(3.238.96.184) 您好!臺灣時間:2021/05/08 21:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林誌偉
研究生(外文):Jhih-Wei Lin
論文名稱:車載網路下差異化服務傳輸控制機制之設計與實作
論文名稱(外文):Adaptive Differential Service Transmission Control Mechanism for Vehicular Networks: Design and Implementation
指導教授:龔旭陽龔旭陽引用關係
指導教授(外文):Hsu-Yang Kung
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:資訊管理系所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:車載資通訊車間與車路通訊差異化傳輸排程串流傳輸調適機制
外文關鍵詞:TelematicsV2V and R2V CommunicationsDifferential Transmission and SchedulingStreaming Transmission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著車載資通訊(Telematics)的興起,越來越多的網路服務被應用於車載網路環境中,其中以車路通訊相關之應用服務面發展居多。然而,車路通訊須面對許多問題: (1)如何實現穩定且快速的車路通訊訊息的散播? (2)使用何種車路通訊標準? (3)如何整合車間通訊及車路通訊應用服務,來提供較完整且完善之整合性應用服務?有鑑於上述之因素,本論文設計車載網路下差異化服務傳輸控制機制之設計與實作(Adaptive Differential Service Transmission Control Mechanism for Vehicular Networks: Design and Implementation),於車載專用短距離通訊(DSRC)網路環境下,針對不同車輛所要求之資料量大小與優先權重(priority weight),配合準確之車輛與路側設施間的連結時間計算(prediction of connection time),來定義各個服務於排程內之傳輸順序,接著藉由車輛於路側設施內之剩餘連結時間計算,有效預測出路側設施要傳輸給每台車輛之封包數量,並且隨著網路環境的變異情況做適當之傳輸控制。同時,藉由中繼車輛(relay vehicle)之挑選,幫忙將來不及傳輸完畢的資料轉傳至目的車輛,並配合通訊傳輸之通道挑選(channel selection)機制,使得各種優先權重不同之服務能獲得良好之傳輸品質,達到可靠性資料傳輸之目的。
最後,本論文透過專用距離通訊設備IWCU (ITRI WAVE/DSRC Communication Unit)進行車路通訊與車間通訊之建立,並藉由交通模擬軟體SUMO (Simulation of Urban Mobility)來模擬車輛移動情形,另外將藉由NS2 (Network Simulator 2)來模擬車載網路環境下的傳輸情形,由模擬及分析結果可以證明此機制的準確性與可行性。

For Telematics services, there are some technology issues in the RSU-to-Vehicles (R2V) transmissions. (1) How to achieve the stable and fast R2V transmissions? (2) What kind of communication standards should be used? (3)How to integrate R2V with V2V communications to provide completely integrated application services. In view of the above technology issues, this work proposes a differential service transmission control mechanism, which considers the R2V and V2V communications of vehicular networks based on DSRC technology, to transmit multimedia information. To efficiently control the scheduling mechanism, we consider the data size, the priority for differentiation services, and the link expiration time between the RSU and the vehicles. We precisely estimate the remaining link connection time between the RSU and the vehicle to predict the numbers of transmitted packets. Moreover, we appropriately adjust transmission control according to the variations of network environments. To achieve the reliable data transmissions and provide the stable and smooth transmission qualities for differentiation services, we design a selection mechanism of relaying vehicles to choose a suitable vehicle for relaying data, and we use the channel selection mechanism for priority transmission. For system implementation and evaluation, we use the IWCU, which is the ITRI WAVE/DSRC Communication Unit device, to achieve the communications of V2R and V2V. We also use SUMO to simulate the traffic mobility and use NS2 to evaluate the vehicular network transmissions. The simulation results reveal the feasibility and performance efficiency of the proposed transmission mechanisms.
