(3.238.173.209) 您好!臺灣時間:2021/05/16 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王孟宇
研究生(外文):Wang, Meng-Yu
論文名稱:生物炭對叢枝菌根菌產孢量和宿主植物生長之影響
論文名稱(外文):Effects of Biochar on the Sporulation of Arbuscular Mycorrhizal Fungiand Growth of Host-plant
指導教授:張焜標張焜標引用關係
指導教授(外文):Chan, Kun-Piau
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:森林系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:143
中文關鍵詞:生物炭叢枝菌根菌植物養份產孢量
外文關鍵詞:biochararbuscular mycorrhizal fungiplant nutrientsporulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
近年來生物炭作為土壤改良劑於是一項新興且受到關注的土壤改良方法,然關於添加生物炭至土壤對叢枝菌根菌影響的研究則較缺乏。本研究目的主要為了解生物炭作為添加劑對叢枝菌根菌純種孢子培養及其宿主生長之影響。本文探討之問題包含(1)應用稻殼及相思樹木材以不同溫度製成生物炭,並以不同比例添加至矽砂,對於試驗後化學特性及大量元素變化的影響;(2)稻殼生物炭及相思樹木材生物炭之熱解溫度及添加比例對細穗草與相思樹幼苗之生長量、生物量及植體養分的影響;(3)稻殼生物炭及相思樹木材生物炭之熱解溫度及添加比例對叢枝菌根菌感染率、感染強度及孢子生產的影響;(4)混炭矽砂、宿主植物與叢枝菌根菌三者間的相互影響。
本研究結果顯示矽砂混合稻殼炭或相思樹炭,試驗後pH隨製炭溫度增加而提高,但隨添加量增加而減低,且均低於對照組(純矽砂,CK);有效性Ca、K及Mg均隨製炭溫度增加而降低,並隨添加比例增加而提高,但有效性Na和P則反。混炭矽砂之有效性養分濃度均高於CK。
矽砂混合稻殼炭培育細穗草24 weeks,其電導度均低於CK,不同炭溫及炭量處理間無顯著差異;CEC隨製炭溫度增加而減低,添加比例間則無顯著差異;OM於不同炭溫處理間無顯著差異,但隨添加量增加而提高。矽砂混合相思樹炭培育相思樹幼苗48 weeks,其EC均高於CK,但不同炭溫及炭量處理間無顯著差異;CEC及OM均為300℃ > 500℃ > 700℃ > CK,5% > 3% > 1% > CK。
細穗草以矽砂添加稻殼炭培育,其生物量隨稻殼炭之製炭溫度減少,但隨稻殼炭之添加比例增加而提高。相思樹幼苗以矽砂添加相思樹炭培育,其生長量以添加300℃及500℃相思樹炭之處理為較好,添加700℃之處理為最差,並以矽砂添加3%及5%相思樹炭之處理有較好的生長量;相思樹幼苗的生物量隨相思樹炭之製炭溫度增加而減少,另以添加比例3%之處理有較好的趨勢,但於統計上無顯著差異。稻殼炭及相思樹炭添加至矽砂,隨製炭溫度及添加比例增加,分別提高細穗草及相思樹幼苗的N、C、P、K、Mn及Zn濃度,及減低Ca、Mg、Na、Fe及Cu濃度,唯一不同的是,矽砂混合相思樹炭促進相思樹幼苗自地下部運輸Fe至地上部。
矽砂混合稻殼炭或相思樹炭對叢枝菌根菌Glomus mosseae及G. spurcum之感染率無顯著影響,但均以混合300℃或500℃生物炭添加1%、3%及5%有較高的感染強度。無論宿主為細穗草或相思樹,G. mosseae產孢量均於矽砂混300℃稻殼炭或相思樹炭之處理為較多,G. spurcum之產孢量於矽砂添加5%之300℃稻殼炭或相思樹炭為最多。G. mosseae接種於相思樹以純矽砂培育之產孢量,如同矽砂混合300℃稻殼炭或相思樹炭之處理一樣為較高,G. mosseae接種於細穗草及G. spurcum接種於細穗草和相思樹,以矽砂培養之產孢量均較低。
生物炭添加至矽砂直接改變土壤養分有效性和間接提高植物生長,進而影響叢枝菌根菌的產孢,此外,接種叢枝菌根菌可直接促進植物的生長及間接改變土壤的特性。因此,植物接種叢枝菌根菌於矽砂混合生物炭可得到更好的生長勢。

