(44.192.70.216) 您好!臺灣時間:2021/05/09 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:沈家銘
研究生(外文):Chia-Ming Shen
論文名稱:熱梯度連續流聚合酶連鎖反應系統之設計
論文名稱(外文):Design of a Thermal Gradient Continuous-Flow Polymerase Chain Reaction System
指導教授:陳志堅陳志堅引用關係
指導教授(外文):Jyh-Jian Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物機電工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:87
中文關鍵詞:連續流體式PCR熱梯度熱管微流體晶片聚合酶鏈鎖反應
外文關鍵詞:Continuous fluid PCRThermal gradientHeat pipeMicrofluidic chipPolymerase chain reaction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
聚合酶連鎖反應(PCR)是用於擴增特定的去氧核醣核酸片段,被廣泛地運用在醫學和生物學的檢測。本研究目的是設計一個熱梯度連續流體式PCR晶片。以商用軟體CFD-ACE+TW模擬單一加熱源輔以兩側冷卻元件來控制晶片溫度,以達到PCR所需要的各個溫區,這樣配置的優勢是能夠減少整個晶片的體積以及PCR運行的總時間,能夠快速的完成PCR。實驗方面以微機電製程與傳統加工機具製作微晶片與配套裝置,微晶片內具有以PDMS製作的微流道,晶片中央下方有一條可被加熱的矩形鋁塊,兩側各放置一組冷卻裝置,藉著中央加熱兩側散熱形成一個可供樣品反應的熱梯度,溫度量測方面以紅外線熱像儀搭配熱電偶來取得適合實驗的溫度。最後的實驗結果測試了不同的樣品流量、表面處理、循環數分別對樣品擴增的影響,並將結果與商業熱循環儀進行比較,以證明本裝置進行生物實驗的可行性。

Polymerase chain reaction (PCR) was used to amplify a specific DNA fragments has been widely used in the medical and biology detected. Purpose of this study is to design a Thermal Gradient Continuous-Flow PCR Chip. To commercial software CFD-ACE+TW analog single heating source supplemented by both sides to control the temperature of the wafer cooling elements PCR to achieve the the desired temperature of each area, this configuration advantage is the ability reduce the overall chip size and the total time of the PCR run , can quickly complete the PCR. Experiments with MEMS manufacture microchips with traditional processing machines and tools and ancillary equipment, Having a microchip in the production of PDMS microchannel, Central beneath a wafer can be heated rectangular aluminum block, placed on each side of a group of cooling device, through the formation of a central heating are available on both sides of the sample reaction heat thermal gradients, temperature measurement area with an infrared thermal imager thermoelectric even to get the fit to the experimental temperature. Last experiment result of a different test sample flow, surface treatment, the number of cycles of amplification of the sample, respectively, and the results are compared commercial thermal cycler to demonstrate the feasibility of biological experiments apparatus.
第1章 緒論
1.1研究背景
1.2研究動機與目的
第2章 文獻探討
2.1流道設計與加工方法
2.2軟體模擬
2.3加熱與冷卻方式
2.4表面處理
2.5研究目的
第3章 理論分析與數值模擬
3.1熱傳導原理
3.2數值模擬
第4章 實驗設備與方法
4.1實驗架構
4.2微流體晶片
4.2.1流道設計
4.2.2流道公模製作
4.2.3微流體晶片
4.3加熱與冷卻元件
4.3.1加熱裝置
4.3.2冷卻元件
4.4 樣品驅動
4.5溫度量測
4.6表面處理
4.7 DNA樣品
4.8熱梯度式微流體裝置操作
第5章 結果與討論
5.1模擬參數與邊界條件
5.2晶片材質
5.3水道材質
5.4水道流量模擬
5.5流道流量模擬
5.6溫度測量
5.6.1晶片表面量測
5.6.2微流道溫度
5.6.3感溫變色染料
5.7表面處理效果
5.7.1 PDMS表面性質的變化
5.7.2 Silwet L-77接觸角量測
5.8 PCR結果
5.8.1不同流量
5.8.2表面處理方法對擴增的影響
5.8.3不同循環數
第6章 結論與建議
6.1結論
6.2建議
參考文獻
作者簡介

[1] Sun, Y., Satyanarayan, M. V. D., Nguyen, N. T., and Kwok, Y. C., 2008, “Continuous flow polymerase chain reaction using a hybrid PMMA-PC microchip with improved heat tolerance,” Sensors and Actuators B: Chemical, Vol. 130, No. 2, pp. 836-841.
[2] Becker, H., Hlawatsch, N., Carstens, C., Klemm, R., 2009, “Continuous-flow PCR using segmented flow and integrating sample preparation,” Microfluidics, BioMEMS, and Medical Microsystems VII, Proc. of SPIE, Vol. 7207, pp. 72070J-1-72070J-6.
[3] Xu, Z. R., Wang, X., Fan, X. F., and Wang, J. H., 2010, “An extrusion fluidic driving method for continuous-flow polymerase chain reaction on a microfluidic chip,” Microchim Acta, Vol. 168, No.1-2, pp. 71-78.
[4] Peham, J. R., Recnik, L., Grienauer, W., Vellekoop, M. J., Nöhammer, C., and Wiesinger-Mayr, H., 2012, “Disposable microfluidic chip for rapid pathogen identification with DNA microarrays,” Microsystem Technologies, Vol. 18, No. 3, pp. 311-318.
[5] Mavraki, E., Moschou, D., Kokkoris, G., Vourdas, N., Chatzandroulis, S., and Tserepi, A., 2011, “A continuous flow μPCR device with integrated microheaters on a flexible polyimide substrate,” Procedia Engineering, Vol. 25, pp. 1245-1248.
