16.
Finta, C. and P. G. Zaphiropoulos (2002) Intergenic mRNA molecules resulting from trans-splicing. Journal of Biological Chemistry 277: 5882-5890.
Fiskaa, T. and A. B. Birgisdottir (2010) RNA reprogramming and repair based on trans-splicing group I ribozymes. New Biotechnology 27: 194-203.
Ford, L. P., W. E. Wright, and J. W. Shay (2002) A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene 21: 580-583.
Fornara, F., Kishore C. S. Panigrahi, Lione Gissot, Nicolas Sauerbrunn, Mark Ru¨ hl, Jose´ A. Jarillo, and George Coupland. (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Developmental Cell 17: 75-86
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G. and Putterill, J. (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsisand encodes a protein with several possible membrane-spanning domains. The EMBO Journal 18: 4679 - 4688.
Fu, X. and N. P. Harberd (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421: 740-743.
Gendall, A. R., Y. Y. Levy, A. Wilson and C. Dean (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107: 525-535.
Gingras, A. C., B. Raught and N. Sonenberg (2001) Regulation of translation initiation by FRAP/mTOR. Genes &; Development 15: 807-826.
Gocal, G. F., R. W. King, C. A. Blundell, O. M. Schwartz, C. H. Andersen and D. Weigel (2001) Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiology 125: 1788-1801.
Gocal, G. F., C. C. Sheldon, F. Gubler, T. Moritz, D. J. Bagnall, C. P. MacMillan, S. F. Li, R. W. Parish, E. S. Dennis, D. Weigel and R. W. King (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiology 127: 1682-1693.
Gomez-Mena, C., M. Pineiro, J. M. Franco-Zorrilla, J. Salinas, G. Coupland, and J. M. Martinez-Zapater (2001) Early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy. The Plant Cell 13: 1011-1124.
GONZÁLEZ-SCHAIN, N. D. and P. SUÁREZ-LÓPEZ (2008) CONSTANS delays flowering and affects tuber yield in potato. Biologia Plantarum 52: 251-258.
Goren, A., O. Ram, M. Amit, H. Keren, G. Lev-Maor, I. Vig, T. Pupko and G. Ast (2006) Comparative analysis identifies exonic splicing regulatory sequences--The complex definition of enhancers and silencers. Molecular Cell 22: 769-781.
Graveley, B. R., K. J. Hertel and T. Maniatis (2001) The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA 7: 806-818.
Griffiths, S., R. P. Dunford, G. Coupland and D. A. Laurie (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiology 131 : 1855-1867.
Guo, Y. Y., Y. B. Luo, Z. J. Liu and X. Q. Wang (2012) Evolution and biogeography of the slipper orchids: eocene vicariance of the conduplicate genera in the old and new world tropics. PLoS ONE 7 : e38788 1-13.
Gupta, S., D. Zink, B. Korn, M. Vingron and S. A. Haas (2004) Genome wide identification and classification of alternative splicing based on EST data. Bioinformatics 20: 2579-2585.
Hall, D., X. F. Ma and P. K. Ingvarsson (2011) Adaptive evolution of the Populus tremula photoperiod pathway. Molecular Ecology 20 : 1463-1474
Harding, H. P., I. Novoa, Y. Zhang, H. Zeng, R. Wek, M. Schapira and D. Ron (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular Cell 6: 1099-1108.
Hastings, K. E. M. (2005) SL trans-splicing: easy come or easy go. Trends in Genetics 21: 240-247.
Hayama, R. and G. Coupland (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Current Opinion in Plant Biology 6: 13-19.
Hayama R., B. Agashe, E. Luley, M. Yano and K. Shimamoto (2007) A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in pharbitis. The Plant Cell 19 : 2988-3000.
He, Y., S. D. Michaels and R. M. Amasino (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302: 1751-1754.
Hecht, V., F. Foucher, C. Ferrándiz, R. Macknight, C. Navarro, J. Morin, M. E. Vardy, N. Ellis, J. P. Beltrán, C. Rameau and J. L. Weller (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiology 137:1420-1434.
Hedden, P. and A. L. Phillips (2000) Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science 5: 523-530.
Heid, C. A., J. Stevens, K. J. Livak and P. M. Williams (1996) Real time quantitative PCR. Genome Research 6: 986-994.
Henderson, I. R. and C. Dean (2004) Control of Arabidopsis flowering: the chill before the bloom. Development 131: 3829-3838.