Biochar used as a soil amender is an emerging and effective soil improvement mathod, but there are few studies on the effects of biochar soil on arbuscular mycorrhizal fungi (AMF). The issues discussed include (1) the effects of varying pyrolysis temperatures on rice husk biochar (RHC) and acacia wood biochar (AWC) and the ratio of biochar: silicon sand on chemical properties and nutrients variation; (2) the effects of varying pyrolysis temperature of biochar and biochar: silicon sand ratio on Lepturus repens and Acacia confusa seedling growth, biomass, and plant nutrient absorbtion; (3) the effects of varying pyrolysis temperature of biochar and biochar: silicon sand ratio on AMF infection rate, and the infection intensity, and sporulation, and (4) the interactions among the biochar-mixed silicon sand, host plant and arbuscular mycorrhizal fungi.
The results showed that pH of silicon sand mixed with RHC or AWC increased with high pyrolysis temperatures, but decreased with elevated biochar: silicon sand ratio, and lower than control group (pure silicon sand, CK). Available Ca, K and Mg concentrations were reduced with increased pyrolysis temperature, and increased with biochar: silicon sand ratio, but opposited in available N and P. Available nutrients of biochar-mixed silicon sand were higher than CK.
Electrical conductivity (EC) of RHC-mixed silicon sand used to culture L. repens over 24 weeks was lower than CK. There were no significant differences among pyrolysis temperature or biochar: silicon sand ratio. Cation exchange capacity (CEC) was reduced with increased pyrolysis temperature, but was no significant different among biochar : silicon sand ratio. Organize matter (OM) was not significantly different among pyrolysis temperatures, but increased with elevated biochar: silicon sand ratio. EC of AWC-mixed silicon sand added to cultured Acacia confusa seedlings over 48 weeks was higher than CK, but there were no significant differences among pyrolysis temperatures or AWC: silicon sand ratio. CEC and OM were 300℃ > 500℃ > 700℃ > CK, 5% > 3% > 1% > CK.
The biomass of L. repens cultured by RHC-mixed silicon sand decreased with high temperature pyrolysis RHC, but increased with elevated RHC: silicon sand ratio. The growth of A. confusa cultured by AWC-mixed silicon sand was best with 300℃ and 500℃ AWC, but worst with 700℃ AWC. RHC: silicon sand ratios of 3% and 5% had the best growth, but showed no significant difference among AWC: silicon sand ratios. RHC and AWC addition to silicon sand increased N, C, P, K, Mn and Zn concentration with increased pyrolysis temperatures and higher RHC: silicon sand and AWC: silicon sand ratios, but decreased Ca, Mg, Na, Fe and Cu concentrations. Only AWC-mixed silicon sand was found to stimulate A. confusa seedling transport of Fe from root to shoot.
There were no significant effects of RHC-mixed or AWC-mixed silicon sand on infection rate of Glomus mosseae and G. spurcum. The highest infection intensities were for silicon sand mixed with 1%, 3%, and 5% RHC and AWC of 300℃ or 500℃ pyrolysis. The highest sporulation of G. mosseae was silicon sand mixed with 300℃ RHC or AWC, and the highest sporulation of G. spurcum was silicon sand mixed with 5% of 300℃ RHC and AWC. Sporulation of G. mosseae inoculated in Acacia confusa seedlings grown in pure silicon sand was the same as silicon sand mixed with 300℃ AWC. The sporulation of G. mosseae inoculated in L. repens and G. spurcum inoculated in Acacia confusa and L. repens were higher than pure silicon sand.
Added biochar to silicon sand can directly change availability of soil nutrients, indirectly increase plant growth, and promote AMF sporulation. Inoculated AMF can directly improve growth of plants and indirectly change soil properties. Thus, growth of plant inoculated with AMF in biochar-mixed silicon sand can get better growth form.

摘要...................................................I
Abstract............................................III
謝誌..................................................VI
目錄.................................................VII
圖表目錄...............................................XI
壹、前言................................................1
貳、前人研究.............................................3
一、生物炭之定義和製造方式.................................3
二、生物炭的特性概述......................................5
(一)生物炭的物理性質......................................5
(二)生物炭的化學特性及養分濃度..............................6
三、叢枝菌根菌的概述與分類地位..............................8
(一)叢枝菌根菌之概述......................................8
(二)叢枝菌根菌分類系統的發展簡史與現今地位....................9
四、適合叢枝菌根菌生長的介質特性............................13
(一)介質物理特性對叢枝菌根菌的影響..........................13
(二)介質化學特性對叢枝菌根菌的影響..........................14
(三)介質養分特性對叢枝菌根菌的影響..........................15
五、生物炭添加至培養介質對叢枝菌根菌生長的影響.................17
參、材料與方法...........................................19
一、叢枝菌根菌菌種簡介及菌種分離.............................19
(一)菌種分離............................................19
(二)Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe .......................................................20
(三)Glomus spurcum Pfeiff, Walker and Bloss ............20
二、試驗苗木概述及培育.....................................21
(一)細穗草(Lepturus repens (G. Forst.) R. Br.)...........21
(二)相思樹(Acacia confuse Merr.).........................22
三、叢枝菌根菌孢子培育試驗..................................23
(一)混合介質配製..........................................23
(二)叢枝菌根菌接種及小苗試驗培育.............................23
四、介質特性分析...........................................24
(一)物理性分析............................................24
(二)化學性分析............................................25
(三)養分分析..............................................26
五、植物生長及養分分析......................................27
(一)苗高、地徑及生物量.....................................27
(二) S/R率及菌根依存度.....................................27
(三)植物體養分分析.........................................27
六、菌根感染狀態檢測及產孢定量................................28
(一)菌根感染率及感染強度測定.................................28
(二)叢枝菌根菌產孢數之定量..................................28
(三)菌根苗之根段染色.......................................28
(四)掃描式電子顯微鏡觀察樣本製作.............................29
七、統計分析..............................................30
肆、結果.................................................31
一、介質特性於試驗前後之差異.................................31
(一)不同溫度稻殼炭及相思樹炭之特性............................31
(二)混炭矽砂於試驗前之特性..................................31
二、介質特性於試驗後之變化..................................36
(一)矽砂混合稻殼炭於試驗後之化學特性..........................36
(二)矽砂混合相思樹炭於試驗後之化學特性.........................38
(三)矽砂混合稻殼炭於試驗後之礦質元素..........................41
(四)矽砂混合相思樹炭於試驗後之礦質元素........................44
三、植物接種叢枝菌根菌以混合介質培育之效益......................47
(一)生長量、生物量、SR率及菌根依存度..........................47
(二)植體地上部養分濃度......................................61
(三)植物體地下部養分濃度....................................79
四、叢枝菌根菌接種於宿主植物以混炭矽砂培養之感染及產孢狀況.........97
(一)菌根感染根段之染色觀察..................................97
(二)叢枝菌根菌感染根段之顯微構造............................100
(三)叢枝菌根菌接種於細穗草及相思樹以混合介質培養之感染率及感染強度..106
(四)叢枝菌根菌接種於細穗草及相思樹以混合介質培養之產孢量..........106
(五)叢枝菌根菌產孢量與介質特性間之相關性.......................108
伍、討論.................................................110
一、混炭矽砂於試驗後之介質特性變化............................110
二、添加生物炭對植物生長及養份吸收之影響.......................111
三、接種叢枝菌根菌對植物生長及養份之影響.......................112
四、生物炭對叢枝菌根菌拓植及產孢之影響.........................114
五、生物炭、植物生長及叢枝菌根菌產孢量間之影響..................116
陸、結論.................................................117
柒、參考文獻.............................................119

