(3.236.222.124) 您好!臺灣時間:2021/05/08 07:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴京宏
研究生(外文):Jing-Hung Lai
論文名稱:轉麩醯胺酸酶黏合性探討及其對重組魚排之應用
論文名稱(外文):The study on the adhesiveness of transglutaminase and its application in recombinant rafts
指導教授:楊季清楊季清引用關係劉展冏劉展冏引用關係
指導教授(外文):Chi-Ching YangChan- Chiung Liu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:101
中文關鍵詞:虱目魚吳郭魚魴魚重組魚排轉麩醯胺酸酶拉伸強度
外文關鍵詞:milkfishtilapiajohn dory fishrecombination fish raftstransglutaminasetensile strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:497
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
魴魚、虱目魚、吳郭魚在台灣市場的消費量非常大,其中魴魚多為進口,而吳郭魚及虱目魚則都是國產大宗養殖魚類,分別位居台灣養殖漁業的第一、二名。魴魚肉和吳郭魚肉皆具有肉質鮮嫩、細緻、蛋白質豐富等多項優點,但是卻缺乏肥美的油脂口感是其美中不足的地方;而虱目魚肚和吳郭魚肚雖富有豐富的油脂及肥美的口感等優點,但可能過於油膩而令消費者裹足不前。因此本研究是希望藉著整片魴魚肉或吳郭魚肉,搭配整片虱目魚肚或吳郭魚肚以重組的方法使其成為油脂含量適中,且兼具豐富蛋白質的營養魚排,再發展成為調如蒲燒魚排之調理食
品。
本研究先藉由豬脂肪來測試不同食品黏著劑及不同粘著劑互相搭配時的拉伸強度,選出具有最大拉伸強度者,再將其應用於重組魚排。以
不同加工方式(蒸、烤、炸)測試重組魚排的拉伸強度、質地、顏色、中
心溫度和儲存時的變化情況,來得知各種重組魚排的各項性質,以期能
開發出脂肪含量適宜且肉質鮮嫩的蒲燒魚排或即食魚排,來增加市售產
品的多樣化。
研究結果發現隨著轉麩醯胺酸酶濃度提高,豬脂肪間的拉伸強度也跟著提高,但當其濃度由20%提高至25%時其拉伸強度反而會有下降的趨勢;另外在轉麩醯胺酸酶與本研究所使用的各蛋白粉作搭配時,皆會提高豬脂肪間的拉伸強度,其中又以酪蛋白鈉的效果較好,在15%時有最大拉伸強度,分別為加熱前6.3 N與加熱後4.17 N;而當轉麩醯胺酸酶與本實驗所用的膠體互相搭配時,則以三仙膠的效果較好,在10%時有
最大拉伸強度,分別為加熱前1.7N與加熱後2.8N。
在重組魚排的供膳應用上,分別探討了蒸、烤、炸三種加工方式,對各重組魚排的拉伸強度之影響。結果發現在蒸煮的加工條件下,隨著蒸煮時間的延長,拉伸強度也跟著下降,而在燒烤和油炸的加工條件下,卻是隨著加工時間延長,拉伸強度有跟著增加的趨勢。再進一步基於產
品外觀上之考量,結果似乎是以燒烤為較適合的加工方式。
產品感官品評方面則採用了嗜好性七分法,分別針對外觀、黏合性(筷子夾)、口感和整體接受性四大項進行品評分析,發現重組後的魚排在黏合性的分數,與沒經過重組的魚排之間並無顯著差異;然而在整體接受
度上的分數至少等於或大於沒經過重組的魚排。
研究成果顯示經由黏合劑的運用,可完美地將魚肉片和魚肚片進行黏合重組,製成美味可口的蒲燒魚排,因此重組魚排具有開發成能受消
費者歡迎之調理食品的潛力。

John dory fish, tilapia and milkfish are consumed in large quantity in Taiwan. John dory fish is majorly imported yet the other two rank first and second in domestic aquacultured fishes, respectively. The meat of John dory fish and tilapia both are tender, succulent, with high nutritional value, and rich in protein, quite worthy of bulk consumption for Taiwanese. Milkfish maw and Tilapia maw both contain abundant oil which is rich in EPA and DHA, but deterred consumption due to too much oil content. Therefore, taking advantage of rich protein by tilapia and John dory, combined with plump taste contributed by milkfish maw and tilapia maw, suitable for the re-composition of recombinant rafts such as Kabayaki (broiled fish row), with appropriate fat content, delicious taste, and rich in protein.
