(3.236.118.225) 您好!臺灣時間:2021/05/16 15:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳信志
研究生(外文):Hsin-Chih Chen
論文名稱:多重腔室熱梯度PCR晶片之設計與製作
論文名稱(外文):Design and Fabrication of a Multi-Chamber Thermal Gradient PCR Chip
指導教授:陳志堅 博士
指導教授(外文):Jyh-Jian Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物機電工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:多重腔室晶片熱循環熱梯度聚合酶連鎖反應
外文關鍵詞:multi-chamber chipthermal cyclersthermal gradientpolymerase chain reaction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微加工製程技術,製作一組多重腔室熱梯度聚合酶連鎖反應(polymerase chain reaction,PCR)晶片。利用商用軟體CFD-ACE+TM模擬一個H形鋁塊結構,晶片置於鋁塊之上,H形鋁塊兩側進行加熱,在不同時間改變加熱區的溫度,使晶片上分別產生PCR所需的三個溫區,於低溫區將兩側加熱棒設定不同的溫度,使得晶片在低溫黏合步驟時能夠達到線性溫度的分佈。PCR晶片上製作5個反應腔室,使其能夠達到高通量PCR,H形鋁塊兩側放入加熱棒,而上方及一側放置降溫風扇。利用LabVIEW溫控程式搭配電晶體開關電路進行加熱棒與風扇之控制,將K型熱電偶放入反應腔室內作為溫度量測,同時利用紅外線熱像儀量測晶片表面溫度之分佈情形。實驗結果中得知,當風扇採一進一出的方式對晶片冷卻時,能夠使晶片在低溫黏合步驟時達到線性溫度的分佈。而聚碳酸酯(polycarbonate,PC)晶片於實驗量測中皆符合本裝置所需的三個溫區,且有足夠的加熱時間來執行PCR。最後將本裝置與商用熱循環儀進行PCR實驗,並證明此系統在生物性實驗的可行性。
This study used micromachining process technology to fabrication a multi-chamber thermal gradient polymerase chain reaction(PCR)chip. Commercial software CFD-ACE+TM is utilized to simulation a H-type aluminum block structure, chip on aluminum block, two sides of the H-type aluminum block heating, at different times change heating zone temperature, make chip respectively produce PCR required three temperature zone, during annealing region two cartridge heater rods are set at two different temperatures, to achieve a linear temperature distribution of thermal gradient on the chip during the annealing step. PCR chip fabrication five reaction chamber, to enable it achieve high throughput PCR, heater rods are placed at two sides of the H-type aluminum block, while the top and one side placement fans. LabVIEW temperature control program is utilized to collocation MOSFET switch circuit underway heater rods and fans control, K-type thermocouples inserted into the reaction chamber as temperature measurement, while using infrared thermal imager measurement chip surface temperature distribution. The experimental result shows, when fans adopt one in one out mode to makes chip cooling, enable chip to achieve a linear temperature distribution of during the annealing step. The polycarbonate (PC) chip during experimental measurement conform this device required three temperature zone, have sufficient heating duration to perform PCR. Final this devices compared with commercial thermal cyclers underway PCR experimental, to prove feasibility of this system in biological experimental.
