(3.236.118.225) 您好!臺灣時間:2021/05/17 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔣鑫螢
研究生(外文):Hsin-Ying Chiang
論文名稱:不同燒結方法對Nb2O5 - Bi2Mo2O9積層陶瓷電容器的顯微結構與介電性質之影響
論文名稱(外文):Effect of sintering method on the microstructures and dielectric properties of Nb2O5 - Bi2Mo2O9 multilayer ceramic capacitor
指導教授:李英杰李英杰引用關係蕭富昌
指導教授(外文):Ying-Chieh LeeFu-Thang Shiao
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:103
中文關鍵詞:積層陶瓷電容器Bi2Mo2O9Al電極快速燒結微波燒結介電常數顯微結構
外文關鍵詞:Multilayer ceramic capacitorBi2Mo2O9Rapid sinteringMicrowave sinteringAl electrodedielectric constantmicrostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:817
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鉬酸鉍Bi2Mo2O9為良好的微波介電材料,介電常數 εr 為 ~38、Q×f 值為12,500 GHz與溫度頻率共振係數(TCF)為+31 ppm/℃,具有相當低的燒結溫度,可以在620 ℃燒結緻密,由於低溫燒結的特性,此材料可應用於低溫共燒陶瓷(LTCC)與NPO 積層陶瓷電容器(NPO MLCC)上,可降低成本。然而,銀金屬與Bi2Mo2O9陶瓷共燒時容易形成二次相,二次相以AgBi(MoO4)2相與AgMo之化合物為主,此二次相會造成電性劣化,影響Bi2Mo2O9陶瓷材料在NPO積層陶瓷電容器之應用。本研究以Bi2Mo2O9陶瓷添加3 mol.%的Nb2O5(Nb-BMO)為介電材料,依MLCC製程,搭配鋁電極後製備成MLCC晶片電容,以不同的燒結方法,觀察MLCC顯微結構以及介電性質的變化。
由於在不同的燒結方法會有不同的燒結行為,因此本研究以傳統燒結(Conventional Sintering)、快速燒結(Rapid Sintering)、微波燒結(Microwave Sintering)三種燒結機制進行探討。實驗發現,MLCC試片透過快速燒結及微波燒結可以有效抑制Bi2MoO6生成,且由TEM觀察,Al電極與介電層間無擴散反應,且電極連續性也較佳,介面未發現有介金屬化合物。以相同緻密性來比較,可發現在微波燒結之不匹配性為9 %,相較於於傳統燒結之15 %與快速燒結之11 %來的佳,證實微波燒結可改善MLCC之燒結不匹配性,而介電性質仍維持一定水平,如介電常數為34.3;介電損失為23×10-4;絕緣電阻值為3.51×1011 Ω。

Pure monoclinic Bi2Mo2O9 exhibits good microwave dielectric properties, with an εr value of approximately 38, a Q×f value of approximately unit 12,500 GHz and a temperature coefficient of resonant frequency(TCF)of approximately +31 ppm/℃. This material can be applied for low temperature co-fired ceramic(LTCC)and NPO multilayer ceramic capacitor(NPO MLCC)due to low sintering temperature(620 ℃). However, AgBi(MoO4)2 and AgMo compounds can be formed easily when co-fire with Ag electrodes. However, the microwave dielectric properties will be influenced when second phases were formed. In this thesis, Bi2Mo2O9 ceramic with 3 mol.% Nb2O5(Nb-BMO)was used as host material. The Nb-BMO ceramics co-fired with Al electrodes was investigated. On the other hand, different sintering methods were applied on this study. The effects of sintering methods on the dielectric properties and microstructures of Nb-BMO MLCC with Al electrode were also investigated.
