(3.235.245.219) 您好!臺灣時間:2021/05/07 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:呂彥輝
研究生(外文):Yan-Hui Lu
論文名稱:挖掘潛在顧客之商業智慧系統-以影像辨識技術為基礎
論文名稱(外文):A Business Intelligent System for Mining Potential Customers-Based on Image Recognition Technology
指導教授:蔡玉娟蔡玉娟引用關係
指導教授(外文):Yuh-Jiuan Tsay
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:資訊管理系所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:53
中文關鍵詞:臉部辨識商業智慧潛在顧客
外文關鍵詞:Face RecognitionBusiness IntelligencePotential Customers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
現今網路發達的社會中,企業不斷地推出新商品來增加熱門度,更多企業利用以往累積的客戶資料來加強競爭力,他們從這些龐大的資料中尋找潛在顧客,就是未來可能成為買家的人;潛在顧客一直以來是受到各方企業關注的一個議題,他們對於市場來說就像是幽靈人口,有消費能力卻無消費紀錄可以追蹤,以致其購物動機不易察覺。大多企業、商家皆利用會員制度去發掘潛在顧客的市場,但對於不願填寫會員資料的人口依然是無法有效的去發掘。

本研究以影像辨識處理技術為基礎,針對沒有填寫會員資料的人口建置一套商業智慧系統-「挖掘潛在顧客之商業智慧系統-以影像辨識技術為基礎」,包括:(1)移動物體找尋-異物入侵偵測,找尋並擷取出畫面中的移動物體,以供後續辨識用;(2)人臉判斷模組-將畫面經由YCbCr膚色分類處理減少雜訊,再用Haar-like矩形特徵方法擷取出人臉範圍;(3)顧客特徵辨識、比對模組-確定移動物體是人之後,交由Scale Invariant Feature Transform尺度不變特徵轉換(SIFT)進行臉部辨識取得特徵點,找出該名顧客是否有符合資料庫中的樣本;(4)辨識結果流程-系統會依照比對結果判別是否有相似樣本,有的話服務人員便會更新資料庫,若無則會為資料庫新增該名顧客資料,藉此達到潛在顧客的紀錄與管理。

藉由系統對顧客臉部影像與購買記錄的管理功能,服務人員便可以依照系統所提供的購買紀錄針對不同種類的顧客提供服務,提升顧客滿意度及忠誠度,藉以用影像技術達成挖掘潛在顧客。本研究也藉由實驗人臉影像辨識技術應用於商業智慧系統之可行性,供後續研究做為參考。

Nowadays, with the development of Internet in our society, enterprises not only continuously issuance new products to increase their popularity but also use their own members’ profiles to enhance their competitiveness. They are looking for potential customers whom might be their future buyers from the huge mass of data. And these potential customers have always been an issue that all enterprises pay highly attention to. To every enterprise, the potential customers are like phantom population for the market because they already have consumption capacity but their consumption records are few to be analyzed so it is hard for us to sense their shopping motivations. Most enterprises and companies use membership system to find potential customers; but to those who are unwilling to give their personal information when merchandising, it is still a problem.

In this study, we use image recognition processing technology as the foundation to build a business intelligence system named “A Business Intelligent System for Mining Potential Customers – Base on Image Recognition Technology” for those people that do not fill out membership applications. The system include: (1) Finding moving objects – Foreign objects intrusion detection. This part is to find moving objects from images to provide identification module. (2) Face detection module – Use YCbCr skin color classifying technology to process images to reduce noises, then use Harr-like rectangle features to capture face area. (3) Customers features recognition and matching module – After confirming the moving object is a human being, this process will use Scale Invariant Feature Transform technology to check if the moving object has matched the samples from the database. (4) Procedure of identification results – The system will identify the similar samples according to the matching results. If it is matched, staff will update their customers’ data; if it is not matched, then staff can also add this new customer to database and let this customer become a new member. By this way, we can achieve in recording and managing potential customers.

