(3.238.99.243) 您好!臺灣時間:2021/05/17 00:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:郭承宗
論文名稱:聚光型太陽能模組溫度係數量測之研究
論文名稱(外文):The Study of Temperature Cofficient Measurement for HCPV Module
指導教授:王耀男
指導教授(外文):Wang Yao-Nan
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:高聚光型太陽能電池電性參數溫度係數
外文關鍵詞:HCPV moduleElectrical parameterTemperature coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用太陽能電池工作溫度的直接量測方法,探討太陽能電池於不同照度下的工作溫度及不同溫度下開路電壓(Voc)、短路電流(Isc)、輸出功率(Pm)及填充因子(FF)各性能參數之變化。研究中利用直徑50 μm的熱電偶埋入聚光型太陽能電池(HCPV)太陽能電池下方,並利用太陽光模擬器將太陽能電池控制在不同的光照度,進行太陽能電池工作溫度之量測,並進一步利用薄膜式加熱片和製冷機黏貼於鋁背板處將太陽能電池的工作溫度控制在10~90℃之間,探討太陽能電池在不同溫度下的參數性能表現,實驗的結果利用自行撰寫的LabVIEW圖控程式及CPS 程式記錄後進行分析。
  實驗數據分析結果顯示,環境溫度25℃太陽光照度在500、600、700、800 W/m2太陽能電池工作溫度分別為39.8℃、41.1℃、49.9℃ 和54.1℃,鋁底板的溫度分別為:35.1℃、36℃、41.3℃和44.2℃,於上述各照度下背板與太陽能電池溫差分別為:4.6℃、6.02℃、8.5℃和9.9℃。於600、700、800、900 W/m2照度下,當光照度每提升100 W/m2時輸出功率約提升0.3~0.5 W;不同照度下太陽能電池的以30℃為例轉換效率分別為14.1%、14.2%、14.6%、14.4%,其開路電壓(Voc)、短路電流(Isc)、最大功率(Wmpp)及填充因子(FF)等電性參數隨溫度變化之關係分別為: 開路電壓(Voc)下降至0.03~0.04 %,填充因子(FF)下降約0.08~0.09 %,短路電流(Isc)則與其他兩項參數相反,大約提升了0.1~0.14 %之間。經由各電性參數進而求得太陽能模組之溫度係數,其分別為;開路電壓(Voc)-0.0048 V/℃~-0.004 V/℃、短路電流(Isc)0.00084 A/℃~0.00016 A/℃、輸出功率(Pm):-0.003 W/℃~-0.004 W/℃、(η)-0.035 %/℃~-0.027 %/℃及填充因子(FF)-0.085 %/℃~-0.072 %/℃。

In this study, the HCPV cell operating temperature direct measurement method is proposed, and its electrical parameters including open circuit voltage (Voc), short circuit current (Isc), output power (Pm) and fill factor (FF) under different irradiances and operating temperatures are investigated. In the ambient temperature 25℃ and 500, 600, 700, 800 W/m2 solar irradiance conditions, experimental results show the solar cell temperatures were 39.8℃, 41.1℃, 49.9℃ and 54.1 ℃, and the aluminum plate temperatures were 35.1℃ , 36℃, 41.3℃ and 44.2℃. The temperature difference between the backplane and the solar cell are 4.6℃, 6.02℃, 8.5℃ and 9.9℃. The corresponding conversion efficiency percentages were 14.1%, 14.2%, 14.6%, 14.4% in the ambient temperature 30℃.
  The relationships of the irradiance and electrical parameters were measured by the controlled solar simulator. The output power increased to about 0.3~0.5W when the irradiance increased by 100 W/m2. Moreover, open-circuit voltage (Voc), short circuit current (Isc), maximum power (Wmpp) and fill factor (FF) electrical parameters varied with the HCPV cell’s operating temperature. The open circuit voltage (Voc) decreased 0.03~0.04% / ℃, and the fill factor (FF) decreased by about 0.08~0.09% / ℃. In contrast, the short-circuit current (Isc) increased about 0.1%~0.14/ ℃. The electrical parameters of the temperature coefficients of photovoltaic module are: open-circuit voltage (Voc) -0.0048 V / ℃ ~ -0.004 V / ℃, short circuit current (Isc) 0.00084 A / ℃ ~ 0.00016 A / ℃, maximum output power (Pm) -0.003 W / ℃ ~ -0.004 W / ℃, conversion efficiency (η) -0.035% / ℃ ~ -0.027% / V and fill factor (FF) -0.085% / ℃ ~ -0.072% / ℃.