弓明欽、陳應龍、仲崇祿 (1997) 菌根研究及應用。中國林業出版社,223頁。
王元貞、潘廷國、柯玉琴、鄭伸坤 (1991) 外生菌根菌及VA菌根菌接種相思樹幼苗的效應。福建農學院學報 20(3): 327-332。
王均俐 (2007) 微生物肥料菌根菌應用於經濟果樹之栽培。農業生技產業季刊 12: 42-48。
王發園、劉潤進 (2001) 環境因子對AM真菌多樣性的影響。生物多樣性 9(3): 301-305。
王發園、林先貴、尹睿 (2006) 不同施銅水平下接種AM真菌對海州香薷根際pH的影響。植物營養與肥料學報 12(6): 922-925。
向為民、劉禎褀 (2005) 合理化施肥之土壤水分管理。農業試驗所特刊 121: 87-101。
吉春龍、田萌萌、馬繼芳、金海如 (2010a) 叢枝菌根真菌對植物營養代謝與生長影響的研究進展。浙江師範大學學報(自然科學版) 33(3): 303-309。
吉春龍、陳嘉園、陳秀芝、馬繼芳、田萌萌、金海如 (2010b) 不同培養基質下叢枝菌根真菌對洋蔥幼苗的侵染動態。安徽農業科學 38(13): 6632-6634。
江凱楹、王亞男、王明光 (2002) 溪頭地區紅檜根圈與本體土壤理化性質與金屬型態分佈之研究。中華林學季刊 35(3): 255-264。
李明仁 (2009) 平地造林地區林分調查及樹種篩選研究計劃期末報告。行政院農業委員會林務局委託研究計畫,81頁。