This starts from binding pork fat through transglutaminase with different food binder, as well as the combination of them, to investigate the effect on tensile strength. The investigation was further extended to the application on recombinant rafts. Different processing such as steaming, roasting, and frying were applied on recombinant rafts, characteristics including tensile strength, texture, color, core temperature, and changes during storage were explored to develop ready-to-eat fish raft products with appropriate fat content and tender
textural features.
The results show that tensile strength increased upon increasing concentration of transglutaminase, but fall from 20% to 25% of transglutaminase. The adhesion judged by tensile strength of bound pork fat was complimented by protein material or gums. The best results was obtained with 15% of transglutaminase with sodium casein, which yielded tensile strength of 6.3 N before heating, and 4.17 N after heating, respectively. While 10% of transglutaminase with Xanthan gum gave tensile strength of 1.7 N before heating, and 2.8 N after heating, was the optimum of transglutaminase complimented by gums.
Steaming, roasting, and oil frying were chosen to explore the effects of catering processing on recombination rafts, respectively. The tensile strength decreased upon increasing time of steaming, yet the reverse trends were found for roasting and oil frying. Steaming was presumed to be the most appropriate processing method for recombination rafts based on its appearance.
Seven point hedonic sensory evaluation was applied on products for appearance, adhesion (by chopsticks), taste, and overall acceptance. The results indicate that recombination fish rafts showed no significant difference compared to those genuine ones in adhesion characteristic. However, the recombination fish rafts scores on at least equal to or greater than the fish did not go through restructuring, in the overall acceptability.
Research results show that through the use of adhesives can successfully bind fish fillets with maw slices, making delicious Kabayaki Fish. There is
potential to develop recombinant fish into popular prepared foods.

中文摘要....................................................Ⅰ
Abstract..................................................Ⅲ
謝誌........................................................Ⅴ
目錄 .......................................................Ⅵ
圖表目錄..................................................Ⅸ
壹、前言......................................................1
貳、文獻回顧..................................................2
2.1吳郭魚簡介...............................................2
2.2虱目魚簡................................................4
2.3魴魚簡介................................................6
2.4轉麩醯胺酸酶............................................8
2.4.1轉麩醯胺酸酶來源....................................8
2.4.1.1動物來源的轉麩醯胺酸酶..........................8
2.4.1.2植物來源的轉麩醯胺酸酶..........................8
2.4.1.3微生物來源的轉麩醯胺酸酶........................9
2.4.2轉麩醯胺酸酶的催化機制.............................11
2.4.3 轉麩醯胺酸酶於食品加工上之應用....................13
2.5蛋白粉.................................................15
2.5.1酪蛋白鈉...........................................15
2.5.1.1酪蛋白鈉的組成.................................15
2.5.1.2酪蛋白鈉的凝膠機制.............................16
2.5.1.3酪蛋白鈉在肉品的運用...........................16
2.5.2小麥蛋白...........................................17
2.5.2.1小麥蛋白的組成.................................17
2.5.2.2小麥蛋白的凝膠機制.............................17
2.5.2.3小麥蛋白在肉品的運用...........................17