目 錄
摘 要 I
Abstract II
謝 誌 IV
目 錄 V
表 目 錄 VIII
圖 目 錄 IX
第1章 緒 論 1
1.1 前言 1
1.2 研究動機 3
第2章 文獻探討 5
2.1 微腔體式PCR晶片 5
2.1.1 樣本驅動 6
2.1.2 傳導加熱型 11
2.1.3 非接觸式加熱型 13
2.2 連續流體式PCR晶片 15
2.2.1 三個加熱源 16
2.2.2 兩個加熱源 17
2.2.3 毛細管式 19
2.2.4 熱梯度式 21
2.3 研究目的 22
第3章 理論模擬與數值分析 24
3.1 熱傳導原理 24
3.2 數值模擬計算軟體 27
第4章 實驗設備與方法 31
4.1 實驗系統架構 31
4.1.1 多重腔室反應晶片製作 32
4.1.2 加熱模組與冷卻系統 35
4.1.3 溫控與量測系統 37
4.1.4 溫度控制程式 39
4.1.5 溫度回饋控制電路 41
4.2 PCR試劑 42
4.3 多重腔室熱梯度PCR晶片操作 44
第5章 結果與討論 46
5.1 晶片模擬參數 46
5.2 熱梯度式裝置量測 47
5.2.1 H形鋁塊溫度量測 47
5.2.2 有無風扇對低溫之影響 50
5.2.3 風扇風向不同進出方向對晶片低溫區之影響 53
5.2.4 兩種晶片材質之不同停留時間 55
5.3 晶片模擬結果與紅外線熱像儀量測結果之比較 60
5.3.1 不同材質之晶片接合面溫度分佈情形 62
5.3.2 不同材質之晶片表面溫度分佈情形 64
5.3.3 模擬結果與紅外線熱像儀結果之均溫性 71
5.4 多重腔室熱梯度PCR晶片實測結果 74
5.4.1 最初模擬架構與實驗裝置設計 75
5.4.2 PCR實驗 77
第6章 結論與建議 79
6.1 結論 79
6.2 建議 80
參考文獻 81
作者簡介 86

[1] Northrup, M. A., Ching, M. T., White, R. M., and Watson, R. T., 1993, “DNA amplification in a microfabricated reaction chamber,” in: Proceedings of the 7th International Conference on Solid State Sensors and Actuators, Transducers'93, pp 924-926.
[2] Ugaz, V. M., and Krishnan, M., 2004, “Novel convective flow based approaches for high-throughput PCR thermocycling,” Journal of the Association for Laboratory Automation, Vol. 9, No. 5, pp. 318-323.
[3] Xiang, Q., Xu, B., and Li, D., 2007, “Miniature real time PCR on chip with multi-channel fiber optical fluorescence detection module,” Biomedical Microdevices, Vol. 9, No. 4, pp. 443-449.
[4] Christensen, T. B., Bang, D. D., and Wolff, A., 2008, “Multiplex polymerase chain reaction (PCR) on a SU-8 chip,” Microelectronic Engineering, Vol. 85, No. 5-6, pp. 1278-1281.
[5] Ramalingam, N., Liu, H. B., Dai, C. C., Jiang, Y., Wang, H., Wang, Q., Hui, K. M., and Gong, H. Q., 2009, “Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications,” Biomedical Microdevices. Vol. 11, No. 5, pp. 1007-1020.
[6] Ramalingam, N., Rui, Z., Liu, H. B., Dai, C. C., Kaushik, R., Ratnaharika, B., and Gong, H. Q., “Real-time PCR-based microfluidic array chip for simultaneous detection of multiple waterborne pathogens,” Sensors and Actuators B: Chemical. Vol. 145, No. 1, pp. 543-552.
[7] Hilton, J. P., Nguyen, T., Barbu, M., Pei, R., Stojanovic, M., and Lin, Q., 2012, “Bead-based polymerase chain reaction on a microchip,” Microfluidics and Nanofluidics, Vol. 13, No. 5, pp. 749-760.
[8] Sugumar, D, Kong, L. X., Ismail, A., Ravichandran, M., and Yin, S. L., 2012, “Rapid multi sample DNA amplification using rotary-linear polymerase chain reaction device (PCRDisc),” Biomicrofluidics, Vol. 6, No. 1, 014119.
[9] Pilarski, P. M., Adamia, S., and Backhouse, C. J., 2005, “An adaptable microvalving system for on-chip polymerase chain reactions,” Journal of Immunological Methods, Vol. 305, No. 1, pp. 48-58.
[10] Lien, K. Y., Lee, W. C., Lei, H. Y., and Lee, G. B., 2007, “Integrated reverse transcription polymerase chain reaction systems for virus detection,” Biosensors and Bioelectronics. Vol. 22, No. 8, pp. 1739-1748.
[11] Lien, K. Y., Lee, S. H., Tsai, T. J., Chen, T. Y., and Lee, G. B., 2009, “A microfluidic-based system using reverse transcription polymerase chain reactions for rapid detection of aquaculture diseases,” Microfluidics and Nanofluidics, Vol. 7, pp. No. 6, 795-806.