李芳胤、陳士賢 (2007) 土壤分析實驗手冊。新文京開發出版股份有限公司,394頁。
呂斯文、張喜寧 (1993) 利用濾膜表面發芽法進行繡球屬與大孢子屬孢子發芽生理試驗。中菌會刊 8(3/4): 1-19。
呂福原、歐辰雄 (1998) 台灣樹木解說(二)。行政院農業委員會出版。方圓商業攝影印刷有限公司,207頁。
宋福強、楊國亭、孟繁榮 (2004) 叢枝菌根化大青楊苗木根際微域環境的研究。生態環境 13(2): 211-216。
吳繼光、林素禎 (1998) 囊叢枝內生菌根菌應用技術手冊。台灣省農業試驗所,232頁。
林大方 (2013) 生物炭材料與熱解溫度對其農藝性能的影響。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文。63頁。
林子超、顏江河 (2010) 台灣西部海岸林適生植物內生菌根菌調查研究。林業研究季刊32(4): 23-34。
林素禎 (1998) 臺灣囊叢枝內生菌根菌之生態與其應用之研究。國立臺灣大學農業化學研究所博士論文。165頁。
易時來、溫明霞、李學平、石孝均 (2004) VA菌根改善植物磷素營養的研究進展。中國農學通報 20(5): 164-166。
胡弘道、劉啟福 (1995) 台灣二葉松與松茸共生關係之研究(二)pH及溫度對松茸菌落生長之效性。臺大實驗林研究報告 9(3): 21-27。
胡泓、王光火 (2003) 鉀肥對雜交水稻養份積累以及生理效率的影響。植物營養與肥料學報 9(2): 184-189。
徐海燕、雷世梅、熊偉、楊燦芳、曾明 (2012) 叢枝菌根化枳橙根際微生態環境的研究。西南大學學报(自然科學版) 34(10): 2-7。
倪禮豐 (2007) 稻殼再利用技術。花蓮區農業專訊 61: 19-20。
鹿金穎、毛永民、申連英、代麗、彭士琪 (1999) 果樹VA菌根研究進展。河北農業大學學報 22(4): 50-54。
張美慶、王幼珊、邢禮軍 (1999) 環境因子和AM真菌分布的關係。菌物系統 18(1): 25-29。
張淑賢 (1981) 本省現行植物分析法。第53-59頁。作物需肥診斷技術。台灣省農業試驗所特刊13號。台灣省農業試驗所。176頁
張筱婉 (2008) 鹽分逆境下三種濱海植物接種叢枝菌根菌之生理效應。國立中興大學森林學系碩士論文。82頁。
張萬鳳 (1990) 酸鹼度、養分及重金屬對囊叢枝菌根菌孢子發芽之影響。國立中興大學土壤學研究所碩士論文。75頁。
陳珈后 (2003) 砂粒大小對刺繡球菌孢子繁殖之影響及偽孔塊菌之半無菌合成試驗。國立臺灣大學森林學研究所碩士論文。88頁。
陳紀伶、李明仁 (2006) 叢枝菌根菌Glomus etunicatum對台灣赤楠苗木生長之效應。中華林學季刊 39(1): 1-15。
陳家全、李家維、楊瑞森 (1991) 生物電子顯微鏡學。行政院國家科學委員會精密儀器發展中心。266頁。
陳健中、張喜寧 (1997) 叢枝菌根對寄主植物磷吸收之影響。中國園藝 42(3): 175-181。
陳梅梅、陳保冬、王新軍、朱永官、王幼珊 (2009) 不同磷水平土壤接種叢枝菌根真菌對植物生長和養分吸收的影響。生態學報 29(4): 1980-1986。
陳寧、王幼珊、李曉林、張美慶、邢禮軍、馮固、倪小會 (2003) 營養液強度對AM真菌生長發育的影響。菌物系統 22(3): 394-401。
許崑衍、黃秀緞、李明仁 (2007) 叢枝菌根菌Glomus mosseae對白匏仔苗木生長及生理特性之效應。臺大實驗林研究報告 21(3): 245-257。
郭魁士 (1989) 土壤實驗。中國書局,246頁。
郭濤、申鴻、彭思利、黃建國 (2009) 氮、磷供給水平對叢枝菌根真菌生長發育的影響。植物營養與肥料學報 15(3): 690-695。
黃旭瑩 (2011) 稻殼生物炭對紫色葉用甘藷產量、養分吸收與抗氧化性質的影響。國立臺灣大學農業化學研究所碩士論文。87頁。
黃秀緞、林靜宜、李明仁 (2007) 叢枝菌根菌Entrophospora kentinensis對楝樹苗木生長之效應。中華林學季刊 40(1): 1-12。
黃瑞彰、江汶錦、林經偉、卓家榮 (2011) 菌根菌的特性及田間應用技術。臺南區農業專訊 75: 14-19。
程煒兒、潘富俊 (1988) 土壤pH值對異葉銀合歡苗木生長及養分含量之影響。林業試驗所研究報告季刊 3(3): 133-146。
畢銀麗、丁保健、全文智、李曉林 (2001) VA菌根對白三葉吸收水分和養分的影響。草地學報 9(2): 154-158。
彭靖媛、李明仁 (2007) 叢枝菌根菌Glomus mosseae對鋅汙染土壤培育相思樹苗木生長之效應。國立台灣大學生物資源暨農學院實驗林研究報告 21(1): 1-13。
楊遠波、劉和義、林讚標 (2001) 台灣維管束植物簡誌-第五卷。中華民國行政院農業委員會。457頁。
蓋京萍、馮固、李曉林 (2004) 接種叢枝菌根真菌對甘薯生長的影響研究。中國生態農業學報 12(1): 111-113。
趙昕、閻秀峰 (2006) 叢枝菌根對喜樹幼苗生長和氮、磷吸收的影響。植物生態學報 30(6): 947-953。
趙菡、郭素娟、馬履一 (2009) 3種菌根菌對栓皮櫟接種的效應。林業科技開發 23(1): 64-67。
鄭元春 (1994) 台灣自然觀察圖鑑25有毒植物。渡假出版社,240頁。
鄭胤、申鴻、郭濤 (2009) 叢枝菌根利用氮素研究進展。生態學報 29(10): 5627-5635。
劉文科、馮固、李曉林 (2006) 三種土壤上六種叢枝菌根真菌生長特徵和接種效應。植物營養與肥料學報 12(4): 530-536。
劉和義、楊遠波、呂勝由、施炳霖 (2000) 臺灣維管束植物簡誌-第參卷。中華民國行政院農業委員會出版,392頁。
劉潤進、李曉林 (2000) 叢枝菌根及其應用。北京科學出版社,224頁。
歐辰雄、呂金誠 (2002) 崩塌地復育植物手冊。行政院農業委員會林務局。183頁。
謝光輝、王素英、王化琪、趙明 (2003) 旱稻礦質養分吸收與施肥效應。中國農業科學 36(10): 1171-1176。
蕭詩菁 (2008) 乾旱與養分逆境下接種叢枝菌根菌對台灣櫸與台灣肖楠苗木之生長效應。國立中興大學森林學系碩士論文。79頁。
顏江河、林哲毅 (2002) 兩種土壤中接種菌根對大頭茶苗木的生長效應。林業研究季刊 24(1): 45-52。
顏江河、唐盛林 (2000) 兩種闊葉樹菌根之研究。林業研究季刊 22(2): 37-44。
簡士濠、江介倫、王建昇、張痒睿 (2012) 添加生物炭對酸性紅壤肥力之影響。農業工程學報 58(4): 15-22。
羅宗仁 (2007) 台灣種樹大圖鑑(下)。天下遠見出版股份有限公司,231頁。
藍星宇 (2011) 鹽分逆境下草海桐(Scaevola sericea)和白水木(Messersch- midia argentea)接種叢枝菌根菌之生理效應。國立中興大學森林學系碩士論文。100頁。
Almeida, R. T., and N. C. Schenck (1990) A revision of the genus Sclerocystis (Glomaceae, Glomales). Mycologia 82: 703-714.
Almendros, G., H. Kincher, and F. J. González-Vila (2003) Rearrangement of carbon and nitrogen forms in peat after thermal oxidation as determined by solid-state 13C and 15N NMR spectroscopy. Organic Geochemistry 34(11): 1559-1568.
Ames, R. N., and R. W. Schneider (1979) Entrophospora, a new genus in the Endogonaceae. Mycotaxon 8: 347-352.
Anderson, C. R., L. M. Condron, T. J. Clough, M. Fiers, A. Stewart, R. A. Hill, and R. R. Sherlock (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia - International Journal of Soil Biology 54: 309-320.
Andrade, S. A. L., A. P. D. Silveira, and P. Mazzafera (2010) Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Science of the Total Environment 408: 5381-5391.
Antal, M. J., and M. Grønli (2003) The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research 42(8): 1619-1640.
Ardestani, N. K., H. Zare-Maivan, and F. Ghanati (2011) Effect of different concentrations of potassium and magnesium on mycorrhizal colonization of maize in pot culture. African Jornal of Biotechnology 10(73): 16548-16550.
Atkinson, C. J., J. D. Fitzgerald, and N. A. Hipps (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temerate soils: a review. Plant and Soil 337: 1-18.
Bansal, R. C., J. Donnet, and F. Stoeckli (1988) Active Carbon. Marcel Dekker, New York. 482pp.
Benaddi, H., T. J. Bandosz, J. Jagiello, J. A. Schwarz, J. N. Rouzaud, D. Legras, and F. Beguin (2000) Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon 38(5): 669-674.
Berkeley, M. J., and C. E. Broome (1875) Enumeration of the fungi of Ceylon. Part II. Containing the remainder of the Hymenomycetes, with the remaining established tribes of Fungi. Journal of the Linnean Society of London, Botany 14: 29-140.
Bharadwaj, D. P., P.-O. Lundquist, and S. Alström (2008) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biology and Biochemistry 40(10): 2494-2591.
Boem, H. P. (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5): 759-769.
Bonnet, M., O. Camares, and P. Veisseire (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). The Journal of Experimental Botany 51: 945-953.
Bowman, R. A., W. D. Guenzi, and D. J. Savory (1991) Spectroscopic method for estimation of soil organic matter. Soil Science Society of American Journal 55(2): 563-566.
Brown, R. A., A. K. Kercher, T. H. Nguyen, D. C. Nagle, and W. P. Ball (2006) Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry 37: 321-333.
Brundrett, M., N. Bougher, T. Grove, and N. Malajczuk (1996) Working with mycorrhizas in forestry and agriculture. Pirie Printers, Australia. 374pp.
Butler, E. J. (1939) The occurrences and systematic position of the vesicular-arbuscular type of mycorrhizal fungi. Transactions of the British Mycological Society 22: 274-301.
Cantrell, I. C., and R. G. Linderman (2011) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil 233: 269-281.
Cao, X., L. Ma, B. Gao, and W. Harris (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science and Technology 43: 3285-3291.
Carrenho, R., S. F. B. Trufem, V. L. R. Bononi, and E. S. Silva (2007) The effect of different soil properties on arbuscular mycorrhizal colonization of peanuts, sorghum and maize. Acta Botanica Brasilica 21(3): 723-730.
Chan, K. Y., L. Van Zwieten, I. Meszaros, A. Downie, and S. Joseph (2008) Using poultry litter biochar as soil amendments. Australian Journal of Soil Research 46: 437-444.
Chan, K. Y., and Z. H. Xu (2009) Biochar: nutrient properties and their enhancement. p. 67-84. In: Lehmsnn, J., and S. Joseph (eds.) Biochar for Environmental Management - Science and Technology, Earthscan, London.