Hepworth, S. R., F. Valverde, D. Ravenscroft, A. Mouradov, and G. Coupland (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal 21: 4327-4337.
Hershey, J. W. B. and W. C. Merrick (2000) Pathway and mechanism of initiation of protein synthesis. In Translational Control of Gene Expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp. 33-88.
Hinnebusch, A. G. (2000) Mechanism and regulation of initiator methional-tRNA binding to ribosomes. In Translational Control of Gene Expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp. 185-243.
Hirano, M. and T. Noda (2004) Genomic organization of the mouse Msh4 gene producing bicistronic, chimeric and antisense mRNA. Gene 342: 165-177.
Hofer, J., L. Turner, R. Hellens, M. Ambrose, P. Matthews, A. Michael and N. Ellis (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Current Biology 7: 581-587.
Hopf, N., N. Plesofsky-Vig and R. Brambl (1992) The heat shock response of pollen and other tissues of maize. Plant Molecular Biology 19: 623-630.
Hsu, C. Y., Y. Liu, D. S. Luthe and C. Yuceer (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. The Plant Cell 18: 1846-1861.
Huala, E. and I. M. Sussex (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. The Plant Cell 4: 901-913.
Hughes, T. A. (2006) Regulation of gene expression by alternative untranslated regions. Trends in Genetics 22: 119-122.
Hunt, A. G. (2007) In Bassett, C. L. (ed.), Regulation of Gene Expression in Plants: The Role of Transcript Structure and Processing. Springer, New York, pp. 101-122.
Igasaki, T., Y. Watanabe, M. Nishiguchi and N. Kotoda (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant and Cell Physiology 49: 291-300.
Iida, K. and M. Go (2006) Survey of conserved alternative splicing events of mRNAs encoding SR proteins in land plants. Molecular Biology and Evolution 23: 1085-1094.
Imaizumi, T., H. G. Tran, T. E. Swartz, W. R. Briggs and S. A. Kay (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302-306.
Imaizumi, T., T. F. Schultz, F. G. Harmon, A. H Lindsey. and A. K. Steve (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309: 293-297.
Initiative, Arabidopsis Genome (AGI) (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.
Isshiki, M., A. Tsumoto and K. Shimamoto (2006) The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA. The Plant Cell 18: 146-158.
Itoh, H., M. Tanaka-Ueguchi, H. Kawaide, X. Chen, Y. Kamiya and M. Matsuoka (1999) The gene encoding tobacco gibberellin 3β-hydroxylase is expressed at the site of GA action during stem elongation and flower organ development. The Plant Journal 20: 15-24.
Jin, X. P., E. Turcott, S. Englehardt, G. J. Mize and D. R. Morris (2003) The two upstream open reading frames of oncogene mdm2 have different translational regulatory properties. Journal of Biological 278: 25716-25721.
Johnson, J. M., J. Castle, P. Garrett-Engele, Z. Y. Kan and P. M. Loerch (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302: 2141-2144.
Juven-Gershon, T., J. Y. Hsu and J. T. Kadonaga (2006) Perspectives on the RNA polymerase II core promoter. Biochemical Society Transactions 34: 1047-1050.
Kaneko, S., O. Rozenblatt-Rosen, M. Meyerson and J. L. Manley (2007) The multifunctional protein p54nrb/PSF recruits the exon uclease XRN2 to facilitate pre-mRNA 30 processing and transcription termination. Genes &; Development 21: 1779-1789.
Kardailsky, I., V. K. Shukla, J. H. Ahn, N. Dagenais, S. K. Christensen, J. T. Nguyen, J. Chory, M. J. Harrison and D. Weigel (1999) Activation tagging of the floral inducer FT. Science 286: 1962-1965.
Kelly, A. J., M. B. Bonnlander and D. R. Meeks-Wagner (1995) NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. The Plant Cell 7: 225-234.
Kieffer, M. and B. Davies (2001) Developmental programmes in floral organ formation. Seminars in Cell &; Developmental Biology 12: 373-380.
Kim, S.K., C. H. Yun, J. H. Lee, Y. H. Jang, H.Y. Park and J. K. Kim (2008) OsCO3, a CONSTANS-LIKE gene, controls Xowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228: 355-365.
King, K. E., T. Moritz and N. P. Harberd (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159: 767-776.
Kobayashi, Y., H. Kaya, K. Goto, M. Iwabuchi and T. Araki (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-1962.
Kojima, S., Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki, T. Araki and M. Yano (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology 43: 1096-1105.
