跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 07:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李長恩
研究生(外文):Chang-En Lee
論文名稱:季節溫度及水量對養豬廢水處理之影響
論文名稱(外文):Effects of Seasonal Temperatures and Water Volume on Swine Wastewater Treatment
指導教授:夏良宙夏良宙引用關係
指導教授(外文):Liang-Chou Hsia
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:動物科學與畜產系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:81
中文關鍵詞:季節溫度養豬廢水水量
外文關鍵詞:Seasonal temperatureSwine wastewateWater volume
相關次數:
  • 被引用被引用:3
  • 點閱點閱:623
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:0
養豬產業從以前的兼業飼養到現今的規模式飼養,廢水處理模式已是原先田地排放所無法涵蓋,目前多數養豬戶因廢水進流濃度不穩定、廢水量過大抑或季節變化,均造成廢水處理設施功能無法彰顯。有關三段式處理效益之研究,皆在70年代完成,已不符合現今情勢,因此本研究的目的在於探討經過三段式處理之養豬廢水其水量與季節間的關聯性,透由本研究統計2007年到2012年資料,了解環境因素對一貫式豬場廢水處理之影響,進而尋找最適方式。
本研究試驗場地位於嘉義縣台糖南靖畜殖場,試驗分為涼季、溫季及熱季三個季節,試驗分三大部份,第一部分為季節與放流水量及水力停留時間的關係,結果指出放流水量的平均值在涼季為10,077.96公噸,溫季為11,036.44公噸,熱季為12,314.07公噸。水力停留時間的平均值在涼季為25.19天,溫季為22.88天,熱季為20.39天。在熱季的放流水量比涼季多(P &;lt; 0.001),且因為放流水量的關係,所以在熱季的水力停留時間比涼季少(P &;lt; 0.001)。在季節與放流水量的趨勢為熱季>溫季>涼季。在季節與水力停留時間的趨勢為涼季>溫季>熱季;第二部分為季節與原廢水水質及放流水水質的關係,在原廢水的部分,水溫與pH顯著受季節
影響(水溫:P &;lt; 0.001;pH:P &;lt; 0.05)。在放流水的部分,BOD的平均值在涼季為70.44 mg/L,在溫季為52.86 mg/L,在熱季為37.99 mg/L。COD的平均值在涼季為441.74 mg/L,在溫季為349.47 mg/L,在熱季為268 mg/L。放流水的BOD與COD均顯示在熱季的水質比涼季好(P &;lt; 0.001),放流水之BOD及COD處理效果上依季節排序依序為熱季>溫季>涼季;第三部分為豬隻所消耗的飼料量及糞渣產出量與季節的關係,飼料消耗量的平均值在涼季為173.44公噸,在溫季為166.64公噸,在熱季為153.62公噸。糞渣產出量的平均值在涼季為34.89公噸,在溫季為33.83公噸,在熱季為31.87公噸。在涼季消耗的飼料量比熱季多,且當飼料消耗多,糞渣產出量也隨之增加(P &;lt; 0.001),在飼料消耗量及糞渣產出量依季節排序依序為涼季>溫季>熱季。
由於養豬廢水的水質受養豬場豬隻飼養頭數、飼養方式及沖洗水來源等的影響,其理化特性十分複雜,且彼此之間各項水質的歧異也頗大,甚至相同的處理場隨著時間、季節的不同,其水質也有很大的差異,故從實際廢水的條件中,欲歸納出單一變因以確認對水質的影響並不容易。由上述結果得知,季節與放流水量及水力停留時間對於養豬廢水影響顯著,依據本試驗可看出季節對放流水量、水力停留時間、水質和豬場飼料消耗量及糞渣產出量的趨勢。在養豬廢水的處理上,依現今政府規定的廢水排放標準,在熱季和溫季時,放流水大多可符合標準。但在涼季,因氣溫降低,使微生物的活性降低,廢水處理效率大受影響,放流水的水質普遍較熱季及溫季差,且在涼季放流水水質較易超過排放標準,所以在涼季時,因微生物活性較差,必要時,可控制水量,利用減少原廢水的進流量,以增加水力停留時間使微生物的作用時間增長,來達到增進水質之功效。

Currently, hog industry has transformed from family business to a large-scaled industry. The amount of effluent water is already way over a farm’s ability to dispose wastewater. Furthermore, the environment pollution, green house effects and green awareness make public aware of controlling water pollution generated by hog industry. All these explain the importance of having 3-step wastewater disposal pipeline techniques. Currently, because of the variation in the wastewater inflow amount, the huge volume of wastewater and seasonal change, the wastewater treatment facilities in most hog companies cannot fully function. Furthermore, when hog solid disposals are soaped in water, they are dissolved into water. This phenomenon increases the waste level and reduces the level of the organic components and the efficiency of resource recycling. Additionally, all related research about the
benefit of using 3-step waste water disposal pipeline techniques have been conducted in 1980s and cannot reflect the current hog industry status. Therefore, this work would like to analyze the statistical data collected from 2007 to 2012 to understand the impacts of environmental factors on the wastewater disposal pipeline in a hog industry and to seek a good solution for waste water disposal.