摘要
Abstract
致謝
目錄
表目錄
圖目錄
符號索引
希臘字母
簡寫表
第1章 緒論
1.1研究背景
1.2研究動機與目的
1.3文獻回顧
1.4研究內容
第2章研究方法
2.1實驗方法
2.2太陽能電池電性參數
2.3資料擷取
第3章 結果與討論
3.1太陽能電池工作溫度直接量測之結果
3.1.1太陽能電池於照度500 W/m2時各階層工作溫度之情形
3.1.2太陽能電池於照度600 W/m2時各階層工作溫度之情形
3.1.3太陽能電池於照度700 W/m2時各階層工作溫度之情形
3.1.4太陽能電池於照度800 W/m2時各階層工作溫度之情形
3.2太陽能模組溫度係數之量測
3.2.1各照度於不同溫度時的電性參數值
3.2.1.1 600 W/m2 電性參數關係(Imp、Vmp、Wmp、FF)
3.2.1.2 700 W/m2 電性參數關係(Imp、Vmp、Wmp、FF)
3.2.1.3 800 W/m2 電性參數關係(Imp、Vmp、Wmp、FF)
3.2.1.4 900 W/m2 電性參數關係(Imp、Vmp、Wmp、FF)
3.2.2不同溫度下溫度係數之量測
第4章 結論與未來與展望
4.1結論
4.2未來與展望
參考文獻
作者簡介

1.Perez-Higueras, P., Munoz, E., Almonacid, G., &; Vidal, P. G. (2011). High Concentrator PhotoVoltaics efficiencies: Present status and forecast. Renewable and Sustainable Energy Reviews, 15, 1810-1815.
2.Ghassan Z. , Jose L. B. , Gian V. F. , (2009), “High concentration photovoltaic system applying Ⅲ-Ⅴ cells”, Renewable and Sustainable Energy Reviews, 2645-2652.
3.T. Markvart, and John Willy&Sons, “Solar Electricity,”(1995)。
4.Kinsey, G. S., &; Edmondson, K. M. (2009). Spectral response and energy output of concentrator multijunction solar cells. Progress in Photovoltaics: Research and Applications, 17, 279-288.
5.Jiang Z. M. ,(2008) Reflections on energy issues in China. Journal of Shanghai Jiaotong University, 257–74.
6.Leutz R, Suzuki A. Nonimaging Fresnel lenses: design and performance of solar concentrators. Heidelberg: Springer Verlag; 2001.
7.Xie, W. T., Dai, Y. J., Wang, R. Z., &; Sumathy, K. (2011). Concentrated solar energy applications using Fresnel lenses: A review. Renewable and Sustainable Energy Reviews, 15(6), 2588-2606.
8.Griffith J. S., Rathod N. S. , Paslaski J.(1981), Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions. In: Proceedings of the IEEE 15th photovoltaic specialists conference, Kissimmee, FL, 822–830.
9.Stultz J.W., Wen L.C., DOE/JPL LSA task report. (1977), 5101-5131.
10.ASTM. Method for determining the nominal operating cell temperature(NOCT) of an array or module. E1036M, Annex A.1., (1999), 544-549.
11.Duffie J.A., BeckmanW.A., Solar energy thermal processes. 3rd ed. Hoboken (NJ): Wiley; 2006.
12.Sala G. Cooling of solar cells. In: Luque A, Araujo GL, editors. Solar cells and optics for photovoltaic concentration. Adam Hilger–IOP Publishing; (1989). 239–67.
13.Garcia MCA, Balenzategui J.L. , (2004), Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations. Renewable Energy. (2004), 29:1997–2010.
14.King D.L., Boyson W.E. &; Kratochvil J.A. , Photovoltaic array performance model, SAND2004-3535; (2004).
15.International Standard IEC 61215. Crystalline silicon terrestrial photovoltaic (PV) modules – design qualification and type approval. (2005).
16.King D. L., Kratochvil J. A., &; Boyson W. E. (1997, September). Temperature coefficients for PV modules and arrays: measurement methods, difficulties, and results. In Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE (pp. 1183-1186). IEEE.
17.Yoon, Sewang, and Vahan Garboushian. "Reduced temperature dependence of high-concentration photovoltaic solar cell open-circuit voltage (Voc) at high concentration levels." Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on. Vol. 2. IEEE, 1994.
18.Peharz G., Ferrer Rodríguez, J. P., Siefer, G., &; Bett,A. W. (2011). Investigations on the temperature dependence of CPV modules equipped with triple‐junction solar cells. Progress in Photovoltaics: Research and Applications, 19, 54-60.
19.Lee H. S., Ekins-Daukes N. J. Araki, K., Kemmoku Y. &; Yamaguchi M. (2005). Field test and analysis: the behavior of 3-J concentrator cells under the control of cell temperature. In Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE (pp. 754-757). IEEE.
20.Tzeng Y. C., Hong H. F., Wu C. H., Cheng, C., &; Shin H. Y. (2006, May). The Development of an 1kW HCPV System at INER. In Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on(Vol. 1, pp. 648-650). IEEE.
21.Chong K. K., &; Tan W. C. (2012). Study of automotive radiator cooling system for dense-array concentration photovoltaic system. Solar Energy.
22.Ghosal K., Gabriel J., Lilly D., Furman B., Menard E., Meitl M., &; Fiedler M. (2011). On‐Sun Performance of a Novel Microcell Based HCPV System Located in the Southwest US. In AIP Conference Proceedings(Vol. 1407, p. 354

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文