Koornneef, M., C. J. Hanhart and J. H. van der Veen (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular and General Genetics 229: 57-66.
Koornneef, M., C. Alonso-Blanco, A. J. Peeters and W. Soppe (1998) Genetic Control of Flowering Time in Arabidopsis. Annual Review of Plant Physiology and Plant Molecular Biology 49: 345-370.
Komarnitsky, P., E. J. Cho and S. Buratowski (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes &; development 14: 2452-2460.
Komeda, Y. (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annual Review of Plant Biology 55: 521-535.
Kozak, M. (1978) How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15: 1109-1123.
Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234:187-208.
Kozak, M. (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361: 13-37.
Krainer, A. R. (1997) Eukaryotic mRNA processing. Oxford University Press Inc., New York, N.Y. pp. 310-331.
Krause, M. and D. Hirsh (1987) A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49: 753-761.
Kreth, S., C. Ledderose, I. Kaufmann, G. Groeger and M. Thiel (2008) Differential expression of 5'-UTR splice variants of the adenosine A2A receptor genein human granulocytes: identification, characterization, and functional impact on activation. The Journal of the Federation of American Societies for Experimental Biology 22: 3276-3286.
Kyozuka, J., S. Konishi, K. Nemoto, T. Izawa and K. Shimamoto (1998) Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proceedings of the National Academy of Sciences of the United States of American 95: 1979-1982.
Lagercrantz, U., M. Kruskopf-Osterberg and M. Lascoux (2002) Sequence variation and haplotype structure at the putative flowering-time locus COL1 of Brassica nigra. Molecular Biology and Evolution 19:1474-1482.
Lagercrantz, U. and T. Axelsson (2000) Rapid Evolution of the Family of CONSTANS LIKE Genes in Plants. Molecular Biology and Evolution 17:1499-1507.
Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum and M. C. Zody (2001) Initial sequencing and analysis of the human genome. Nature 409: 860-921.
Lee, H., S. S. Suh, E. Park, E. Cho, J. H. Ahn, S. G. Kim, J. S. Lee, Y. M. Kwon and I. Lee (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes &; Development 14: 2366-2376.
Lee, I., D. S. Wolfe, O. Nilsson and D. Weigel (1997) A LEAFY co-regulator encoded by unusual floral organs. Current Biology 7: 95-104.
Lee, I., M. J. Aukerman, S. L. Gore, K. N. Lohman, S. D. Michaels, L. M. Weaver, M. C. John, K. A. Feldmann and R. M. Amasino (1994) Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. The Plant Cell 6: 75-83.
Lee, J. U., Z. Ji and B. Tian (2008) Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3’-end of genes. Nucleic Acids Research 36: 5581-5590.
Lee, S., H. K. E Cheng, W. King, Y. Wang, A. He, J. Hussain, N. P. Lo, Harberd and J. Peng (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes &; Development 16: 646-658.
Levy, Y. Y., S. Mesnage, J. S. Mylne, A. R. Gendall and C. Dean (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297: 243-246.
Lewis, J. D., S. I. Gunderson and I. W. Mattaj (1995) The influence of 5' and 3' end structures on pre-mRNA metabolism. Journal of Cell Science 19: 13-19.
Liang, X., A. Haritan, S. Uliel and S. Michaeli (2003) trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryotic Cell 2: 830-840.
Lifschitz, E., T. Eviatar, A. Rozman, A. Shalit, A. Goldshmidt, Z. Amsellem, J. P. Alvarez and Y. Eshed (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences of the United States of American 103: 6398-6403.
Liljegren, S. J., C. Gustafson-Brown, A. Pinyopich, G. S. Ditta and M. F. Yanofsky (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. The Plant Cell 11: 1007-1018.
Lim, M. H., J. Kim, Y. S. Kim, K. S. Chung, Y. H. Seo, I. Lee, J. Kim, C. B. Hong, H. J. Kim, and C. M. Park (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. The Plant Cell 16: 731-740.
Liu, J., J. Yu, H. Kende, L. McIntosh and J. Zeevaart (2001) Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiology 125:1821-30.
Lohmann, J. U. and D. Weigel (2002) Building beauty: the genetic control of floral patterning. Developmental Cell 2: 135-142.
Loke, J. C., E. A. Stahlberg, D. G. Strenski, B. J. Haas, P. C. Wood and Q. Q. Li (2005) Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiology 138: 1457-1468.