This work is conducted in the Nan-Jin branch of Taiwan Sugar Corporation in Jia-Yi and the experiments separate into cool seasons, warm seasons and hot seasons. This work has conducted three experiments: The first experiment explores the relationship of the water usage and retention period with different seasons. We found that a cool season uses average 10,077.96 tons, a warm season uses average 11,036.44 tons and a hot season uses average 12,314.07 tons of water. The water retention period in a cool season is average 25.19 days, The water retention period in a warm season is average 22.88 days and the water retention period in a hot season is average 20.39 days. The water usage in a hot season is larger than a cool season with
P &;lt; 0.001 and the water retention period in a hot season is shorter than a cool season with P &;lt; 0.001. The water usage trend is hot season> warm season > cool season. The water retention period is cool season> warm season> hot
season. The second experiment explores the relationship between seasonal water usage and the quality of effluent water. When checking the wastewater quality at the entrance, the seasonal change is an important factor on the water temperature and pH ( water temperature with P &;lt; 0.001; pH with P &;lt; 0.05). BOD of effluent water in a cool season is 70.44 mg/L, BOD in a warm season is 52.86 mg/L and BOD in a hot season is 37.99 mg/L. COD of effluent water in a cool season is 441.74 mg/L, COD in a warm season is 349.47 mg/L and COD in a hot season is 268 mg/L. Based on COD and BOD, the water quality
is better in a hot season than in a cool season with P &;lt; 0.001. The processing efficiency of effluent water BOD and COD is hot season>warm season>cool season. The third experiment explores the relationship between the consumed forage volume and the amount of dropping. Consumed forage volume in a cool season is average 173.44 tons, consumed forage volume in a warm season is average 166.64 tons and consumed forage volume in a cool season is average 153.62 tons. The amount of dropping in a cool season is average 34.89 tons, the amount of dropping in a warm season is average 33.83 tons, the amount of dropping in hot season is average 31.87 tons. The consumed forage volume is larger in a cool season than in a hot season with P &;lt; 0.001. The consumed forage volume and the amount of dropping is cool season>warm season>hot season.
Generally the quality of wastewater is affected by the number of the hogs, the feeding method, the source of syringing water and other factors. It is too complex to understand the relationship of these factors on the quality of wastewater. Even the same handling site has different quality of wastewater when the season is different. Therefore, it is not easy to identify the effect of a single factor. According to the previous discussion, the seasonal temperature, water retention period and water consumption have large impact on the effluent water. This work shows that the seasonal temperature has significant effects on the water volume, retention period, waste water quality, the consumed forage and the amount of dropping. According to the current government regulations, the effluent water quality can fulfill the requirement in a hot and warm season. However, in a cool season because the temperature decreases, the decomposing abilities of germ decrease to reduce the wastewater handling abilities. As a result, the water quality are the worst in the three experimental seasons. The recommendation is to reduce the amount of wastewater volume to increase the processing time of germ to improve the water quality.