Chen, B. D., X. L. Li, H. Q. Tao, P. Christie, and M. H. Wong (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50: 839-846.
Chen, N., Y. S. Wang, and Y. J. Yang (2007) Effects of nutrient solutions with different ratios of N to P. Plant Nutrient and Fertilizer Sciences 13(1): 143-147.
Clark, R. B., and S. K. Zeto (1996) Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biology and Biochemistry 28(10/11): 1505-1511.
Cooper, A. J. (1975) Root temperature and plant growth. Commonwealth Bureau of Horticulture and Plantation Crops. Commonwealth Agriculture Bureau, Farnham Royal, England, Research Review No. 4, p.73.
Cope, J. T., and C. E. Evans (1985) Soil testing. Advances in Soil Science 1: 201-228.
Corkidi, L., L. Diane, and Rowland (2002) Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil 240: 299-310.
Cornejo, P., F. Borie, and R. Rubio (2007) Influence of nitrogen source on the viability, functionality and persistence of Glomus etunicatum fungal propagules in an Andisol. Applied Soil Ecology 35: 423-431.
Cushman, J. H. (1982) Nutrient transport inside and outside the root rhizosphere: Theory. Soil Science Society of American Journal 46: 704-709.

Daniels, B. A., and J. M. Trappe (1980) Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigeaus. Mycologia 72: 457-471.
Daniels, B. A., and H. D. Skipper (1982) Methods for the recovery and quantitative estimation of propagules from soil. p. 20-45. In: Schenck, N. C. (ed.) Methods and Principles of Mycorrhizal Research. American Phytopathological Society, Staint Paul.
Darrah, P. R. (1991) Models of the rhizoshpere. II. A quasi three-dimensional simulation of the microbial population dynamics around a growing root releasing soluble exudates. Plant and Soil 138: 147-158.
David, A. R. (2000) Review of phosphorus acid and its salts as fertilizer materials. Journal of Plant Nutrient 23(2): 161-180.
de Oliveira, A. N., and L. A. de Oliveira (2010) Influence of edapho –climate factors on the sporulation and colonization of arbuscular mycorrhizal fungi in two amazonian native fruit species. Brazilian Archives of Biology and Technology 53(3): 653-661.
DeLuca, T. H., M. D. MacKenzie, M. J. Gundale, and W. E. Holben (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of American Journal 70: 448-453.
Downie, A., A. Crosky, and P. Munroe (2009) Physical properties of biochar. p. 13-32. In: Lehmsnn, J., and S. Joseph (eds.) Biochar for Environmental Management – Science and Technology, Earthscan, London.
Douds, Jr., D. D., and N. C. Schenck (1990) Increase sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimens. Applied and Environmental Microbiology 56(2): 413-418.
Duke, E. R., C. R. Johnson, and K. E. Koch (1986) Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytologist 104: 583-590.
Duponnois, R., C. Plenchette, J. Thioulouse, and P. Cadet (2001) The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Applied Soil Ecology 17: 239-251.
Dutt, S., S. D. Sharma, and P. Kumar (2013) Arbuscular mycorrhizas and Zn fertilization modify growth and physiological of apricot (Prunus armeniaca L.). Scientia Horticukturae 155: 97-104.
Entry, J. A., P. T. Rygiewicz, L. S. Watrud, and P. K. Donnelly (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Advances in Environmental Research 7: 123-128.
Ezawa, T., K. Yamamoto, and S. Yoshida (2002) Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Science and Plant Nutrient 48: 897-900.
Fageria, N. K., F. J. P. Zimmermann, and V. C. Baligar (1995) Lime and phosphorus interactions on growth and nutrient uptake by upland rice, wheat, common bean, and corn in an Oxisol. Journal of Plant Nutrient 18(11): 2519-2532.
Fu, P., S. Hu, J. Xiang, L. S. Sun, T. Yang, A. C. Zhang, Y. Wang, and G. Chen (2009) Effects of pyrolysis temperature on characteristics of porosity in biomass chars. International Conference on Energy and Environment Technology 1: 109-112.