2.5.3乳清蛋白...........................................18
2.5.3.1乳清蛋白的組成.................................18
2.5.3.2乳清蛋白的凝膠機制.............................18
2.5.3.3乳清蛋白在肉品的運用...........................19
2.5.4大豆蛋白.........................................19
2.5.4.1大豆蛋白的組成...............................19
2.5.4.2大豆蛋白的凝膠機制...........................20
2.5.4.3大豆蛋白在肉品的運用.........................20
2.5.5血漿蛋白..........................................21
2.5.5.1血漿蛋白的組成................................21
2.5.5.2血漿蛋白的凝膠機制............................21
2.5.5.3血漿蛋白在肉品的運用..........................22
2.6膠....................................................22
2.6.1三仙膠............................................22
2.6.1.1三仙膠的結構..................................22
2.6.1.2三仙膠的黏度..................................22
2.6.1.3三仙膠在食品的運用............................22
2.6.2海藻酸鈉..........................................24
2.6.2.1海藻酸鈉的結構................................24
2.6.2.2海藻酸鈉的凝膠機制............................24
2.6.2.3海藻酸鈉在食品的運用..........................25
2.6.3卡德蘭膠..........................................27
2.6.3.1卡德蘭膠的結構................................27
2.6.3.2卡德蘭膠的凝膠機制............................27
2.6.3.3卡德蘭膠在食品的運用..........................27
2.6.4羧甲基纖維鈉......................................29
2.6.4.1羧甲基纖維素鈉的結構..........................29
2.6.4.2羧甲基纖維素鈉的黏度..........................29
2.6.4.3羧甲基纖維素鈉在食品的運用....................29
參、實驗架構.................................................31
肆、材料與方法...............................................34
4.1實驗原料............................................34
4.2實驗用添加劑..........................................34
4.3實驗試藥..............................................35
4.4實驗儀器..............................................35
4.5實驗方法.............................................35
4.5.1色差分析.........................................35
4.5.2中心溫度測量.....................................36
4.5.3好氧性總生菌數分析...............................36
4.5.4質地分析.........................................36
4.5.5拉伸強度分析.....................................36
4.5.6顯微鏡25倍照相方法..............................36
4.5.7油脂過氧化價分析.................................37
4.5.8油脂酸價分析....................................37
4.5.9感官品評........................................38
4.5.10統計分析........................................38
伍、結果與討論...............................................42
5.1最適黏合方法之探討....................................42
5.2最適黏合方法在重組魚排應用之探討......................63
5.3重組魚排之儲藏性探討..................................84
陸、結論.....................................................92
參考文獻..................................................94

















圖表目錄
圖1、臺灣歷年吳郭魚生產量....................................3
圖2、臺灣歷年吳郭魚冷凍品生產量..............................3
圖3、1998~2007年年全球虱目魚產量趨勢........................ 5
圖 4、全球養殖Pangasius hypophthalmus的統計量 7
圖5、麩醯基轉移酶的催化反應.................................12
圖6、三仙膠結構圖...........................................23
圖7、海藻酸鈉結構圖.........................................26
圖8、卡德蘭膠之結構圖.......................................28
圖9、纖維素 (cellulose) (上)及羧甲基纖維素(下)之分子結構圖....30
圖10、豬脂肪進行拉伸試驗,評估黏合性實驗架構圖..............32
圖11、將最適黏合劑運用於重組魚排之實驗架構..................33
圖12、豬脂肪拉伸測試流程圖..................................39
圖13、不同濃度轉麩醯胺酸酶與各黏合劑對豬脂肪拉伸強度之影響..43
圖14、20%轉麩醯胺酸酶加上不同濃度的蛋白質對豬脂肪拉伸強
度的影響..............................................45
圖15、20%轉麩醯胺酸酶加上不同濃度(酪蛋白鈉與各蛋白質(1:1))對
豬脂肪拉伸強度的影響..................................47
圖16、20%轉麩醯胺酸酶加上不同濃度(酪蛋白鈉與各蛋白質(3:1))對
豬脂肪拉伸強度的影響..................................49
圖17、20%轉麩醯胺酸酶加上不同濃度膠類對豬脂肪拉伸強度的影響..