摘 要 I
Abstract III
誌 謝 VI
目 錄 VII
圖表目錄 IX
第壹章 緒論 1
一、前言 1
二、研究目的 2
第貳章 文獻檢討 3
一、台灣豬隻飼養現況 3
二、養豬廢水之污染情形 4
三、豬隻排泄物污染量 5
四、養豬廢水之特性 8
五、養豬廢水之處理方法 11
六、台糖公司豬糞尿廢水之處理流程-兼曝氣處理系統 18
七、豬糞尿二級處理排放水之特性與標準 20
八、廢水之生物處理之影響因子 22
九、豬隻排泄量的減廢方法 28
十、溫度與水力停留時間對養豬廢水之影響 33
第參章 材料與方法 34
一、試驗場所 34
二、豬場背景資料 34
三、試驗時間及資料收集 34
四、廢水處理設備規範 34
五、分析項目 36
六、分析方法 37
七、試驗設計 47
八、統計分析 47
第肆章 結果與討論 48
試驗一、季節與放流水量及水力停留時間的關係 48
試驗二、季節與原廢水水質及放流水水質的關係 49
試驗三、豬隻所消耗的飼料量與糞渣產出量的關係 54
第伍章 結論與建議 55
參考文獻 57
附錄 65
作者簡介 81

行政院環境保護署http://www.epa.gov.tw/。
行政院環境保護署環境檢驗所http://www.niea.gov.tw/。
行政院農業委員會http://www.coa.gov.tw/。
行政院農業委員會畜產試驗所http://www.tlri.gov.tw。
全國法規資料庫http://law.moj.gov.tw/。
王宇萱。2008。高溫好氧處理對造紙纖維廢水之可行性初步研究。碩士論文。國立中興大學環境工程學系。台中市。
王敏昭、曾景山、陳立夫、王百祿。2000。溪湖與南靖糖廠豬糞尿二級處理排放水土壤處理場址之適當性之評估。台糖公司研究所研究彙報168:15-31。
林健榮。1989。厭氣污泥床法處理養豬廢污之研究。碩士論文。國立成功大學環境工程研究所。台南市。
林鴻琪。1989。台灣養豬廢水問題。水污染防治研討會。pp. 77-93。
洪嘉謨、郭猛德。2001。豬糞尿處理與資源化。畜牧要覽養豬篇。第327-394頁。中國畜牧學會。
洪嘉謨、蘇清全、郭猛德、林財旺、徐彩煥、李啟忠、沈韶儀。1997。三段式豬糞尿理系統之評估-放流水質與87年環保標準比較(I)。畜產研究30:379-386。
洪嘉謨。1984。無濾料式厭氣發酵槽:提高有機物停留之研究。畜產研究17:99-124。
洪嘉謨。1999。跨世紀養豬排泄廢棄資源處理技術。台灣省畜產試驗所專輯第60號。
夏良宙。1992。豬的世界。黎明文化事業公司。pp. 209-232。
夏聰惠、萬騰州。2002。環境工程概論。中華民國環境工程學會編印。
徐玉標。1983。豬糞尿之污染及管理。中國農業工程學報。第29卷。第一期。
徐貴新。1993。間歇式活性污泥單元處理養豬廢水之研究。碩士論文。國立台灣大學農業工程學系。台北市。
徐錠基、辜瑞泰、方江龍。1989。厭氣、好氣活性污泥法處理豬糞尿廢水之研究。第十四屆廢水處理技術研討會論文集。
翁靖媛。2007。高溫菌分解有機污泥之影響因子。碩士論文。國立中興大學環境工程學系。台中市。
高肇潘、張祖恩。1985。抑制物質對厭氣濾床處理法之影響。第十屆廢水處理技術研討會論文集。
張自杰、何苗。2001。工業廢水處理與回用技術。馮林環境保護基金會。
張原志。2004。豬場廢水處理規劃線上諮詢系統。碩士論文。國立中興大學畜產學系。台中市。
張欽裕。1996。以不同的無(厭)氣-好氧程序處理養豬廢水中碳、氮及磷之研究。碩士論文。國立臺灣大學環境工程學研究所。台北市。
張錦松、黃政賢。1993。環境工程概論。新科技書局。
許汎瑋。2000。以曝氣砂濾系統處理豬糞尿排放水之研究。碩士論文。國立成功大學環境工程學系。台南市。