Long, J., and M. K. Barton (2000) Initiation of axillary and floral meristems in Arabidopsis. Developmental Biology 218: 341-353.
Lorkovic, Z. J., J. Hilscher and A. Barta (2004) Use of fluorescent protein tags to study nuclear organization of the spliceosomal machinery in transiently transformed living plant cells. Molecular Biology of the Cell 15: 3233-3243.
Lou, H., K. M. Neugebauer, R. F. Gagel and S. M. Berget (1998) Regulation of alternative polyadenylation by U1 snRNPs and SRp20. Molecular and Cellular Biology 18: 4977-4985.
Macknight, R., I. Bancroft, T. Page, C. Lister, R. Schmidt, K. Love, L. Westphal, G. Murphy, S. Sherson, C. Cobbett and C. Dean (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89: 737-745.
Maniatis, T. and R. Reed (2002) An extensive network of coupling among gene expression machines. Nature 416: 499-506.
Martin, J., M. Storgaard, C. H. Andersen and K. K. Nielsen (2004) Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog. Plant Molecular Biology 56: 159-169.
Mathieu, J., N. Warthmann, F. Kuttner and M. Schmid (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Current Biology 17: 1055-1060.
Meijer, H. A. and A. A. M. Thomas (2002) Control of eukaryotic protein synthesis by upstream open reading frames in the 5’-untranslated region of an mRNA. Biochemical Journal 367: 1-11.
Mellerowicz, E. J., K. Horgan, A. Walden, A. Coker and C. Walter (1998) PRFLL, a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta 206: 619-629.
Mendez, R. and J. D. Richter (2001) Translational control by CPEB: a means to the end. Nature Reviews Molecular Cell Biology 2: 521-529.
Meyers, B. C., T. H. Vu, S. S. Tej, H. Ghazal, M. Matvienko, V. Agrawal, J. C. Ning and C. D. Haudenschild (2004) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nature Biotechnology 22: 1006-1011.
Michaels, S. D. (2009) Flowering time regulation produces much fruit. Current Opinion in Plant Biology 12: 75-80.
Michaels, S. D. and R. M. Amasino (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11: 949-956.
Michaels, S. D. and R. M. Amasino (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. The Plant Cell 13: 935-941.
Mignone, F., C. Gissi, S. Liuni and G. Pesole (2002) Untranslated regions of mRNAs. Genome Biology 3: 1-10.
Miller, P. F. and A. G. Hinnebusch (1989) Sequences that surround the stop codons of upstream open reading frames in GCN4 mRNA determine their distinct functions in translational control. Genes &; Development 3: 1217-1225.
Mimida, N., K. Goto, Y. Kobayashi, T. Araki, J. H. Ahn, D. Weigel, M. Murata, F. Motoyoshi and W. Sakamoto (2001) Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes to Cells 6: 327-336.
Mizoguchi, T., L. Wright, S. Fujiwara, F. Cremer, K. Lee, H. Onouchi, A. Mouradov, S. Fowler, H. Kamada, J. Putterill and G. Coupland (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell 17: 2255-2270.
Modrek, B. and C. Lee (2002) A genomic view of alternative splicing. Nature Genetics 30: 13-19.
Molinero-Rosales, N., A. Latorre, M. Jamilena and R. Lozano (2004) SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta 218: 427-434.
Molinero-Rosales, N., M. Jamilena, S. Zurita, P. Gomez, J. Capel and R. Lozano (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. The Plant Journal 20: 685-693.
Montieri, S., L. Gaudio, and S. Aceto (2004) Isolation of the LFY/FLO homologue in Orchis italica and evolutionary analysis in some European orchids. Gene 333: 101-109.
Moon, J., S. S. Suh, H. Lee, K. R. Choi, C. B. Hong, N. C. Paek, S. G. Kim and I. Lee (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. The Plant Journal 35: 613-623.
Moon, J., Lee, H. , Kim, M. and Lee, I. (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant and Cell Physiology 46: 292-299.
Morris, D. R. and A. P. Geballe (2000) Upstream open reading frames as regulators of mRNA translation. Cell 20: 8635-8642.
Moore, M. J. and N. J. Proudfoot (2010) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 20: 8635-8642.
Mouradov, A., F. Cremer and G. Coupland (2002) Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell 14: S111-S130.
Muller, F., M. A. Demeny and L. Tora (2007) New problems in RNA polymerase II transcription initiation: matching the diversity of core promoters with a variety of promoter recognition factors. Journal of Biological Chemistry 282: 14685-14689.