Gaskin, J. W., C. Steiner, K. Harris, K. C. Das, and B. Bibens (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. American Society of Agricultural and Biological Engineers 51(6): 2061-2069.
Gaur, A., and A. Adholeya (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculums production. Mycorrhiza 10: 43-48.
Gavito, M. E., and C. Azcón-Aguilar (2012) Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agricultural and Food Science 21: 2-11.
Gerdemann, J. W., and T. H. Nicolson (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235-244.
Gerdemann, J. W., and J. M. Trappe (1974) The Endogonaceae in the Pacific Northwest. Mycologia Memoir 5: 1-76.
Ghosh, S., and N. K. Verma (2006) Growth and mycorrhizal dependency of Acacia mangium Will. inoculated with three vesicular arbuscular mycorrhizal fungi in lateritic soil. New Forests 31: 75-81.
Glaser, B., J. Lehmann, and W. Zech (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biology and Fertility of Soils 35: 219-230.
Graham, J. H., D. M. Eissenstat, and D. L. Drouillard (1991) On the relationship between a plant's mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Functional Ecology 5(6): 773-779.
Green, N. E., S. O. Graham, and N. C. Schenck (1976) The influence of pH on the germination of vesicular-arbuscular mycorrhizal spores. Mycologia 68: 929-933.
Gundale, M. J., and T. H. DeLuca (2006) Temperature and source material influence ecological attributes of Ponderosa pine and Douglas-fir charcoal. Forest Ecology and Management 231(1-3): 86-93.
Guo, J., and A. C. Lua (1998) Characterization of chars pyrolyzed from oil palm stone for the preparation of activated carbon. Journal of Analytical and Applied Pyrolysis 46: 113-125.
Guo, Y., and A. D. Rockstraw (2007) Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation. Bioresource Technology 98(8): 1513-1521.
Habte, M., and M. J. Antal Jr. (2010) Reaction of mycorrhizal and nommycorhizal Leucaena leucocephala to charcoal amendment of mansand and soil. Communications in Soil Science and Plant Analysis 41: 540-552.
Hall, J. L. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. The Journal of Experimental Botany 53: 1-11.
Hepper, C. M. (1984) Regulation of spore germination of the vesicular – arbuscular mycorrhizal fungus Acaulospora laevis by soil pH. Transactions of the British Mycological Society 83: 154-156.
Ishii, T., and K. Kadoya (1994) Effects of charcoal as a soil conditioner on citrus growth and vesicular–arbuscular mycorrhizal development. Journal of the Japanese Society for Horticultural Science 63: 529-535.


Jaafar, N. M., Z. M. Solaiman, L. K. Abbott, D. V. Murphy, P. L. Clode (2011) Biochar effects on mycorrhizal colonization of wheat. Asia Pacific Biochar Conference. Kyoto, Japan.
Jaiti, F., A. Meddich, and I. E. Hadrami (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiological and Molecular Plant Pathology 71(4-6): 166-173.
Jarrell, W. M., and R. B. Beverly (1981) The dilution effects in plant nutrition studies. p. 197-224. In: Brady, N. C. (ed.) Advances in Agronomy. ACADEMIC, New York, USA.
Jones, D. L., J. Rousk, G. Edwards-Jones, T. H. DeLuca, and D. V. Murphy (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry 45: 113-124.
Karagiannidis, N., F. Bletsos, and N. Stavropoilos (2002) Effect of Verticillium wilt (Verticillium dahlia Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae 94: 145-156.
Keech, O., C. Carcaillet, and M. C. Nilsson (2005) Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant Soil 272: 291-300.
Kundsen, J. N., P. A. Jensen, W. Lin, F. J. Frandsen, and K. Dam-Johnson (2004) Sulfur transformations during thermal conversion of herbaceous biomass. Energy and Fuels 19: 1631-1643.
Laird, D. A. (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal 100: 178-181.
Lehmann, J. (2007) Bio-energy in the black. Frontiers in Ecology and the Environment 5: 381-387.
Lehmann, J., and S. Joseph (2009) Biochar for environmental management: an introduction. p. 1-12. In: Lehmsnn, J., and S. Joseph (eds.) Biochar for Environmental Management - Science and Technology, Earthscan, London.
Lehmann, J., J. P. da Silva Jr., C. Steiner, T. Nehls, W. Zech, and B. Glaser (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the central amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249: 343-357.
Leyval, C., B. Singh, and E. J. Joner (1995) Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metal and soil properties. Water, Air and Soil pollution 84: 203-216.
Li, H. L., T. S. Liu, T. C. Huang, T. Koyama, C. E. De Vol (1978) Flora of Taiwan Volume Five. Shien Dai Guan Shi Press, Taiwan. 1166 pp.
Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, and B. O’Neill (2006) Black carbon increases cation exchange capacity in soils. Soil Science Society of American Journal 70(5): 1719-1730.
Liu, J., L. Wu, S. Wei, X. Xiao, C. Su, P. Jiang, Z. Song, T. Wang, and Z. Yu (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 52: 29-39.
Lua, A. C., T. Yang, and J. Guo (2004) Effects of pyrolysis condition on the properties of activated carbons prepared from pistachio-nut shells. Journal of Analytical and Applied Pyrolysis 72: 279-287.
Lynch, J. M., and J. M. Whipps (1990) Substrate flow in the rhizosphere. Plant Soil 129: 1-10.
Makoto, K., Y. Tamai, Y. S. Kim, and T. Koike (2010) Buried charcoal layer and ectomycorrhizale cooperatively promote the growth of Larix gmelinii seedlings. Plant soil 327: 143-152.
Mašek, O., V. Budarin, M. Gronnow, K. Cromnie, P. Brownsort, E. Fitzpatrick, and P. Hurst (2013) Microwave and slow pyrolysis biochar – comparison of physical and functional properties. Journal of Analytical and Applied Pyrolysis 100: 41-48.
Marx, D. H. (1969) The influence of ectotrofic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59: 153-163.
Mcleanm, E. O. (1982) Soil pH and lime requirement. p.199-224. In: Page, A. L., R. H. Miller, and D. R. Keeney (eds.) Methods of Soil Analysis: 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison, Wisconsin, USA.
Miranda, M., G. Fischer, and C. Ulrichs (2011) The influence of arbuscular mycorrhizal colonization on the growth parameter of cape gooseberry (Physalis peruviana) plants growth in a saline soil. Journal of Soil Science and Plant Nutrition 11(2): 18-30.
Morton, J. B. (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32: 267-324.
Morton, J. B. (1990) Evolutionary relationships among arbuscular mycorrhizal fungi in the Endogonaceae. Mycologia 82: 192-207.