There are three kinds of sintering methods were applied to fire Nb-BMO specimens in this study, such as conventional sintering, rapid sintering and microwave sintering. It was found the second phase (Bi2MoO6)can be suppressed by rapid or microwave sintering. There are no reaction between Nb-BMO dielectric layer and Al electrode when MLCCs were sintered by rapid or microwave processing. The mismatch rate between Nb-BMO dielectric layer and Al electrode after sintering was measured in the same densification level. The results showed that the mismatch rate of 9 % for microwave sintering, 11 % for rapid sintering and 15 % for conventional sintering were obtained. It means that the mismatch rate between Nb-BMO dielectric layer and Al electrode can be improved by microwave sintering. When MLCCs were sintered by microwave processing, the dielectric properties exhibits with an εr value of approximately 34.3, a dielectric loss of approximately 3×10-4 and a insulation resistance of 3.51×1011 Ω.

摘要 I
Abstract III
謝誌 V
目錄 VI
表目錄 X
圖目錄 XI
第1章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第2章 基礎理論與文獻回顧 5
2-1 微波介電材料 5
2-1-1 Bi2O3-MoO3系統 5
2-1-2 Bi2Mo2O9材料介紹 6
2-2 電容器的功用 8
2-2-1 積層陶瓷電容(Multi-layer Ceramic Capacitor, MLCC) 9
2-2-2 積層陶瓷電容之製程 15
2-2-3 積層陶瓷電容製程配方之功用 18
2-2-3-1 溶劑(Solvent) 18
2-2-3-2 分散劑(Dispersant) 18
2-2-3-3 黏結劑(Binder) 19
2-2-3-4 塑化劑(Plasticizer) 19
2-3 燒結理論 20
2-4 燒結方式 24
2-4-1 傳統燒結(Conventional Sintering) 24
2-4-2 快速燒結(Rapid Sintering) 24
2-4-3 微波燒結(Microwave Sintering) 24
2-4-4 微波燒結加熱原理 25
2-4-5 材料在微波場下的行為 26
2-5 缺陷化學 29
第3章 實驗方法 30
3-1 實驗藥品 30
3-2 試片製備 30
3-2-1 Bi2Mo2O9添加Nb2O5陶瓷塊材(Bulk)製程 30
3-2-2 Bi2Mo2O9添加Nb2O5積層陶瓷電容器(MLCC)製備 31
3-3 燒結方法 31
3-3-1 傳統燒結 31
3-3-2 快速燒結 31
3-3-3 微波燒結 32
3-4 材料分析 32
3-4-1 X光繞射儀(X-ray Diffraction;XRD) 32
3-4-2 掃描式電子顯微鏡(Scanning electron microscopy, SEM)[42] 32
3-4-2-1 SEM試片製備 33
3-4-3 能量散射光譜儀(Energy Dispersive Spectrometer, EDS)… 34
3-4-4 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 34
3-4-4-1 TEM試片製備 35
3-5 量測分析 36
3-5-1 阿基米德密度量測 36
3-5-2 微小維克氏硬度量測 37
3-5-3 不匹配性量測 37
3-5-4 介電性質量測 37
3-5-5 品質因子Q (Quality Factor) 37
第4章 結果與討論 46
4-1 不同燒結方式對Nb2O5 doped Bi2Mo2O9陶瓷之探討 46
4-1-1 傳統燒結對顯微結構、介電性質之影響 46
4-1.1a 相結構與密度分析 46
4-1.1b 顯微結構分析 47
4-1.1c 介電性質分析 48
4-1.1d 機械性質分析 48
4-1-2 快速燒結對顯微結構、介電性質之影響 49
4-1.2a 相結構與密度分析 49
4-1.2b 顯微結構與介電性質分析 49
4-1.2c 機械性質分析 50
4-1-3 微波燒結對顯微結構、介電性質之影響 51
4-1.3a 相結構與密度分析 51
4-1.3b 顯微結構分析 51
4-1.3c 介電性質分析 52
4-1.3d 機械性質分析 52
4-2 鋁金屬應用於Bi2Mo2O9積層陶瓷電容之研究 68
4-2.1 添加不同含量Bi2Mo2O9粉末至鋁膏對顯微結構之影響… 69
4-2.2 鋁金屬與Bi2Mo2O9陶瓷之共燒性、不匹配性分析 69
4-3 不同燒結方式對Nb2O5 doped Bi2Mo2O9 MLCC之探討 78
4-3-1 傳統燒結對Nb2O5 doped Bi2Mo2O9 MLCC之影響 78
4-3.1a 顯微結構分析 (鋁電極與介電層之介面分析) 78
4-3.1b 介電性質分析 79
4-3-2 快速燒結對Nb2O5 doped Bi2Mo2O9 MLCC之影響 79
4-3.2a 顯微結構分析 (鋁電極與介電層之介面分析) 79
4-3.2b 介電性質分析 80
4-3-3 微波燒結對Nb2O5 doped Bi2Mo2O9 MLCC之影響 80
4-3.3a 顯微結構分析 (鋁電極與介電層之介面分析) 80
4-3.3b 介電性質分析 81
第5章 結論 97
參考文獻 98
作者簡介 103

[1] 吳朗,1994,電子陶瓷-介電陶瓷,全欣資訊圖書,台北。
[2] 陳智勇,2009,高Q微波介電材料之開發及應用,國立成功大學電機工程學系碩博士班博士論文,第1-2頁。
[3] D. Zhou, H. Wang, L. X. Pang, C. A. Randall, and X. Yao, 2009, “Bi2O3-MoO3 Binary System:An Alternative Ultralow Sintering Temperature Microwave Dielectric”, J. Am. Ceram. Soc., Vol. 92 No. 10, pp. 2242–2246.