Nemoto ,Y., M. Kisaka, T. Fuse, M. Yano and Y. Ogihara (2003) Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. The Plant Journal 36: 82-93.
Nilsen, T. W. (1997) Eukaryotic mRNA processing. In Frontiers in Molecular Biology (Krainer, A.R., ed.). IRL, Oxford. pp. 310-334.
Nilsson, O., I. Lee, M. A. Blazquez and D. Weigel (1998) Flowering-time genes modulate the response to LEAFY activity. Genetics 150: 403-410.
O'Neill, D. P. and J. J. Ross (2002) Auxin regulation of the gibberellin pathway in Pea1. Plant Physiology 130: 1974-1982
O'Sullivan, J. M., S. M. Tan-Wong, A. Morillon, B. Lee, J. Coles, J. Mellor and N. J. Proudfoot (2004) Gene loops juxtapose promoters and terminators in yeast. Nature Genetics 36: 1014-1018.
Ouyang, P. (2009) SRrp37, a novel splicing regulator located in the nuclear speckles and nucleoli, interacts with SC35 and modulates alternative pre-mRNA splicing in vivo. Journal of Cellular Biochemistry 108: 304-314.
Paloma Más. (2008) Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends in Cell Biology 18: 273-281.
Palusa, S. G., G. S. Ali and A. S. N. Reddy (2006) Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins and its regulation by hormones and stresses. The Plant Journal 49: 1091-1107.
Parcy, F. (2005) Flowering: a time for integration. International Journal of Developmental Biology 49: 585-593.
Parcy, F., O. Nilsson, M. A. Busch, I. Lee, and D. Weigel (1998) A genetic framework for floral patterning. Nature 395: 561-566.
Pena, L., M. Martin-Trillo, J. Juarez, J. A. Pina, L. Navarro, and J. M. Martinez-Zapater (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology 19: 263-267.
Peng, J., P. Carol, D. E. Richards, K. E. King, R. J. Cowling, G. P. Murphy and N. P. Harberd (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes &; Development 11: 3194-3205.
Pergolizzi, R. G. and R. G. Crystal (2004) Genetic medicine at the RNA level: modifications of the genetic repertoire for therapeutic purposes by pre-mRNA trans-splicing. Comptes Rendus Biologies 327: 695-709.
Perron, K., M. Goldschmidt-Clermont and J. D. Rochaix (2004) A multiprotein complex involved in chloroplast group II intron splicing. RNA 10: 704-711.
Peterlin, B. M. and D. H. Price (2006) Controlling the elongation phase of transcription with P-TEFb. Molecular Cell 23: 297-305.
Pineiro, M., C. Gomez-Mena, R. Schaffer, J. M. Martinez-Zapater and G. Coupland (2003) EARLY BOLTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT. The Plant Cell 15: 1552-1562.
Proudfoot, N. (2004) New perspectives on connecting messenger RNA 3' end formation to transcription. Current Opinion in Cell Biology 16: 272-278.
Proudfoot, N. J., A. Furger and M. J. Dye (2002) Integrating mRNA processing with transcription. Cell 108: 501-512.
Putterill, J., R. Laurie and R. Macknight (2004) It's time to flower: the genetic control of flowering time. Bioessays 26: 363-73.
Putterill, J., F. Robson, K. Lee, R. Simon and G. Coupland (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-57.
Pysh, L. D., J. W. Wysocka-Diller, C. Camilleri, D. Bouchez and P. N. Benfey (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. The Plant Journal 18: 111-119.
Rajkovic, A., R. E. Davis, J. N. Simonsen and F. M. Rottman (1990) A spliced leader is present on a subset of mRNAs from the human parasite Schistosoma mansoni. Proceedings of the National Academy of Sciences of the United States of American 87: 8879-8883.
Ratcliffe, O. J., I. Amaya, C. A. Vincent, S. Rothstein, R. Carpenter, E. S. Coen and D. J. Bradley (1998) A common mechanism controls the life cycle and architecture of plants. Development 125: 1609-15.
Reddy, A. S. N. (2007) Alternative splicing of pre-mRNAs in plants in the genomic era. Annual Review of Plant Physiology and Plant Molecular Biology 58: 267-294.
Robert, L. S., F. Robson, A. Sharpe, D. Lydiate and G. Coupland (1998) Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Molecular Biology 37: 763-772.
Robson, F., M. M. R. Costa, S. R. Hepworth, I. Vizir1, M. Pineiro, P. H. Reeves, J. Putterill and G. Coupland (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. The Plant Journal 28: 619-631.