摘 要 I
Abstract III
謝 誌 V
目 錄 VI
圖 索 引 VIII
表 索 引 XI
1. 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 2
1.3 研究假說 3
1.4 論文架構 4
2. 技術背景與文獻探討 5
2.1 技術背景 5
2.1.1 車載資通訊(Telematics) 5
2.1.2 專用短距離通訊協定(DSRC) 6
2.1.3 佇列管理與封包排程(Queue Management and Packets Schedule) 8
2.2 文獻探討 11
3 控制方法與研究架構 15
3.1 研究架構 15
3.1.1 系統功能說明 16
3.1.2 本篇機制運作流程 18
3.2 基於連結時間預測之適性傳輸排程控制機制 20
3.2.1 通訊連結時間計算 22
3.2.2 服務順序判斷方法 24
3.2.3 預測要傳輸封包數量 25
3.3 車載網路下訊息傳輸之可靠性支援機制 28
3.4 基於服務傳輸品質之車輛通訊傳輸通道挑選機制 34
3.4.1 依通道傳輸品質調適之通道重配置機制 38
4 系統實作與效能分析 40
4.1 系統實作 40
4.2 效能分析 43
4.2.1 模擬環境及參數設定 44
4.2.2 可行性分析 45
5 結論與未來方向 49
6 參考文獻 50
附錄一:車路通訊視訊分享與文字訊息分享 53
作者簡介 59

[1]D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, “Design of 5.9 GHz DSRC-based vehicular safety communication,” IEEE Wireless Communications, Vol. 13 , Issue: 5, pp. 36-43, 2006.
[2]Floy, S. and Henderson, T., “The NewReno Modification to TCP’s Fast Recovery Algorithm,” RFC2582, 1999.
[3]G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributcd Coordination Function,” IEEE Journal on Selected Areras in Communications, vol. 18, no.3, pp.535-547,Mar.2000.
[4]M. L. Sichitiu and M. Kihl, “Inter-Vehicle Communication Systems: A Survey,” IEEE Communications Surveys &; Tutorials, Vol. 10, No. 2, pp. 88-105, 2008.
[5]M. Li, M. Claypool, and R. Kinicki, “Playout Buffer and Rate Optimization for Streaming over IEEE 802.11 Wireless Networks,” ACM Transactions on Multimedia Computing, Communications and Applications, vol. 5, no. 3, pp. 1–25, Aug. 2009.
[6]S. Barghi, A. Benslimane, and C. Assi, “A Lifetime-based Routing Protocol for Connecting VANETs to the Internet,” IEEE International Symposium on a World of Wireless, pp. 1-9, June 2009.
[7]T. H. Luan, X. Ling, and X. S. Shen,” Provisioning QoS controlled media access in vehicular to infrastructure communications,” Ad Hoc Networks, vol. 10, Issue 2, pp. 231-242, July. 2010.
[8]T. Jiang, Y. Alfadhl, and K.K. Chai, “Efficient Dynamic Scheduling Scheme between Vehicles and Roadside Units based on IEEE 802.11p/WAVE Communication Standard,” ITS Telecommunications (ITST), 2011 11th International Conference on , pp.120-125, Aug, 2011.
[9]W. Su, S. J. Lee, and G. Mario, “Mobility Prediction and Routing in Ad Hoc Wireless Networks,” International Journal of Network Management, January 2001.
[10]W. Tu and W. Jia, “APB: An Adaptive Playback Buffer Scheme for Wireless Streaming Media,” IEICE Transactions on Communications, Vol. E88-B, No.10, pp. 4030-4039, 2005.
[11]Y. Gui, E. Chan, "Data Scheduling for Multi-item Requests in Vehicle-Roadside Data Access with Motion Prediction Based Workload Transfer," waina, pp.569-574, 2012 26th International Conference on Advanced Information Networking and Applications Workshops, 2012
[12]Y. Zhang, J. Zhao and G. Cao, “On scheduling vehicle-roadside data access”, Proc. The 4th ACM International Workshop on Vehicular Ad Hoc Networks (VANET ’07), 2007,pp. 9-18
[13]IEEE WG, IEEE 802.11p/D11.0, Draft Amendement to Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Wireless Access in Vehicular Environments (March 2010).
[14]IEEE Std 1609.1/D1.0, IEEE Draft Standard for Wireless Access in Vehicular Environments (WAVE) - Management &; Networking Service Extensions for Resource Class.
[15]IEEE Std 1609.2-2006, IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) - Security Services for Applications and Management Messages.
[16]IEEE Std 1609.3/D1.2, IEEE Draft Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services.
[17]IEEE Std 1609.4/D1.2, IEEE Draft Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-channel Operation.
[18]IEEE Std 1609.11/D1.0, IEEE Draft Standard for Wireless Access in Vehicular Environments (WAVE) - Over-the-Air Data Exchange Protocol for Intelligent Transportation Systems (ITS) - Electronic Payment Service.
[19]Intelligent Transportation Systems (ITS), http://www.its.dot.gov/
[20]ISO/TC 204 WG16 Continuous Air-interface for Long and Medium distance(CALM), http://www.isotc204wg16.org
[21]吳岱洋,”基於緩衝區預測控制之車路串流無接縫換手機制”,國立屏東科技大學資管系碩士論文,2012。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