[12] Trung, N. B., Saito, M., Takabayashi, H., Viet, P. H., Tamiya, E., and Takamura, Y., 2010, “Multi-chamber PCR chip with simple liquid introduction utilizing the gas permeability of polydimethylsiloxane,” Sensors and Actuators B: Chemical, Vol. 149, No. 1, pp. 284-290.
[13] Parton, J., Birch, C., Kemp, C., Haswell, S. J., Pamme, N., and Shaw, K. J., 2012, “Integrated DNA extraction and amplification using electrokinetic pumping in a microfluidic device,” Analytical Methods, Vol. 4, No. 1, pp. 96-100.
[14] Xiang, Q., Xu, B., Fu, R., and Li, D., 2005, “Real time PCR on disposable PDMS chip with a miniaturized thermal cycler,” Biomedical Microdevices, Vol. 7, No. 4, pp. 273-279.
[15] Ke, C., Kelleher, A. M., Berney, H., Sheehan, M., and Mathewson, A., 2007, “Single step cell lysis/PCR detection of Escherichia coli in an independently controllable silicon microreactor,” Sensors and Actuators B: Chemical, Vol. 120, No. 2, pp. 538-544.
[16] Sabella, S., Vecchio, G., Pompa, P. P., Maruccio, G., Sanarica, L., Torre, A. D., Bellis, G. D., Caramenti, G., Consolandi, C., Severgnini, M., Cingolani, R., and Rinaldi, R., 2009, “Disposable plastic microreactors for genomic analyses,” Biomedical Microdevices, Vol. 11, No. 6, pp. 1289-1295.
[17] Wang, F., and Burns, M. A., 2009, “Performance of nanoliter-sized droplet-based microfluidic PCR,” Biomedical Microdevices, Vol. 11, No. 5, pp. 1071-1080.
[18] Wan, W., and Yeow, J. T. W., 2011, “Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria,” Biomedical Microdevices, Vol. 14, No. 2, pp. 337-346.
[19] Wu, J., Kodzius, R., Xiao, K., Qin, J., and Wen, W., 2011, “Fast detection of genetic information by an optimized PCR in an interchangeable chip,” Biomedical Microdevices. Vol. 14, No. 1, pp. 179-186.
[20] Walczak, R., 2011, “Fluorescence detection by miniaturized instrumentation based on non-cooled CCD minicamera and dedicated for lab-on-a-chip applications,” BioChip Journal, Vol. 5, No. 3, pp. 271-279.
[21] Verdoy, D., Barrenetxea, Z., Berganzo, J., Agirregabiria, M., Ruano-Lopez, J. M., Marimon, J. M., and Olabarria, G., 2012, “A novel real time micro PCR based point-of-care device for Salmonella detection in human clinical samples,” Biosensors and Bioelectronics, Vol. 32, No. 1, pp. 259-265.
[22] Legendre, L. A., Morris, C. J., Bienvenue, J. M., Barron, A., McClure, R., and Landers, J. P., 2008, “Toward a simplified microfluidic device for ultra-fast genetic analysis with sample-in/answer-out capability: application to T-cell lymphoma diagnosis,” Journal of the Association for Laboratory Automation, Vol. 13, No. 6, pp. 351-360.
[23] Kim, H., Dixit, S., Green, C. J., and Faris, G. W., 2009, “Nanodroplet real-time PCR system with laser assisted heating,” Optics Express, Vol. 17, No. 1, pp. 218-227.
[24] Leslie, D. C., Seker, E., Bazydlo, L. A. L., Strachan, B. C., and Landers, J. P., 2012, “Platinum nanoparticle-facilitated reflective surfaces for non-contact temperature control in microfluidic devices for PCR amplification,” Lab on a Chip, Vol. 12, No. 1, pp. 127-132.
[25] Pak, N., Saunders, D. C., Phaneuf, C. R., and Forest, C. R., 2012, “Plug-and-play, infrared, laser-mediated PCR in a microfluidic chip,” Biomedical Microdevices, Vol. 14, No. 2, pp. 427-433.