Ross, J. J., I. C. Murfet and J. B. Reid (1993) Distribution of gibberellins in Lathyrus odoratus L. and their role in leaf growth. Plant Physiol 102: 603-608.
Ross, J. J., D. P. O'neill, J. J. Smith, L. H. J. Kerckhoffs and R. C. Elliott (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. The Plant Journal 21: 547-552.
Rothnie, H. M. (1996) Plant mRNA 30-end formation. Plant Molecular Biology 32: 43-61.
Rothnie, H. M., G. Chen, J. Futterer and T. Hohn (2001) Polyadenylation in rice tungro bacilliform virus: cis-acting signals and regulation. Journal of Virology 75: 4184-4194.
Rottmann, W. H., R. Meilan, L. A. Sheppard, A. M. Brunner, J. S. Skinner, C. Ma, S. Cheng, L. Jouanin, G. Pilate and S. H. Strauss (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. The Plant Journal 22: 235-245.
Roux, F., P. Touzet, J. Cuguen and V. Le Corre (2006) How to be early flowering: an evolutionary perspective. Trends in Plant Science 11: 375-381.
Ruiz-Garcia, L., F. Madueno, M. Wilkinson, G. Haughn, J. Salinas and J. M. Martinez-Zapater (1997) Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. The Plant Cell 9: 1921-1934.
Samach, A., H. Onouchi, S. E. Gold, G. S. Ditta, Z. Schwarz-Sommer, M. F. Yanofsky and G. Coupland (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616.
Sandelin, A., P. Carninci, B. Lenhard, J. Ponjavic, Y. Hayashizaki and D. A. Hume (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nature Reviews Genetics 8: 424-436.
Sarrazin, S., J. Starck, C. Gonnet, A. Doubeikovski, F. Melet and F. Morle (2000) Negative and translation termination-dependent positive control of FLI-1 protein synthesis by conserved overlapping 5’upstream open reading frames in Fli-1 mRNA. Molecular and Cellular Biology 20: 2959-2969.
Sawa, M., D. A. Nusinow, S. A. Kay and T. Imaizumi (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261-265.
Schmid, M., N. H. Uhlenhaut, F. Godard, M. Demar, R. Bressan, D. Weigel, and J. U. Lohmann (2003) Dissection of floral induction pathways using global expression analysis. Development 130: 6001-6012.
Schomburg, F. M., D. A. Patton, D. W. Meinke and R. M. Amasino (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. The Plant Cell 13: 1427-1436.
Schultz, E. A. and G. W. Haughn (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. The Plant Cell 3: 771-781.
Searle, I., Y. He, F. Turck, C. Vincent, F. Fornara, S. Krober, R. A. Amasino and G. Coupland (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes &; Development 20: 898-912.
Shannon, S. and D. R. Meeks-Wagner (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. The Plant Cell 3: 877-892.
Sheldon, C. C., D. T. Rouse, E. J. Finnegan, W. J. Peacock and E. S. Dennis (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences of the United States of American 97: 3753-3758.
Sheldon, C. C., J. E. Burn, P. P. Perez, J. Metzger, J. A. Edwards, W. J. Peacock and E. S. Dennis (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. The Plant Cell 11: 445-458.
Shen, C. H., R. Krishnamurthy and K. W. Yeh (2009) Decreased L-ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. Plant and Cell Physiology 50: 935-946.
Shen, Y., G. Ji, B. J. Haas, X. Wu, J. Zheng, G. J. Reese and Q. Q. Li (2008) Genome level analysis of rice mRNA 3’-end processing signals and alternative polyadenylation. Nucleic Acids Research 36: 3150-3161.
Shu, G., W. Amaral, L. C. Hileman and D. A. Baum (2000) LEAFY and the evolution of rosette flowering in violet cress (Jonopsidium acaule, Brassicaceae). American Journal of Botany 87: 634-641.
Shuman, S. (2001) Structure, mechanism, and evolution of the mRNA capping apparatus. Progress in Nucleic Acid Research and Molecular Biology 66: 1-40.
Silverstone A.L. and T. Sun (2000) Gibberellins and the Green Revolution. Trends in Plant Science 5:1-2.
Simpson, C. G., S. N. Jennings, G. P. Clark, G. Thow and J. W. Brown (2004) Dual functionality of a plant U-rich intronic sequence element. The Plant Journal 37: 82-91.