With the system’s customer face image and purchase records management functions, staff can offer different services for different customers according to the purchase records in order to increase customers’ satisfaction and loyalty to the enterprises. Furthermore, recognition technology can help mining potential customers successfully. In this study, we experiment the feasibility of face image recognition technology applied to business intelligence system and this thesis is provided for follow-up research for reference.

摘 要 .........................I
Abstract ........................II
謝 誌 .........................IV
目錄 .............................V
圖目錄 ...........................VII
表目錄 ...........................IX
第一章 緒論 ....................1
1.1 研究背景與動機 ..............1
1.2 研究目的 ...................2
1.3 研究流程 ...................3
1.4 論文架構 ...................3
第二章 文獻探討 .................5
2.1 生物特徵 ...................5
2.2 潛在顧客 ...................5
2.3 影像處理 ...................6
2.3.1 形態學(膨脹、侵蝕) .........7
2.3.2 背景偵測 .................8
2.3.3 背景相減法 ................8
2.3.4 連續影像相減法 .............9
2.3.5 膚色偵測 ..................9
2.4 臉部偵測 ....................10
2.4.1 PCA .....................10
2.4.2 AAM .....................10
2.4.3 Haar-like ...............11
2.4.4 AdaBoost ................12
2.5 臉部辨識 ....................14
2.5.1 SIFT ....................14
2.5.2 K-d Tree ................19
第三章 研究方法 ..................21
3.1 系統架構 ....................21
3.2 移動物體找尋模組 .............22
3.2.1 異物入侵偵測-背景相減法 .....23
3.2.2 持續移動偵測-連續背景相減法 ..24
3.3 人臉判斷模組 .................24
3.4 人臉特徵辨識、比對功能 .........28
3.5 辨識結果流程 .................30
第四章 系統實作 ..................34
4.1 系統環境 ....................34
4.2 臉部影像資料庫 ...............36
4.3 移動偵測實驗 .................37
4.3.1 顧客停滯實驗 ...............37
4.3.2 依序進入實驗 ...............39
4.4 系統展示 ....................41
4.5 系統實測 ....................44
第五章 結論與未來發展 .............49
5.1 結論與貢獻 ..................49
5.2 研究範圍與限制 ...............49
5.3 未來發展與研究方向 ............49
參考文獻 ...........................51
作者簡介 ...........................54

網路文章
[1] Circle網路平台,「【Circle】資料探勘真的跟你想的不一樣」,網址:http://www.bnext.com.tw/focus/view/cid/103/id/24478,2012年
[2] MBAlib網路智庫百科,「顧客」,
網址:http://wiki.mbalib.com/zh-tw/%E9%A1%BE%E5%AE%A2,2013年4月10日

中文文獻
[1] 李棟良、梁振升、王於藩、陳家閔、曾鈺鈞、簡煒玲,「人臉偵測與辨識系統」,銘傳大學電腦與通訊工程學系,2008年。
[2] 吳明衛,「自動化臉部表情分析系統」,國立成功大學資訊工程系碩士論文,2003年。
[3] 邱顯強,「移動物偵測之影像硬體架構」,國立台灣客濟大學電子工程系碩士論文,2009年。
[4] 沈永濠,「智慧型疲勞駕駛監測系統」,國立屏東科技大學資訊管理系碩士論文,2012年。
[5] 楊宜蓮,「和平島休閒漁村之潛在顧客分析-Q方法之應用」,國立台灣海洋科技大學碩士論文,2012年。
[6] 顏仲志,「智慧型居家安全即時警示系統」,國立屏東科技大學資訊管理系碩士論文,2011年。
[7] 鄭則謙、葉俊明、葉榮木,「自適性背景更新的動態偵測系統」,台北市立教育大學數學資訊教育研究所碩士論文,2006年。