郭士賢。2006。屏東縣肉品拍賣市場及屠宰場廢水好氣性處理之研究。碩士論文。國立屏東科技大學畜產系。屏東縣。
郭猛德、蕭庭訓、王政騰。2008。養豬三段式廢水與污泥處理技術。第五屆畜牧污染防治技術研討會論文集。
郭猛德、蕭庭訓。2009。養豬三段式廢水與污泥處理技術。
郭猛德。1994。豬糞尿廢水厭氣處理在不同操作條件下之處理效率、污泥產量與性質之研究。碩士論文。國立台灣大學畜產學系。台北市。
陳志銘。2002。UASB串聯活性污泥系統處理養豬廢水之動力行為。碩士論文,國立成功大學環境工程學研究所。台南市。
陳勇成。2000。AOAO處理程序添加固定化微生物處理養豬廢水之研究。碩士論文,國立雲林科技大學環境與安全工程系。雲林縣。
陳國誠。1996。廢水生物處理學。3rd 第七章。台北:茂昌。
傅政敏、劉盛華、劉煥章、龔士源、陳炎戊、黃清松。1996。降低養豬場放流水導電度之研究。台糖畜產2:55-65。
傅政敏、陳逢耀、林宏岳。1995。回分是活性污泥法(SBR)處理養豬廢水之研究。台糖畜產1:33-41。

曾四恭。2009。廢水厭氣處理。行政院農業委員會畜產試驗所畜牧場廢水汙染防治輔導種子人員研習班。pp. 95-115。
曾四恭。1992。豬糞尿廢水中氮磷去除方法之研究。國立台灣大學環境工程研究所研究報告第130號:51。
曾迪華、吳正宏及林冠嘉。1991。污泥好氧消化操作特性與消化污泥脫水性質之研究。第十七屆廢水處理技術研討會論文集。
辜瑞泰。1989。厭氣、好氣活性污泥法處理豬糞尿之研究。碩士論文。淡江大學水資源及環境工程系。臺北縣。
黃品學。2003。豬廢尿廢水導電度之研究。碩士論文。國立屏東科技大學畜產系。屏東縣。
黃啟民、傅政敏。1992。豬糞尿經濟簡易處理方法之開發。第二屆經濟部所屬事業研究發展環保技術交流會論文集。
楊萬發。1989。厭氣槽選擇與設計比較。
葉俊廷。2003。水力保留時間對生物氮磷去除系統之影響。碩士論文。國立臺灣大學生物產業機電工程研究所。台北市。
劉玉婷。2002。畜牧廢水土壤施用對場址評估及水體水質之影響。碩士論文。國立中興大學土壤環境科學系。台中市。
劉邦祺,2002。彰化地區畜牧廢棄物之養分物質與農地涵容能力時空變遷趨勢之研究。碩士論文。國立台灣大學生物環境系統工程學系暨研究所。台北市。
樓基中,黃建二。2005。嘉義縣環保局畜牧業暨一般事業法令說明會。
蔡孟耕。1993。養豬廢水以化學沉澱法去除磷之探討。第18屆廢水處理技術研討會論文集。
蔡綾。2008。畜牧有機質材之循環再利用對金門農地中重金屬之影響。碩士論文。國立中興大學環境工程學系。台中市。
鄭三寶、白火城、米志成、劉炳燦。1997。畜牧(二)。三民書局。pp. 159-172。
賴盈仲。2004。畜殖廢水土壤處理對(i)場址及相鄰環境水質以及(ii)滲漏計土壤性質與水質之影響。碩士論文。國立中興大學土壤環境科學系。台中市。

簡禎嫺。2010。豬糞尿廢水處理系統結合植生復育之應用-不同水生植物與微生物之相互關係探討。碩士論文。國立中興大學環境工程學系。台中市。
賈塔欣。2009。生物膜對豬隻廢水厭氣處理效果之研究。碩士論文。國立屏東科技大學熱帶農業暨國際合作系所。屏東縣。
Akarsubasi, A. T., O. Ince, B. Kirdar, N. A. Oz, D. Orhon, T. P. Curtis, I. M. Head, and B. K. Ince. 2005. Effect of wastewater composition on archaeal population diversity. Wat. Res. 39:1576-1584.