Simon, R., M. Isabel Igeno and G. COUPLAND (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384: 59 - 62.
Simpson, G. G. (2004) The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology 7: 570-574.
Simpson, G. G. and C. Dean (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296: 285-289.
Simpson G G, P. P. Dijkwel, V. Quesada, I. Henderson and C. Dean (2003) FY is an RNA 3’ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113: 777-787.
Smale, S. T. and J. T. Kadonaga (2003) The RNA polymerase II core promoter. Annual Review of Biochemistry 72: 449-479.
Souer, E., A. van der Krol, D. Kloos, C. Spelt, M. Bliek, J. Mol and R. Koes (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125: 733-742.
Southerton, S. G., S. H. Strauss, M. R. Olive, R. L. Harcourt, V. Decroocq, X. Zhu, D. J. Llewellyn, W. J. Peacock and E. S. Dennis (1998) Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Molecular Biology 37: 897-910.
Stamm, S., S. Ben-Ari, I. Rafalska, Y. Tang and Z. Zhang (2005) Function of alternative splicing. Gene 344: 1-20.
Stover, N. A., M. S. Kaye and A. R. O. Cavalcanti (2006) Spliced leader trans-splicing. Current Biology 16: R8-R9.
Suarez-Lopez, P., K. Wheatley, F. Robson, H. Onouchi, F. Valverde and G. Coupland (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116-1120.
Sung, S. and R. M. Amasino (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427: 159-164.
Takada, S. and K. Goto (2003) Terminal flower 2, an Arabidopsis homolog of heterochromatin protein1, counteracts the activation of flowering locus T by constans in the vascular tissues of leaves to regulate flowering time. The Plant Cell 15: 2856-2865.
Takagaki, Y., R. L. Seipelt, M. L. Peterson and J. L. Manley (1996) The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87: 941-952.
Tamaki, S., S. Matsuo, H. L. Wong, S. Yokoi and K. Shimamoto (2007) Hd3a protein is a mobile flowering signal in rice. Science 316: 1033-1036.
Tamura, K., J. Dudley, M. Nei and S. Kumar (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599.
Tasic, B., C. E. Nabholz, K. K. Baldwin, Y. Kim, E. H. Rueckert, S. A. Ribich, P. Cramer, Q. Wu, R. Axel and T. Maniatis (2002) Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing. Cell 10: 21-33.
Thomas, M. C. and C. M. Chiang (2006) The general transcription machinery and general cofactors. Critical Reviews in Biochemistry and Molecular Biology 41: 105-178.
Tian, B., Z. Pan and J. Y. Lee (2009) Wudespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Research 17: 156-165.
Tora, L. and H. T. M. Timmers (2010) The TATA box regulates TATA-binding protein (TBP) dynamics in vivo. Trends in Biochemical Sciences 35: 309-314.
Turmel, M., C. Otis and C. Lemieux (2002) The complete mitochondrial DNA sequence of Mesostigma viride identified this green alga as the earliest green plant divergence and predicts a highly compact genome in the ancestor of all green plants. Molecular Biology and Evolution 19: 24-38.
Turner, A., J. Beales, S. Faure, R. P. Dunford and D. A. Laurie (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310: 1031-1034.
Valverde, F., A. Mouradov, W. Soppe, D. Ravenscroft, A. Samach and G. Coupland (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003-1006.
Van der Ploeg, L. H. (1986) Discontinuous transcription and splicing in trypanosomes. Cell 47: 479-480.
Vilela, C., B. Linz, C. Rodrigues-Pousada and J. E. G. McCarthy (1998) The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Nucleic Acids Research 26: 1150-1159.
Wachter, A., S. Wolf, H. Steiniger, J. Bogs and T. Rausch (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. The Plant Journal 41: 15-30.
Wada, M., Q. F. Cao, N. Kotoda, J. Soejima and T. Masuda (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Molecular Biology 49: 567-577.
Walsh, C. E. (2004) New paradigm for gene transfer: RNA trans-splicing and small interfering RNA as therapeutic strategies. Seminars in Hematology 41: 297-302.
Wang, B. B. and V. Brendel (2006) Genomewide comparative analysis of alternative splicing in plants. Proceedings of the National Academy of Sciences of the United States of American 103: 7175-7180.
Wang, C. N., M. Moller and Q. C. Cronk (2004) Altered expression of GFLO, the Gesneriaceae homologue of FLORICAULA/LEAFY, is associated with the transition to bulbil formation in Titanotrichum oldhamii. Development Genes and Evolution 214: 122-127.