[4] D. Zhou, H. Wang, X. Yao, L.X. Pang, 2008, “Microwave Dielectric Properties of Low Temperature Firing Bi2Mo2O9 Ceramic”, J. Am. Ceram. Soc., Vol. 91 No. 10, pp. 3419–3422.
[5] T. Ono, K. Utsumi, M. Kataoka, Y. Tanaka, F. Noguchi, 2004, “A study of active sites for partial oxidation on α–Bi2Mo3O12 and β–Bi2Mo2O9 catalysts using crystal structure visualization”, Catalysis Today,Vol. 91–92, pp. 181–184.
[6] 陳昱宏,2012,氧化物添加對Bi2Mo2O9的顯微結構與介電性質之影響,國立屏東科技大學機械工程系碩士論文。
[7] 國立編譯館,2001,「電子陶瓷材料」,徐氏文教基金會,台北。
[8] H. Kishi, Y. Mizuno, H. Chazono, 2003, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives”, Jpn. J. Appl. Phys., Vol. 42, No. 1, pp. 1–15.
[9] 石啟仁,林人傑,2002,高頻積層陶瓷用內電極膏開發技術,工業材料 192期。
[10] Askeland, D. R., 1990, Materials Science and Engineering, Prentice Hall.
[11] 李文熙,蔡聰麟,2001,「卑金屬電極積層陶瓷電容器的發展及趨勢」,電子與材料,第6期,第120–160頁。
[12] 徐杏榕,2007,低溫銀膠應用於積層陶瓷電容之研究,國立屏東科技大學材料工程系碩士論文。
[13] 宋進祥,2006,積層陶瓷電容器之可靠度評估與失效分析,國立成功大學工程科學系碩士論文。
[14] G. Besendorfer, A. Roosen, C. Modes, T. Betz, 2007,“Factors Influencing the Green Body Properties and Shrinkage Tolerance of LTCC Green Tapes”, Int. J. App. Ceram. Technol., 4, 53–59.
[15] P. Nahass, W. E. Rhine, R. L. Pober, H. K. Bowen, W. L. Robbins, K.M. Nair, R. Pohanka, R.C. Buchanan, 1990, Ceram. Trans., 15, 355.
[16] R. Moreno, 1992, “The Role of Slip Additives in Tape Casting Technology: Part I-Solvents and Dispersants” , Am. Ceram. Soc. Bull., Vol. 71, pp. 1521–1531.
[17] D.J. Shaw, 1992, “Colloid stability, in Colloid and Surface Chemistry”, 4th edn, Butterworth - Heinemann, Oxford, 210.
[18] K. Nagata, 1992, “Rheological Behavior of Suspension and Properties of Green Sheet Effect of Compatibility between Dispersant and Binder”, J. Ceram. Soc. Jpn., Vol. 101, pp. 1271–1275.