Morton, J. B., and D. Redecker (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93: 181-195.
Mosse, B. (1953) Fructifications associated with mycorrhizal strawberry roots. Nature 171: 974.
Murphy, J., and J. P. Riley (1962) A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36.
Murphy, L., R. Ellis, and D. Adriano (1981) Phosphorus-micronutrient interaction effects on crop production. Journal of Plant Nutrition 3: 593-613.
Muthukumar, T., and K. Udaiyan (1997) Influence of native endomycorrhiza, soil flooding and nurse plant on mycorrhizal status and growth of purple nutsedge (Cyperus rotundus L.). Agriculture Ecosystems and Environment 6(1): 51-58.
Nigussie, A., E. Kissi, M. Misganaw, and G. Ambaw (2012) Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soil. American-Eurasian Journal of Agricultural and Environmental Sciences 12(3): 369-376.
Novak, J. M., I. Lima, B. Xing, J. W. Gaskin, C. Steiner, K. C. Das, M. Ahmendna, D. Rehrah, D. W. Watts, W. J. Busscher, and H. Schomberg (2009) Characterization of designer biochar produced at different temperatures and their effect on a loamy sand. Annals of Environmental Science 3: 195-206.

Oehl, F., and E. Sieverding (2004) Pacispora, a new vesicular arbuscular mycorrhizal fungi genus in the Glomeromycetes. Journal of Applied Botany - Angewandte Botanik 78: 72-82.
Oehl, F., F. A. de Souza, and E. Sieverding (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhizal-forming Glomeromycetes. Mycotaxon 106: 311-360.
Oehl, F., G. A. Silva, B. T. Goto, and E. Sieverding (2011a) Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116: 75-120.
Oehl, F., G. A. Silva, B. T. Goto, L. C. Maia, and E. Sieverding (2011b) Glomeromycota: two new classes and a new order. Mycotaxon 116: 365-379.
Oehl, F., G. A. Silva, I. Sánchez-Castro, B. T. Goto, L. C. Maia, H. E. E. Vieira, J. M. Barea, E. Sieverding, and J. Palenzuela (2011c) Revision of Glomeromycetes with entrophosporoid and glomoid spore formation with three new genera. Mycotaxon 117: 297-316.
Ogawa, M. (2007) Rehabilitation of pine with charcoal and mycorrhiza. Chikushishokan publishing, Tokyo (in Japanease).
Peyronel, B. (1923) Fructification de léndophyte à arbuscules et à vésicules des mycorhizes endotrophes. Bulletin trimestriel de la Société mycologique de France 39: 119-126.
Piotrowski, J. S., and M. C. Rillig (2008) Succession of arbuscular mycorrhizal fungi: patterns, causes, and considerations for organic agriculture. Advances in Agronomy 97: 111-130.

Pirozynski, K. A., and Y. Dalpé (1989) Geological history of the Glomaceae, with particular reference to mycorrhizal symbiosis. Symbiosis 7: 1-36.
Redecker, D., J. B. Morton, and T. D. Bruns (2000) Molecular phylogeny of the arbuscular mycorrhizal fungi Glomus sinuosum and Sclerocystis coremioides. Mycologia 92: 282-285.
Renker, C., M. Zobel, M. Opik, M. F. Allen, E. B. Allen, M. Vosatka, J. Rydlova, and F. Buscot (2004) Structure, dynamics, and restoration of plant communities: do arbuscular mycorrhizae matter? p. 189-229. In: Temperton, V. M., R. J. Hobbs, T. Nuttle, and S. Halle (eds.) Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice. Island, Washington.
Rondon, M., J. Lehmann, J. Ramírez, and M. P. Hurtado (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biology and Fertility of Soils 43: 699-708.
Rovira, A. D., G. D. Bowen, and R. C. Foster (1983) The significance of rhizosphere microflora and mycorrhizal in plant nutrition. Encyclopedia of Plant Physiology 15: 61-93.
Saif, S. R. (1981) The influence of soil aeration on the efficiency of vesicular-arbuscular mycorrhizae. I. Effect of soil oxygen on the growth and mineral uptake of Eupatorium odoratum L. inoculated with Glomus macrocarpus. New Phytologist 88: 649-659.
Saranya, K., and K. Kumutha (2011) Standardization of the substrate material for large scale production of arbuscular mycorrhizal inoculums. International Journal of Agriculture Sciences 3(1): 71-77.