英文文獻
[1] B. Shoushtarian, H. E. Bez, “A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking,” Pattern Recognition Letters, Vol. 26, No. 1, 2005, pp. 5-26.
[2] C. P. Papageorgiou, M. Oren, T. Poggio, “A general framework for object detection, ”Sixth International Conference on Computer Vision, 1998, pp. 555-562.
[3] D. G. Lowe, “Object recognition from local scale-invariant features,” In International Conference on Computer Vision, Corfu, Greece, 1999, pp. 1150–1157.
[4] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, 2004, pp 91-110.
[5] J. H. Friedman, J. L. Bentley, R. A. Finkel, “An algorithm for finding best matches in logarithmic expected time,” ACMTransactions on Mathematical Software, 1977, 3(3):209–226.
[6] J. J. Koenderink, “The structure of images. Biological Cybernetics,“ 1984, 50:363–396.
[7] J. S. Beis, D. G. Lowe, “Shape Indexing Using Approximate earest-Neighbour Search In High-Dimension Spaces,” IEEE Conference on Computer Vision and Pattern Recognition, 1997.
[8] K. Mikolajczyk, “Detection of local features invariant to affine transformations,” Institut National Polytechnique de Grenoble, France, 2002.
[9] K. Mikolajczyk, C. Schmid, “An affine invariant interest point detector” In European Conference on Computer Vision (ECCV), Copenhagen, Denmark, 2002, pp. 128–142.
[10] L. I. Smith, “A Tutorial on Principal Components Analysis,” 2002.
[11] L. L. Chen, S. H. Liu, S. H. Li, C. W. Chang, “Fast Video Object Segmentation for an Economical Network Surveillance System,” Proceedings of the WCE2002, Xin Zhu, Taiwan, 2002, pp. 101-106.
[12] L. R. Kahle, P. Kennedy, “Using the list of values (LOV) to understand consumers,” 1989.
[13] M. Soriano, B. Martinkauppi, S. Huovinen, M. Laaksonen, “Adaptiveskin skin color modeling using the skin locus for selecting training pixels,” Pattern Recognition, Vol. 36, No. 3, 2003, pp. 681-690.
[14] N. Otsu, “A threshold selection method from gray-level histograms,” IEEEtransactions on Systems, 1979, man and cybernetics 9(1): 62-66.
[15] P. Kakumanu, S. Makrogiannis, N. Bourbakis, “A survey of skin-color modeling and detection methods,” Pattern Recognition, Vol. 40, Issue 3, 2007, pp. 1106-1122.
[16] P. Viola, M. Jones, ” Fast and Robust Classification using symmetric AdaBoost and a Detector Cascade”, Neural Information Processing Systems 14, 2001.
[17] P. Viola, M. Jones, “Robust real-time face detection,” International Journal of Computer Vision 57(2), 2004, pp. 137–154.
[18] R. C. Gonzalez, R. E. Woods, S. L. Eddins, “Digital Image Using MATLAB Processing,” pearson prentice hall, 2003.
[19] R. Lienhart, A. Kuranov, V. Pisarevsky, “Empirical Analysis of Detection Cascades Boosted Classifiers for Rapid Object Detection,” MRL Technical Report, 2002.
[20] R. L. Hus, A. K. Jain, “Face detection in color images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, NO.5, pp. 696-706, 2002.
[21] T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham. Active shape models - their training and application. Computer Vision and Image Understanding, 1995, 61(1):38-59.
[22] T. F. Cootes, G. J. Edwards, C.J. Taylor, “Active Appearance Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, vol. 23,no. 6.
[23] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures at different scales,” Journal of Applied Statistics, 1994, 21(2):224–270.
[24] Y. Freund, R. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Second European Conference, EuroCOLT '95 Barcelona, Spain, 1995, pp. 23–37.
[25] Y. Nara, J. Yang, Y. Suematsu, “Face Recognition Using Improved Principal Component Analysis”, Proc. International Symposium on Micromechatronics and Human Science, 2003, pp.77–82.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