Wang, Z. Y. and E. M. Tobin (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207-1217.
Weigel, D., J. Alvarez, D. R. Smyth, M. F. Yanofsky and E. M. Meyerowitz (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.
Weigel, D. and O. Nilsson (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495- 500.
Wells, S. E., P. E. Hillner, R. D. Vale and A. B. Sachs (1998) Circularization of mRNA by eukaryotic translation factors. Molecular Cell 2: 135-140.
Wen, C. K. and C. Chang (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. The Plant Cell 14: 87-100.
Wickens, M., P. Anderson and R. J. Jackson (1997) Life and death in the cytoplasm: messages from the 3' end. Current Opinion in Genetics &; Development 7: 220-232.
Wigge, P. A., M. C. Kim, K. E. Jaeger, W. Busch, M. Schmid, J. U. Lohmann and D. Weigel (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309: 1056-1059.
Wilson, R. N., J. W. Heckman and C. R. Somerville (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology 100: 403-408.
Wolbang, C.M., P. M. Chandler, J. J. Smith and J. J. Ross (2004) Auxin from the Developing Inflorescence Is Required for the Biosynthesis of Active Gibberellins in Barley Stems. Plant Physiology 134: 769-776.
Yamaguchi, A., Y. Kobayashi, K. Goto, M. Abe and T. Araki (2005) TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant and Cell Physiology 46: 1175-1189.
Yan, J. and T. G. Marr (2005) Computational analysis of 3'-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat. Genome Research 15: 369-375.
Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna, T. Fuse, T. Baba, K. Yamamoto, Y. Umehara, Y. Nagamura and T. Sasaki (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell 12: 2473-2483.
Yanovsky, M. J. and S. A. Kay (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419: 308-312.
Yasue N., K. Mayumi, F. Takuichi, Y. Masahiro and O. O. Yasunari (2003) Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. The Plant Journal 36 : 82-93.
Yong, W. D., K. Chong, Z. H. XU, K. H. Tan and Z. Q. Zhu (2000) Gene control of flowering time in higher plants. Chinese Science Bulletin 45: 1633-1642.
Yoo, S. K., K. S. Chung, J. Kim, J. H. Lee, S. M. Hong, S. J. Yoo, S. Y. Yoo, J. S. Lee and J. H. Ahn (2005) CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiology 139: 770-778.
Yu, Q., P. H. Moore, H. H. Albert, A. H. Roader and R. Ming (2005) Cloning and characterization of a FLORICAULA/LEAFY ortholog, PFL, in polygamous papaya. Cell Research 15: 576-584.
Yu, J., S. N. Hu, J. Wang, G. K. Wong and B. Li (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79-92.
Yu, J.W., V. Rubio, N. Y. Lee, S. Bai, S. Y. Lee, S. S. Kim, L. Liu, Y. Zhang, M. L. Irigoyen, J. A. Sullivan, Y. Zhang, I. Lee, Q. Xie, N. C. Paek and X. W. Deng. (2008) COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Molecular Cell 32: 617-630.
Yuceera, C., R. L. Harkessb, S. B. Land and D. S. Luthe (2002) Structure and developmental regulation of CONSTANS-LIKE genes isolated from Populus deltoids. Plant Science 163: 615-625.
Zarudnaya, M. I., I. M. Kolomiets, A. L. Potyahaylo and D. M. Hovorun (2003) Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Research 31: 1375-1386.
Zhang, J. X., K. L. Wu, L. N. Tian, S. J. Zeng and J. Duan (2011) Cloning and characterization of a novel CONSTANS-like gene from Phalaenopsis hybrid. Acta Physiologiae Plantarum 33: 409-417.
Zhang, X. C. and W. Gassmann (2003) RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. The Plant Cell 15: 2333-2342.
Zhao, J., L. Hyman and C. Moore (1999) Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiology and Molecular Biology Reviews 63: 405-445.
Zhou, Y., C. Zhou, L. Ye, J. Dong and H. Xu (2003) Database and analyses of known alternatively spliced genes in plants. Genomics 82: 584-595.
Zimmer, A., A. M. Zimmer and K. Reynolds (1994) Tissue specific expression of the retinoic acid receptor-b2: regulation by short open reading frames in the 5’-noncoding region. The Journal of Cell Biology 127: 1111-1119.
Zuo, P. and T. Maniatis (1996) The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes &; Development 10: 1356-1368.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