[26] Chen, P. C., Nikitopoulos, D. E., Soper, S. A., and Murphy, M. C., 2008, “Temperature distribution effects on micro-CFPCR performance,” Biomedical Microdevices, Vol. 10, No. 2, pp. 141-152.
[27] Chen, P. C., Park, D. S., You, B. H., Kim, N., Soper, S. A., Nikitopoulos, D. E., and Murphy, M. C., 2010, “Titer-plate formatted continuous flow thermal reactors: design and performance of a nanoliter reactor,” Sensors and Actuators B: Chemical, Vol. 149, No. 1, pp. 291-300.
[28] Chen, P. C., Fan, W., Hoo, T. K., Chan, L. C. Z., and Wang, Z., 2011, “Simulation guided-design of a microfluidic thermal reactor for polymerase chain reaction,” Chemical Engineering Research and Design, Vol. 90, No. 5, pp. 591-599.
[29] Peham, J. R., Recnik, L. M., Grienauer, W., Vellekoop, M. J., Nöhammer, C., and Mayr, H. W., “Disposable microfluidic chip for rapid pathogen identification with DNA microarrays,” Microsystem Technologies, Vol. 18, No. 3, pp. 311-318.
[30] Crews, N., Wittwer, C., and Gale, B., 2008, “Continuous-flow thermal gradient PCR,” Biomedical Microdevices, Vol. 10, No. 2, pp. 187-195.
[31] Crews, N., Wittwer, C., Palais, R., and Gale, B., 2008, “Product differentiation during continuous-flow thermal gradient PCR,” Lab on a Chip, Vol. 8, No. 6, pp. 919-924.
[32] Pješčić, I., Tranter, C., Hindmarsh, P. L., and Crews, N. D., 2010, “Glass-composite prototyping for flow PCR with in situ DNA analysis,” Biomedical Microdevices, Vol. 12, No. 2, pp. 333-343.
[33] Cao, Q., Kim, M. C., and Klapperich, C., 2011, “Plastic microfluidic chip for continuous-flow polymerase chain reaction: simulations and experiments,” Biotechnology Journal, Vol. 6, No. 2, pp. 177-184.
[34] Hartung, R., Brösing, A., Sczcepankiewicz, G., Liebert, U., Häfner, N., Dürst, M., Felbel, J., Lassner, D., and Köhler, J. M., 2009, “Application of an asymmetric helical tube reactor for fast identification of gene transcripts of pathogenic viruses by micro flow-through PCR,” Biomedical Microdevices, Vol. 11, No. 3, pp. 685-692.
[35] Li, Y., Xing, D., and Zhang, C., 2009, “Rapid detection of genetically modified organisms on a continuous-flow polymerase chain reaction microfluidics,” Analytical Biochemistry, Vol. 385, No. 1, pp. 42-49.
[36] Peham, J. R., Grienauer, W., Steiner, H., Heer, R., Vellekoop, M. J., Nöhammer, C., and Mayr, H. W., 2012, “Long target droplet polymerase chain reaction with a microfluidic device for high-throughput detection of pathogenic bacteria at clinical sensitivity,” Biomedical Microdevices, Vol. 13, No. 3, pp. 463-473.
[37] Li, Y., Zhang, C., and Xing, D., 2011, “Integrated microfluidic reverse transcription-polymerase chain reaction for rapid detection of food- or waterborne pathogenic rotavirus,” Analytical Biochemistry, Vol. 415, No. 2, pp. 87-96.
[38] Zhang, C., and Xing, D., 2009, “Parallel DNA amplification by convective polymerase chain reaction with various annealing temperatures on a thermal gradient device,” Analytical Biochemistry, Vol. 387, No. 1, pp. 102-112.
[39] Zhang, C., and Xing, D., 2010, “Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification,” Biomedical Microdevices, Vol. 12, No. 1, pp. 1-12.
[40] Holman, J. P., 2010, Heat Transfer Tenth Edition, The McGraw-Hill Companies, pp. 11.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top