.....................................................51
圖18、20%轉麩醯胺酸酶加上不同濃度(酪蛋白鈉與三仙膠(3:1))對豬脂
肪拉伸強度的影響......................................53
圖19、20%轉麩醯胺酸酶加上15%酪蛋白鈉再額外添加不同濃度三仙膠
對豬脂肪拉伸強度的影響。..............................55
圖20、20%轉麩醯胺酸酶和20%轉麩醯胺酸酶加15%酪蛋白鈉再額外添
加0.4%三仙膠不同靜置時間對豬脂肪拉伸強度的影響 ......57
圖21、20%轉麩醯胺酸酶和20%轉麩醯胺酸酶加15%酪蛋白鈉再額外添
加0.4%三仙膠不同靜置溫度對豬脂肪拉伸強度的響.........59
圖22、豬脂肪加熱前後的外觀相片圖............................61
圖23、豬脂肪加熱前後,在USB顯微鏡25倍下的黏合處相片圖....62
圖24、不同重組魚排在100℃下,蒸不同時間的外觀相片圖.........68
圖25、不同重組魚排在100℃下蒸不同時間,在USB顯微鏡25倍下的
黏合處相片圖..........................................69
圖26、不同重組魚排在170℃下,烤不同時間的外觀相片圖.........70
圖27、不同重組魚排在170℃下烤不同時間,在USB顯微鏡25倍下的
黏合處相片圖..........................................71
圖28、不同重組魚排在160℃下,炸不同時間的外觀相片圖.........72
圖29、不同重組魚排在160℃下炸不同時間,在USB顯微鏡25倍下的
黏合處相片圖..........................................73

台灣漁業資料庫(The fish Database of Taiwan)。
取自:http://fishdb.sinica.edu.tw/chi/home.php
2013年5月9日。
聯合國糧食及農業組織(Food and agriculture Organization of the United Nations)。2009。Fisheries and aquaculture Department。
取自:http://www.fao.org/fishery/en
2013年4 月3 日。
聯合國糧食及農業組織(Food and agriculture Organization of the United
Nations)。2013。National Aquaculture Sector Overview。
取自: http://www.fao.org/fishery/en
2013年5月20日。
中國國家標準。1984。CNS 總號10890 類號N6186。
中國國家標準。2003。CNS 總號3647 類號N6082。
中國國家標準。2003。CNS 總號3650 類號N6085。
于功明、孫春祿、王成忠。2008。 海藻酸鈉在低溫肉製品中的應用研究。
肉類研究 (3): 41-43。
王秀娟、張坤生、任雲霞、姚俊。2008。海藻酸鈉凝膠特性的研究。食品工業科技 2: 259-262。
石彥國、任莉。1993。大豆製品工藝學。中國輕工業出版社。北京 。
田豐鎮。2000。虱目魚之加工利用。食品資訊,No. 175: pp 34-39。
行政院農委會漁業署。2012。中華民國台閩地區漁業統計年報。
李玉珍、林親錄。2006。大豆分離蛋白在肉品中的應用進展。肉類研究
12:26-30。
李志釗、葛玲、穆國華。2000。 豬血資源綜合開發利用產業化的探討食品研究與開發。21(11): 31-32。
李健全。1979。吳郭魚單性養殖之理論與實際。中國水產322: 11-3。
林金鶯。2006。血漿蛋白在鮮肉製品中的應用研究。肉類工業9:38-39。
吳美錚。2010。巨鯰與吳郭魚攻佔全球海鮮市場。水產月刊 (5)6:666。
林慶陽、王進琦。2000。養殖期間虱目魚體及一般成分之變化。台灣農業化學與食品科學 38(3): 233-8。
胡國華。2003。功能性食品膠。化學工業出版社。北京。
胡興華。2000。話漁台灣。行政院農委會漁業署1-10 頁。
徐季亮。1999。羧甲基纖維素鈉在冰淇淋中的應用。 冷飲與速凍食品工業 4: 22-24。
高大翔。2003。以染劑錯合及光譜法鑑定食品多醣。靜宜大學食品營養研究所碩士學位論文。
高勃、湯烈貴。1996。纖維素科學。科學出版社。北京。
郭文怡。1999。簡介卡德蘭膠與食品上之應用。烘焙工業 85:63-5。
張丹鳳。2006。乳清蛋白的營養價值及其應用。新疆畜牧業 6:17-19。
莊志仁。2005。食用膠之技術與應用。華香園出版社,台北,台灣。
張芳、徐學方。 2001。酪朊酸鈉在食 品工業中的應用。肉類工業6: 31-3。
張瑞宗、郭建賢。2010。台灣鯛分子鑑定平台之建立及其應用。動物與水產生技 22: 30-7。
張慧旻、陳從貴、聶興龍。2007。結冷膠與海藻酸鈉對低脂豬肉凝膠改
性的影響。食品科學 28(10):8。
黃來發、洪文生、黃愷。2000。食品增稠劑。中國輕工業出版社。北京。
曾少葵、蔣志紅、吳紅棉。2001。淮山提取液替代羧甲基纖維素鈉作為酸奶穩定劑的效果研究。 湛江海洋大學學報(1):52-4 。