Schüßler, A., and C. Walker (2011) Evolution of the ´Plant-Symbiotic´ Fungal Phylum, Glomeromycota. p. 163-165. In: Pöggeler, S., and J. Wöstemeyer (eds.) Evolution of Fungi and Fungal-Like Organisms, The Mycota XIV. Springer Verlag, Berlin Heidelberg.
Schüßler, A., D. Schwarzott, and C. Walker (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105: 1413-1421.
Shinogi, Y. (2004) Nutrient leaching from carbon products of sludge. In: ASAE/CSAE Annual International Meeting, Paper No. 044063, Ottawa, Ontario, Canada.
Sieverding, E. (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft Technische Zusammenarbeit (GTZ) GmbH, Eschborn. 371pp.
Sieverding, E., and F. Oehl (2006) Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. Journal of Applied Botany and Food Quality 80: 69-81.
Silva, F. S. B., A. M. Yano-Melo, J. A. C. Brandão, and L. C. Maia (2005) Sporulation of arbuscular mycorrhizal fungi using Tris-HCl buffer in addition to nutrient solutions. Brazilian Journal of Microbiology 36: 327-332.
Singh, B., B. P. Singh, and A. L. Cowie (2010) Characterisation and evaluation of biochar for their application as a soil amendment. Soil Research 48(7): 516-525.


Sistani, K. R., and J. M. Novak (2006) Trace metal accumulation, movement and remediation in soils receiving animal manure. p. 689-706. In: Prasad, M. N., K. S. Sajwan, and R. Naidu (eds.) Trace Elements in the Environment, Biogeochemistry, Biotechnology, and Bioremediation. CRC Press, Boca Raton.
Sohi, S. P., E. Krull, E. Lopez-Capel, and R. Bol (2010) A review of biochar and its use and function in soil. Advances in Agronomy 105: 47-82.
Spokas, K. A., W. C. Koskinen, J. M. Baker, and D. C. Reicosky (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77: 574-581.
Strelko, V., D. J. Malik, and M. Streat (2002) Characterisation of the surface of oxidized carbon adsorbents. Carbon 40(1): 95-104.
Stürmer, S. L. (2012) A history of the taxonomy and systematic of arbuscular mycorrhizal fungi belonging to the phylum Glomerymycota. Mycorrhizal 22: 247-258.
Suhardi, E. Faridah, E. Iskandar, and S. Rahayu (2006) Mycorrhizal formation and growth of Shorea leprosula in Bukit Suharto after using charcoal and rockphosphate. p. 175-183. In: Suzuki, K., K. Ishii, S. Sakurai, and S. Sasaki (eds.) Plantation Technology in Tropical Forest Science. Springer-Verlag, Tokyo, Japan.
Talberg, A. (2009) The basics of biochar. Parliament of Australia Department of Parliamentary Services. Science, Technology, Environment and Resources Section 1-10.
Tanaka, Y., and K. Yano (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell and Environment 28: 1247-1254.
Thaxter, R. (1922) A revision of the Endogoneae. Proceedings of the American Academy of Arts and Sciences 57: 291-351.
Tyron, E. H. (1948) Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecological Monographs 18: 81-115.
Tulasne, L. R., and C. Tulasne (1845) Fungi nonnulli hypogaei, novi minus cogniti act. Giornale Botanico Italiano 2: 35-63.
Van Der Heijden, M. G. A., R. D. Bardgett, and N. M. van Staalen (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 293-310.
Van Zwieten, L., S. Kimber, S. Morris, K. Y. Chan, A. Downie, J. Rust, S. Joseph, and A. Cowie (2010) Effect of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant and Soil 327: 235-246.
Walker, C., and F. E. Sanders (1986) Taxonomic concepts in the Endogonaceae: III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. and Trappe. Mycotaxon 27: 169-182.
Wang, B. L. (1999) Low temperature and soil disturbance effects on winter survival and vigour in spring of arbuscular mycorrhiza fungus. Department of Natural Resource Sciences Faculty of Agricultural and Environmental Sciences McGill University, Montreal Canada. 99pp.
Wardle, D. A, O. Zackrisson, and M. C. Nilson (1998) The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia 115: 419-426.


Warnock, D. D., D. L. Mummey, B. McBride, J. Major, J. Lehmann, and M. C. Rillig (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Applied Soil Ecology 46: 450-456.
Warnock, D. D., J. Lehmann, T. W. Kuyper, and M. C. Rillig (2007) Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil 300: 9-20.
Weerachanchai, P., C. Tangsathilkulchai, and M. Tangsathilkulchai (2011) Charactrization of slow pyrolysis of palm kernel cake and cassava pulp residue. Korean Journal of Chemical Engineering 28(12): 2262-2274.
Wu, C. G. (1993) Glomales of Taiwan: IV. A monograph of Sclerocystis (Glomaceae). Mycotaxon 59: 327-349.
Wu, C. G., and S. J. Lin (1996) Glomales of Taiwan: VII. Jimtrappea and J. macrospora, new taxa of Acaulosporaceae, (Glomales). Poster Presentation in the 1st International Conference of Mycorrhiza. Berkeley, California, U.S.A.
Wu, C. G., and S. J. Lin (2005) Inventory list of Glomerymycota in Taiwan. 「真菌、天、地、人」學術研討會論文集,p. 79-91。
Wu, Q. S., Y. N. Zou, W. Liu, X. F. Ye, H. F. Zai, and L. J. Zhao (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant, Soil and Environment 56(10): 470-475.
Wu, W. X., M. Ying, Q. B. Feng, K. McGrouther, H. L. Wang, H. H. Lu, and Y. X. Chen (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy 47: 268-276.
Yamato, M., Y. Okimori, I. F. Wibowo, S. Anshiori, and M. Ogawa (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition 52: 489-495.
Yoder, J., S. Galinato, D. Granatstein, and M. Garcia-Pérez (2011) Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass and Bioenergy 35: 1851-1862.
Yu, C., Y. Tang, M. Fang, Z. Luo, and K., Cen (2005) Experimental study on alkali emission during rice straw pyrolysis. Journal of Zhejiang University (Engineering Science) 39: 1435-1444.
Schüßler, A., and C. Walker (2010) The Glomeromycota: a species list with new families and genera. Retrieved April 10, 2013, from the World Wide Web:http://schuessler.userweb.mwn.de/amphylo/Schuessler&;Walker2010_Glomeromycota.pdf

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top