[6] Chen, P. C., Fan, W., Hoo, T. K., Chan, L. C. Z., and Wang, Z., 2012, “Simulation guided-design of a microfluidic thermal reactor for polymerase chain reaction,” Chemical Engineering Research and Design, Vol. 90, No. 5, pp. 591-599.
[7] Lin, Y. C., Yang, C. C., and Huang, M. Y., 2000, “Simulation and experimental validation of micro polymerase chain reaction chips,” Sensors and Actuators B: Chemical, Vol. 71, No. 1-2, pp. 127-133.
[8] Weiping, Y., Liqun, D., Jing, W., Lingzhi, M., and Jianbo, Z., 2005, “Simulation and experimental study of PCR chip based on silicon,” Sensors and Actuators B: Chemical, Vol. 108, No. 1-2, pp. 695-699.
[9] Xiaoyu, J., Zhiqiang, N., Wenyuan, C., and Weiping, Z., 2005, “Polydimethylsiloxane (PDMS)-based spiral channel PCR chip,” Electronics Letters, Vol. 41, No. 16, pp. 890-891.
[10] Mohr, S., Zhang, Y. H., Macaskill, A., Day, P. J. R., Barber, R. W., Goddard, N. J., Emerson, D. R., and Fielden, P. R., 2007, “Numerical and experimental study of a droplet-based PCR chip,” Microfluidics and Nanofluidics, Vol. 3, No. 5, pp. 611-621.
[11] Chen, P. C., Nikitopoulos, D. E., Soper, S. A., and Murphy, M. C., 2008, “Temperature distribution effects on micro-CFPCR performance,” Biomedical Microdevices, Vol. 10, No. 2, pp. 141-152.
[12] Chen, P. C., Park, D. S., You, B. H., Kim, N., Park, T., Soper, S. A., Nikitopoulos, D.E., and Murphy, M. C., 2010, “Titer-plate formatted continuous flow thermal reactors: design and performance of a nanoliter reactor,” Sensors and Actuators B: Chemical, Vol. 149, No. 1, pp.291-300.
[13] Tsai, N. C., and Sue, C. Y., 2006, “SU-8 based continuous-flow RT-PCR bio-chips under high-precision temperature control,” Biosensors and Bioelectronics, Vol. 22, No. 2, pp. 313-317.
[14] Crews, N., Wittwer, C., and Gale, B., 2007, “Thermal gradient PCR in a continuous-flow microchip,” Microfluidics, BioMEMS, and Medical Microsystems V, Proc. of SPIE, Vol. 6465, pp. 646504-1-646504-11.
[15] Hsieh, T. M., Luo, C. H., Huang, F. C., Wang, J. H., Chien, L. J., and Lee, G. B., 2008, “Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction,” Sensors and Actuators B: Chemical, Vol. 130, No. 2, pp. 840-856.
[16] Felbel, J., Reichert, A., Kielpinski, M., Urban, M., Henkel, T., Hafner, N., Durst, M., and Weber, J., 2008, “Reverse transcription-polymerase chain reaction (RT-PCR) in flow-through micro-reactors: Thermal and fluidic concepts,” Chemical Engineering Journal, Vol. 135, S. 1, pp. S298-S302.
[17] Joung, S. R., Kang, C. J., and Kim, Y. S., 2008, “Series DNA amplification using the continuous-flow polymerase chain reaction chip,” Japanese Journal of Applied Physics, Vol. 47, No. 2, pp. 1342-1345.
[18] Reichert, A., Felbel, J., Kielpinski, M., Urban, M., Steinbrecht, B., and Henkel, T., 2008, “Micro flow-through thermocycler with simple meandering channel with symmetric temperature zones for disposable PCR-devices in microscope slide format,” Journal of Bionic Engineering, Vol. 5, No. 4, pp. 291-298.
[19] Hartung, R., Brösing, A., Sczcepankiewicz, G., Liebert, U., Häfner, N., Dürst, M., Felbel, J., Lassner, D., and Köhler, J. M., 2009, “Application of an asymmetric helical tube reactor for fast identification of gene transcripts of pathogenic viruses by micro flow-through PCR,” Biomedical Microdevices, Vol. 11, No. 3, pp. 685-692.
[20] Felbel, J., Bieber, I., Pipper, J., and Köhler, J. M., 2004, “Investigations on the compatibility of chemically oxidized silicon (SiOx)-surfaces for applications towards chip-based polymerase chain reaction,” Chemical Engineering Journal, Vol. 101, No. 1-3, pp. 333-338.
[21] Kim, J. A., Lee, J. Y., Seung, S., Cha, S. H., Lee, S. H., Kim, J. J., and Park, T. H., 2006, “Fabrication and characterization of a PDMS-Glass hybrid continuous-flow PCR chip,” Biochemical Engineering Journal, Vol. 29, No. 1-2, pp. 91-97.
[22] Christensen, T. B., Bang, D. D., and Wolff, A., 2008, “Multiplex polymerase chain reaction (PCR) on a SU-8 chip,” Microelectronic Engineering, Vol. 85, No. 5-6, pp. 1278-1281.
[23] Kuan, I., Gu, W., Wu, J., Wei, C., Chen, K., and Yu, C., 2008, “Effects of grafting poly(ethylene oxide) on the amplification efficiency of a poly(dimethylsiloxane)-based flow-through PCR device,” Chemical Engineering Journal, Vol. 143, No. 1-3, pp. 326-330.
[24] Kim, Y. C., Kim, S. H., Kim, D., Park, S. J., and Park, J. K., 2010, “Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane),” Sensors and Actuators B: Chemical, Vol. 145, No. 2, pp. 861-868.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