詹志萍。1997。羧甲基纖維素鈉的內在質量及其對酸性食品質量的影響。中國食品添加劑 (4):38-39。
賈光鋒、范麗霞、王金水。2004。小麥麵筋蛋白結構、功能性及應用。糧食加工,(2): 11-3。
趙新淮、徐紅華、姜毓君。2009。食品蛋白質結構、性質與功能。科學出版社。北京。
劉玉萍。2006。添加物與儲存條件對卡德蘭膠製品質感特性與離水性之影響。國立海洋科技大學食品科學系碩士學位論文。
劉志皋、何濤。1996。酪蛋白酸鈉的功能特性及其應用。中國食品添加劑 1:19~21。
劉富光。2002。吳郭魚養殖。水產試驗所 10: 168-9。
劉富光、劉嘉剛。1982。不同孵育方式對吳郭魚繁殖潛力的影響。台灣試驗所試驗報告34: 187-195。
賴鳴鳳、呂政義。 2003。食品碳水化合物。基礎食品化學。張為憲等編
彙。
陳淑德、保愛貞、陳輝煌。2004。微波油炸龍鬚菜鯖魚排之研究。宜蘭大學生物資源學刊 1:51-61。
蔡雪貞。2008。秋刀魚重組魚排最適化加工配方之開發。屏東科技大學食品科學系碩士論文。
顧敏。2011。轉穀氨醯胺酶與不同添加物混合對重組肉的影響。南京農
業大學食品科技學院本科生畢業論文。
Aeschlimann D, Paulsson M. 1994. Transglutaminases: protein
cross-linking enzymes in tissues and body fluids. Thromb Haemost.
71(4): 402-415.
Alava VR. 1998. Effect of salinity, dietary lipid source and level on growth of milkfish (Chanos chanos) fry. Aquaactlure 167: 229-36.
Ando H,Adachi M,Umeda K, Matsuura A, Nonaka M, Uchio R. 1989. Purification and characterization of novel transglutaminase derived from
micro-organisms. Agric Biol Chem 53: 2613-617.
Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R,
Tanaka H, Motoki M. 1989. Purification and characteristic of a novel
transglutaminase derived from microorganisms. Agric. Biol. Chem.
53: 2613-2617.
Cacot P, Lazard J. 2004. Domestication of two species of
Pangasiid catfish in the Mekong delta. Productions Animales
17:195–198.
Chien YH, Chou YH. 1989. The effects of residual chlorine temperature and
salinities on the mortality of Larvae milkfish(Chanos chanos). J Fish Soc 16:271-80.
Chin KB, Go MY, Xiong YL. 2009. Effect of soy protein substitution for sodium caseinate on the transglutaminate-induced cold and thermal gelation of myofibrillar protein. Food Research International 42: 941-8.
Clarke DD, Mycek MJ,Neidle A, Waelsch H.1957. Arch. Biochem Biophys 79: 338-335.

Clarke DD, Mycek MJ, Neidle A, Waelsch H. 1959. The incorporation ofamines into protein. Arch. Biochem. Biophys. 79:338-354.
Cottrell IW, Kang K S. 1978. Xanthan gum. A unique bacterial
polysaccharibe for food applixcations. In Developments in
Industrial Microbiology, Vol. 19, p. 117-131. Plenum Press, Elmsford,
NY. USA.
Cui L, Du GC, Zhang DX, Liu H, Chen J. 2007. Purification and
characterization of transglutaminase from a newly isolated
Streptomyces Hygroscopicus. Food Chemistry 105: 612–8.
Cui Y, Zhang L. 2009. Advancement of Research on Transglutaminases.Biotechnology bulletin. 1: 32-4.