Bernard, S., and N. F. Gray. 2000. Aerobic digestion of pharmaceutical and domestic wastewater sludges at ambient temperature. Wat. Res. 34:725-734.
Cook, K. L., M. J. Rothrock, Jr., N. Lovanh, J. K. Sorrell, and J. H. Loughrin. 2009. Spatial and temporal changes in the microbial community in an anaerobic swine waste treatment lagoon. Anaerobe. 1-9.
Delwiche, C. C., and B. A. Bryan. 1976. Denitrification. Ann. Rev. Microbiol. 30:241-262.
Den Hartog, L. A., G. B. C. Backus, and J. A. M Voermans. 1991. Trends in Pig Production in the Netherlands. pp.51-61.
Dugba, P. N., and R. H. Zhang. 1999. Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems-thermophilic versus mesophilic operations. Bioresource Technol. 68:225-233.
Ellwood, B. N., and I. G. Mason. 2003. Characteristics of farm dairy yard wastewater related to biological nutrient removal. ASAE. 46:825-827.
Ga, C. H., and C. S. Ra. 2009. Real-time control of oxic phase using pH (mV)-time profile in swine wastewater treatment. Hazard Waste Hazard. 172:61-67.
Ghaly, A. E. 1996. A comparative study of anaerobic digestion of acid cheese whey and dairy manure in a two-stage reactor. Bioresource Technol. 58:61-72.
Goluke, C. G. 1958. Temperature effects on anaerobic digestion of raw sewage sludge and industrial wastes. 30:20-30.

Grady, C. P. L., and H. C. Lim. 1980. Biological Wastewater Treatment. Marcel Dekker, Inc., New York, NY.
Hanaki K., C. Wantawin, and S. Ohgaki. 1990. Nitrification at low levels of dissolved oxygen with and wit-hout organ loading in a suspended growth reactor. Wat. Res. 24:297-302.
Hsia, L. C. 2004. The achievement of Environmental Center for Livestock Waste Management (ECLWM) from 1997 to 2004. The Environmental Center for Livestock Waste Management’s Fifth International Symposium. pp.163-196. National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC.
Inamori, R., Y. Wang, T. Yamamoto, J. Zhang, H. Kong, K. Xu, and Y. Inamori. 2008. Seasonal effect on N2O formation in nitrification in constructed wetlands. Chemosphere 73:1071-1077.
Juteau, P., D. Tremblay, C. Ould-Moulaye, J. Bisaillon, and R. Beaudet. 2004. Swine waste treatment by self-heating aerobic thermophilic bioreactors. Wat. Res. 38:539-546.
Koster, I.W., and G. Lettinga. 1984. The influence of ammonium-nitrogen on the specific activity of pelletized methanogenic sludge. Agric. Wastes 9, 205-216.
Lapara, T. M., C. H. Nakatsu, L. M. Pantea, and J. E. Alleman. 2001. Aerobic biological treatment of a pharmaceutical wastewater: effect of temperature on cod removal and bacterial community development. Wat. Res. 35:4417-4425.
Lettinga, G. A., F. M. Van-Velsen, S. W. Hobma, W. J. De-Zeeuw, and A. Klapwijk. 1980. Use of the Upflow Sludge Blanket (USB) reactor concept for biological wastewater treatment. Biotechnology and Bioengineering. 22:699-734.
Lovanh, N., J. H. Loughrin, K. Cook, M. Rothrock, and K. Sistani. 2009. The effect of stratification and seasonal variability on the profile of an anaerobic swine waste treatment lagoon. Bioresource Technol. 100:3706-3712.

Maharaj, I., and P. Elefsiniotis. 2001. The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters. Bioresource Technol. 76:191-197.
Mason, C. A., A. Haner and G. Hamer. 1992. Aerobic thermophilic waste sludge treatment. Wat. Sci. Technol. 33:113-118.
Masse', D. I and L. Masse. 2000. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors. Can. Agr. Eng. 42:131-137.
Massé, D. I. and R. L. Droste. 2000. Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor. Wat. Res. 34:3087-3106.