[19] N. Ushifusa, M. Cima, 1991, “Aqueous Processing of Mullite-Containing Green Sheets,” J. Am. Ceram. Sot., Vol. 74, pp. 2443–2447.
[20] D. M. Pozar, 1998, “Microwave engineering”, second edition, John Wiley and Sons. Inc., pp. 1-55.
[21] J. M. Osepchuk, 1984, “A History of Microwave Heating Applications”, IEEE Trans. Microwave Theory &; Tech., MTT-32, Vol. 9, pp. 1200–1224.
[22] M. L. Levinson, 1971, U S Pat. No. 3585258.
[23] W. R. Tinga and W. A. G. Voss, 1968, “Microwave Power Engineering”, Academic Press, New York.
[24] A. J. Berteaud and J. C. Badot, 1976, “High temperature microwave heating in refractory materials”, Journal of Microwave Power, Vol. 11, No. 4, pp. 315-320.
[25] W. H. Sutton, 1989, “Microwave processing of ceramic materials”, American Ceramic Society Bulletin, Vol. 68, No. 2, pp. 376–386.
[26] Z. Xie, J. Yang and Y. Huang, 1998, “Densification and grain growth of alumina by microwave processing”, Materials Letters, Vol. 37, No. 4-5, pp. 215-220.
[27] R. D. Blake and T. T. Meek, 1986, “Microwave processed composite materials”, Journal of Materials Science Letters, Vol. 5, No. 11, pp. 1097–1098.
[28] J. D. Katz, R. D. Blake and J. J. Petrovic, 1988, “Microwave Sintering of Alumina-Silicon Carbide Composites at 2.45 and 60 GHz”, Ceramics. engineering science processing, Vol. 9, No. 7-8, pp. 725–734.
[29] M. C. Valecillos, M. Hirota, M. E. Brito, K. Hirao and M. Toriyama, 1998, “Microstructure and mechanical properties of microwave sintered silicon nitride”, Journal of the Ceramic Society of Japan, Vol. 106, No. 12, pp. 1162–1166.
[30] J. J. Thomas, R. J. Christensen, D. L. Johnson and H. M. Jennings, 1993, “Nonisothermal Microwave Processing of Reaction-Bonded Silicon Nitride”, Journal of the American Ceramic Society, Vol. 76, No. 5, pp. 1384–1386.
[31] M. Aliouat, L. Mazo, G. Desgardin and B. Raveau, 1990, “Microwave sintering of the high Tc superconductor YBa2Cu3O7-δ”, Materials Chemistry and Physics, Vol. 26, No. 2, pp. 109–115.
[32] K. G. K. Warrier, H. K. Vama, T. V. Mani and A. D. Damodaran, 1992, “Rapid Method for the Preparation of Superconductor Using Microwaves”, Journal of the American Ceramic Society, Vol. 75, No. 7, pp. 1990–1992.
[33] A. Birnboim, D. Gershon, J. Calame, A. Birman, Y. Carmel, J. Rodgers, B. Levush, Y. V. Bykov, A. G. Eremeev, V. V. Holoptsev, V. E. Semenov, D. Dadon, P. L. Martin, M. Rosen and R. Hutcheon, 1998, “Comparative study of microwave sintering of zinc oxide at 2.45, 30, and 83 GHz”, Journal of the American Ceramic Society, Vol. 81, No. 6, pp. 1493–1501.
[34] W. C. Lee, K. S. Liu and I. N. Lin, 1999, “Electrical properties of microwave-sintered ZnO varistors”, Japanese Journal of Applied Physics, Vol. 38, pp. 5500–5504.
[35] R. J. Lauf, C. Hamby, C. E. Holcombe and W. F. Vierow, 1992, “Microwave Processing of Tantalum Capacitor Anodes, in Microwave Processing of Materials III”, Mater. Res. Soc. Symp, Proc., Vol. 269, pp. 2178–2222.
[36] H. Fukushima, T. Noritake and H. Hasegawa, 2000, “Microwave sintering of multilayer ceramics containing capacitor”, Journal of the Ceramic Society of Japan, Vol. 108, No. 1254, pp.132–137.