Dabrowski K, Kozar B. 1979. The use of fish meal and soybean meal as aprotein
source in the diets of grass carp fry. Aquaculture 18: 107-14.
Duran R,Junqua M,Schmitter JM,Gancet C, Goulas P.1998.
Purification, characterization and gene cloning of transglutaminase from
Streptoverticillum cinnamoneum CBS 683.68. Biochimie 80: 313-9.
Folk JE, Cole PW. 1966. Mechanism of action of guinea pig liver
transglutaminase. The journal of biological chemistry 241: 5518-5525.
Folk JE. 1970. Transglutaminase in Method in Enzymology, Tabor, H. and C. W. Tabor(ed.), Vol. 17, pp. 889-894. Acadenic Press, New York.
Folk JE. 1980. Transglutaminases. Annu Review of Biochemistry, 49: 517-531.
Glicksman M. 1982. Chapter 6 Curdlan. In Food Hydrocolloids. Volume I. M. Glicksn, (Eds.). p.151-156.CRC Press, Inc., New York .
Guo M, Fox P F, Flynn A, Mahammad KS. 1989. Heat-induced changes
in sodium caseinate.J. Dairy Res. 56: 503-512.
He JL, Li KX. 2008. The application of whey protein in food industry. China
Food additives 2: 65-9.
Hermansson AM. 1982. Gel characteristics-structure as related to
texture and water binding of blood plasma gel. J. Food sci. 47:1965-1972.
Hoyo PD, Redueles M, Diaz M. 2008. Effect of processing on functional
properties of animal blood plasma. Meat Science 78(4): 522-528.
Icekson I, Apelbaum A. 1987. Evidence for Transglutaminase Activity in
Plant Tissue. Plant Physio 184: 972-974.
Jansson PE, Kenne L, Lindberg B. 1975. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research
45: 275.
Jiang ST, Lee JJ. 1992. Purification, characterization and utilization of pig
plasma factor XIIIa. Journal of Agricultural and Food Chemistry 40: 1101-1107.
Kang H, Cho YD. 1996. Purification and properties of transglutaminase from soybean (Glycine max) leaves. Biochemical and Biophysical ResearchCommunications 223(2): 288-292.
Karakawa Atsushi. 2003. Useful technology of protein for making
heat-resistance jam for bakery products. Japan Fudo Ssiensu
Kerry JF, Stack FF, Buckley DJ. 1999. The rheological properties of exudates from cured porcine muscle: effects of added nonment proteins. J. Sci. food Agric. 79: 101-106.
Kitabatake N, Doi E.1993. Improvement of protein gel by physical and enzymatic treatment. Food Rev. Int. 9: 445-471.
Ko WC, Liau SC. 1994. Thermal gelation propertles of milkfish cultured in
Taiwan. Japan Soc Food Sci Technol 41: 574-7.
Kumazawa Y, Nakanishi K, Yasueda H, Motoki M. 1996. Purification
and characterization of transglutamonase from walleye pollack liver.Fisheries Sci. 62:959-964.
Kuraishi C, Sakamoto J, Yamazaki, Susa K Y, Kuhara C, Soeda T.
1997. Production of Restructured meat using microbial transglutaminase
without salt or cooking. J. Food Sci. 62(3): 488-490.
Lusas EW, Riaz MN. 1995. Soy protein products: Processing and application .The Journal of nutrition 125(3): 573-580.

Lu SY,Zhou ND,Tian YP,Li HZ, Chen J.2003. Purification and properties of transglutaminase from streptoverticillium mobaraense. J FoodBiochem 27: 109-126.
Lutz CG. 1997. Recent directions in tilapia genetics.Aquaculture (6)23: 61-8.
Mahesh C, Ramavatar M, Kamalesh P. 2009. M icrowave assisted rapid method for hydrolysis of sodium alginate for M /G ratio determination . Carbohydrate Polymers 76 (4) : 650-656.
Matheis G, Whitaker JR. 1987. A review: enzymatic cross-linking of proteins applicable to food. J. Food Biochem. 11: 309-329.
Motoki M, Aso H, Seguro K, Nio N. 1987. αs1-casein film
prepared using transglutaminase. Agric. Biol. Chem. 51: 993-996.