Masse', D. I., L. Masse and N. Bourgeois. 2000. Anaerobic processing of slaughterhouse wastewater in a SBR. Can. Agr. Eng. 42:375-387.
McCarty, P. L. 1964. Anaerobic waste treatment. Fundamental Public Works Magazine 95:107.
McCarty, P. L., L. Beck and P. St. Aunt. 1969. Biological process design for wastewater. Prentice-Hall. Inc. New Jersey, U. S. A. :429-449.
Moore, A. D., D. W. Israel, and R. L. Mikkelsen. 2005. Nitrogen availability of anaerobic swine lagoon sludge: sludge source effects. Bioresource Technol. 96:323-329.
O'Neill, C., F. R. Hawkes, D. L. Hawkes, S. Esteves, and S. J. Wilcox. 2000. Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Wat. Res. 34: 2335-2361.
Osada, T., K. Haga, and Y. Harada. 1991. Removal of nitrogen and phosphous from swime wastewater by the activated sludge units With the intermittent aeration process. Wat. Res. 9:25-30.
Pagilla, K. R., H. Kim, and T. Cheunbarn. 2000. Aerobic thermophilic and anaerobic mesophilic treatment of swine waste. Wat. Res. 34:2747-2753.

Parkin, G. F., and W. F. Owen. 1986. Fundamentals of anaerobic digestion of wastewater sludges. Environ. Eng. Geosci. 112:867-920.
Poach, M. E., P. G. Hunt, G. B. Reddy, K. C. Stone, M. H. Johnson, and A. Grubbs. 2007. Effect of intermittent drainage on swine wastewater treatment by marsh–pond–marsh constructed wetlands. Ecol. Eng. 30:43-50.
Riley, D. W., and C. F. Forster. 2002. An evaluation of an autothermal aerobic digestion system. Trans IChemE. B 80:100-104
Roberts, R., W. J. Davies, and C. F. Forster. 1999. Two-stage, thermophilic-mesophilic anaerobic digestion of sewage sludge. Trans IChemE. B 77:93-97.
Roš, M., and G. D. Zupančič. 2002. Thermophilic aerobic digestion of waste activated sludge. Acta Chim. Slov. 49:931-943.
Roy, C. S., G. Talbot, E. Topp, C. Beaulieu, M. F. Palin, and D. I. Masse. 2009. Bacterial community dynamics in an anaerobic plug-flow type bioreactor treating swine manure. Wat. Res. 43:21-32.
Speece, R. E. 1996. Anaerobic biotechnology for industrial wastewater. Nashville, TN: Archae Press.
Strik, D. P. B. T. B., A. M. Domnanovich, and P. Holubar. 2006. A pH-based control of ammonia in biogas during anaerobic digestion of artifical pig manure and maize silage. Process Biochem. 41:1235-1238.
Su, J. J. 2000. Interference of nutrite in COD measurement of swine wastewater and strategies for advanced nitrite removal. Proceeding Qctober 24-27:147-159.
Summers, R. and S. Bousfield. 1976. Practical aspects of anaerobic digestion. Process Biochem. 11:3-6.
Tripathi, C. S. and D. G. Allen. 1999. Comparison of mesophilic and thermophilic aerobic biological treatment in sequencing batch reacyors treating bleached kraft pulp mill effluence. Wat. Res. 33:836-846.

Westerman, M., M.S. Springer., J. Dixon., and C. Krajewski. 1999. Molecular relationships of the extinct pig-footed bandicoot Chaeropus ecaudatus (Marsupialia: Perameloidea) using 12S rRNA sequences. J. Mammal. Evol. 6:271-288.
Whang, L.M., I. C. Chien, S. L. Yuan, and Y. J. Wu. 2009. Nitrifying community structures and nitrification performance of full-scale mnicipal and swine wastewater treatment plants. Chemosphere 75:234-242.
Zhu, G. F., J. Z. Li, P. Wu, H. Z. Jin, and Z. Wang. 2008. The performance and phase separated characteristics of an anaerobic baffled reactor treating soybean protein processing wastewater. Bioresource Technol. 99:8027-8033.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top