[37] H. Fukushima, H. Mori, T. Hatanaka and M. Matsui, 1995, “Properties and microstructure of PZT ceramics sintered by microwave”, Journal of the Ceramic Society of Japan, Vol. 103, No. 1202, pp. 1011–1016.
[38] F. Selmi, F. Guerin, X. D. Yu, V. K. Varadan, V. V. Varadan and S. Komarneni, 1992, “Microwave calcination and sintering of barium strontium titanate”, Materials Letters, Vol. 12, No. 6, pp. 424–448.
[39] C. E. Holcombe and N. L. Dykes, 1990, “Importance of casketing for microwave sintering of materials”, Journal of Materials Science Letters, Vol. 9, No. 4, pp. 425–428.
[40] R. Roy, D. Agrawal, J. Cheng and S. Gedevanishvili, 1999, Nature, Vol. 399, No. 17, pp. 668–670
[41] R. M. Anklekar, D. K. Agrawal and R. Roy, 2001, “Microwave Sintering and Mechanical Properties of PM Copper Steel”, Powder Metallurgy, Vol. 44, No. 4, pp. 355–362.
[42] 汪建民,1988,「材料分析」,中國材料科學,台北。
[43] 李振良,2005,微波燒結鋅鈮鋯鈦酸鉛陶瓷系統之特性及微觀研究,國立台灣科技大學機械工程系博士學位論文。
[44] 郭塗註,黃錦華,1999,「基本電學下」,華興書局,第152–154頁,初版。
[45] D. Zhou, H. Wang, L. Pang, C.A. Randall, X. Yao, 2009, “Bi2O3–MoO3 Binary System:An Alternative Ultralow Sintering Temperature Microwave Dielectric”, J. Am. Ceram. Soc.,Vol. 92, No. 10, pp. 2242–2246.
[46] 江向平,楊慶,陳超,渝娜,余祖灯,李月明,2010,「Nb改性Bi4Ti3O12高温壓電陶瓷的研究」,第25卷 第11期。
[47] Hou J., Kumar R. V., Qu Y., et al., 2009, “B-site doping effect on electrical properties of Bi4Ti3-2xNbxTaxO12 ceramics”, Scripta Materialia, Vol. 61, No. 6, pp. 664–667.
[48] 周振嘉,何智翔,2002,陶瓷共燒元件之電極材料及製造方法,國立台灣科技大學機械工程系專利。
[49] A. V. Polotai, I. Fujii, D. P. Shay, G.Y. Yang, E. C. Dickey, and C. A. Randall, 2008, “Effect of Heating Rates during Sintering on the Electrical Properties of Ultra-Thin Ni–BaTiO3 Multilayer Ceramic Capacitors”, J. Am. Ceram. Soc., Vol. 91, No. 8, pp. 2540–2544.
[50] Bo Li, X. H. Zhou, S. R. Zhang, L. C. Xiang, 2010, “Microstructures and Microwave Properties of CaTiO3 Doped (ZnMg)TiO3 Dielectrics with CaO-B2O3-SiO2 Addition”, Key Engineering Materials, No. 434 – 435, pp. 235-239.
[51] C. L. Huang, J. Y. Chen, 2009, “Low-loss microwave dielectrics using SrTiO3-modified (Mg0.95Co0.05)2TiO4 ceramics”, J. Alloys Comp., Vol. 485, No. 1-2, pp. 706-710.
[52] Y. C. Lioua, C. Y. Shiuea, 2004, “Preparation of NiNb2O6 Columbite Ceramics by a Reaction-Sintering Process”, MRS Fall Meeting.
[53] H. T. Kim, S. Nahm and J. D. Byun, 1999, “Low-fired (Zn,Mg)TiO3 Microwave Dielectrics”, J. Am. Ceram. Soc., Vol. 82, No. 12, pp. 3476.
[54] M. F. Ashby, 1974, “A First Report on Sintering Diagrams”, Acta Metal., No. 2, pp. 275~289
[55] R. L. Coble, 1961, “Sintering Crystalline Solids:II, Experimental Test of Diffusion Modles in Powder Compacts”, J. Appl. Phys., No. 32, pp. 793~799

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top