Motoki M, Kumazawa Y.2000. Recent Research Trends inTransglutaminase technology for food processing. Food sci technol Res 26: 151-160.
Motoki M, Seguro K. 1998. Transglutaminase and its use for food processing. Trends in Food Sci and Technol 9: 204-210.
Mulvihill DM, Kinsella JE. 1987. Gelation characteristics of whey proteins
and β-lactoglobulin. Food Technol. 32: 102-111.
Okerman HW, Hansen C L. 1988. Blood Utilization. In: Animal by-product
processing. Ellis Horwood, New York.
Peters TJ. 1985. Serum albumin.Adv. Protein Chem. 37: 161-245.
Phillips MJ. 2001. Fresh water aquaculture in the lower mekong
basin. MRC Technical Paper No. 7, Mekong River Commission,
Phnom Penh 62 pp ISSN: 1683–1689.
Robyt JF. 1997. Plant polysaccharides. Essentials of carbohydrate Chemistry 180-183.
Seratini FD, Del D, Beninati S, Dondini L, Bergamini.1996. Conjugatedpolyamines in Algae and in higher plants. Phytochemistry 40: 355-365.
Soares LHB, Assmann F, Ayub MAZ. 2003. Purification and properties of
a transglutaminase produced by a Bacillus circulans strain isolated from
the Amazon environment. Biotechnol Appl Biochem 37: 295-299.

Suklim K, Flick JR, George J, Marcy JE, Eigel WN, Haugh CG, Granata LA. 2004. Effect of cold-set binders: alginates and microbial transglutaminase on the physical properties of restructured scallops. Journal of
Texture Studies. 35: 634–642.
Sumagaysay NS. 1993. Growth and food consumption of milkfish during dry and wet seasons. J Apple Lchthyo l 9:65-73.
Sun J, Dong S. 2009. The functional properties of protein in food system-soy protein and wheat gluten protein. Meat research(9): 70-80.
Suzuki S, lzawa Y, Kobayashi K, Eto Y, Yamanaka S, Kubota K, Yokzeki K.2000. Purification and characterization of novel transglutaminase from Bacillus subtilis spores. Bioscience, Biotechnology, and Biochemistry 64: 2344-2351.
Szczesniak AS. 1998. Sensory Texture Profiling Historical and Scientific
Perspectives. Food Technology. 52 (8): 54-7.
Tsai G J, Lin SM, Jiang SH. 1996.Transglutaminase from
Streptoverticillium ladakanum and application to minced fish
product. Journal of Food Science, 61(6): 1234–1238.
Tseng TF , Liu DC, Chen MT. 2000. Evaluation of transglutaminase
on the quality of low-salt chicken meat-balls. Meat Science 55:427-31.
Tada T, Matsumoto T, Masuda T. 1999. Dynamic viscoelasticity and small-angle X-ray scattering studies on the gelation mechanism andnetwork structure of curdlan gels. Carbohydrate Polymers 39: 53-9.
Tovar C A, Franco I. 2004. Influence of the ripening time on the viscoelastic
behavior of Tetilla cheese. Food Science and Technology International
10(5):305-313.
Tsao CY, Kao YC, Hsieh JF, Jiang ST. 2002. Use of soy protein and microbial transglutaminase as a binder in low-sodium recombinant tructured meats. Journal of Food Science. 67: 3502-6.
Umezawa Y,Ohtsuka T,Yokoyama K,Nio N.2002. Comparison of Enzymatic Properties of Microbial Transglutaminase from Streptomyces
sp. Food Sci Technol Res. 8: 113-118.
Weisel JW, Stauffacher CV, Bullitt E, Cohen C. 1985. A model for
fibrinogen: Domain and sequence. Science. 230:1388-1391.
Yang Q, Hu GH, Zheng M A. 2010. The review the characteristics of sodium alginate and its application in meat products. China Food
Additives 1:164-8.
Zhu J, Rinzema A, Tramper J. Bol J. 1995. Microbial tranglutaminase a review of its production and application in food processing. Appl.
Microbial. Biotechnol. 44: 277-282.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