(3.236.222.124) 您好!臺灣時間:2021/05/08 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張媛婷
研究生(外文):CHANG YUAN-TING
論文名稱:鈦-5鋁-2.5銅-2.5錫合金相變化
論文名稱(外文):Phase Transformation on the Ti-5Al-2.5Cu-2.5Sn Alloy
指導教授:趙志燁趙志燁引用關係
指導教授(外文):CHAO CHI-YEH
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:62
中文關鍵詞:鈦合金鑄造鈦銅析出物麻田散鐵
外文關鍵詞:Titanium alloycastTi2Cumartensite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
鈦-5鋁-2.5銅-2.5錫合金為一近α型鈦合金,此合金被設計應用於高爾夫球頭及生醫材料之合金。本文將鑄造材之鈦-5鋁-2.5銅-2.5錫合金,進行不同溫度之熱處理,觀察合金相變化情形,研究結果如下:
1.鈦-5鋁-2.5銅-2.5錫合金經不同溫度之熱處理,其顯微結構基本上為α’麻田散鐵組織結構。
2.鋁元素及錫元素添加於鈦-2.5銅合金,會使其Ti2Cu穩定相之共析點溫度從790℃提升至840~920℃之間,其相變化為α → α + Ti2Cu。
3.根據EDS試驗,觀察出Ti2Cu析出物之成分分析之差異,其銅含量介於7.23~34.12%之間,證實其銅元素在Ti2Cu析出現象中為重要之元素。
4.經過細胞生物相容性測試過後,比較於控制組,在MTT試驗中,觀察出其活細胞數有些微增加,而於LDH實驗中,觀察到其乳酸脫氫脢數值較少於貼盤細胞。因此,比較於貼盤細胞,實驗組在生物相容性測試中得到較好結果,可增加細胞成長。

For golf head and biomaterial applications, Ti-5Al-2.5Cu-2.5Sn alloy was designed and developed. The main purposes of the present studies are to investigate the as-cast alloy during the various annealed temperatures. Some results are described as following:
1.The microstructure of the as-cast specimen annealed at various temperatures is an essential α’ matrix.
2.The 5.0%Al and 2.5%Sn added on the Fe-2.5Cu alloy would increase the stable temperature of Ti2Cu phase. A heterogeneous and homogeneous temperature of α → α + Ti2Cu phase transition is occurred about 920°C and 840°C, respectively.
3.The copper content of the Ti2Cu phase is in the range between 7.23% and 34.12%. The diffusion and distribution of Cu alloy element will play an important role on the Ti2Cu precipitation.
4.According to the MTT assay and LDH assay examined, the cell growth would be slightly improved. Based on the results, the MTT or LDH assay shows the present as-casted alloy can improve the cell growth and isn’t a toxicity alloy.

摘要
Abstract
誌謝
Contents
List of Tables
List of Figures
Chapter 1 Introduction
Chapter 2 Literature Review
2.1 Introduction to Golf
2.2 Medical application
2.3 Ti-Cu system
Chapter 3 Experimental Procedures
3.1 Preparation of specimens
3.2 Heat Treatment
3.3 Metallography
3.3.1 Scanning Electron Microscopy (SEM)
3.3.2 Transmission Electron Microscope (TEM)
3.3.3 Field Emission Scanning Electron Microscope - Energy Dispersive Spectrometer (FESEM–EDS)
3.4 Cell culture
3.4.1 MTT assay
3.4.2 LDH assay
Chapter 4 Results and Discussion
4.1 Microstructure examinations
4.2 Cell culture examinations
Chapter 5 Conclusions
References
作者簡介

[1] Rules of Golf , The United States Golf Association and R&;A Rules Limited, January 1, 2012
[2] M. Niinomi, Metall. Mater. Trans., A 33A (2002) 477.
[3] M. Long, H.J. Rack, Biomaterials 19 (1998) 1621.
[4] D.R. Sumner, J.O. Galante, Clin. Orthop. Relat. Res. 274 (1992) 202.
[5] M. Semlitsch, Titan 2 (1987) (1986) 721–740.
[6] U. Zwicker, Zeitschrift Metallkunde 77 (11) (1986) 714–720.
[7] K. Wang, The use of titanium for medical applications in the USA, Mat. Sci. Eng. A213 (1996) 134–137.
[8] Iron and Steel Institute of Japan, Data Book of Fracture Toughness of Titanium Alloys, Tokyo, Japan, 1990, 37–45.
[9] J.A. Davidson, F.S. Gergette, State of the art materials for orthopedic prosthetic devices, Proc. Implant Manufacturing and Material Technology, Soc. Manufact. Eng. Em87-122 (1986) 122–26.
[10] W. Chen, Y. Liu, H.S. Courtney, M. Bettenga, C.M. Agrawal, J.D. Bumgardner, J.L. Ong, In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating, Biomaterials 27 (2006) 5512-5517.
[11] A. Ewald, S.K. Gluckermann, R. Thull, U. Gbureck, Antimicrobial titanium/silver PVD coatings on titanium, Biomed. Eng. Online 5 (2006) 22-32.
[12] F. Heidenau, W. Mittelmeier, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, H. Gollwitzer, A novel antibacterial titania coating: Metal ion toxicity and in vitro surface colonization, J. Mater. Sci. 16 (2005) 883-888.
[13] Y.Z. Wan, S. Raman, F. He, Y. Huang, Surface modification of medical metals by ion implantation of silver and copper, Vacuum 81 (2007) 1114-1118.
[14] M. Bosetti, A. Masse, E. Tobin, M. Cannas, Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity, Biomaterials 23 (2002) 887-892.
[15] Z. Shi, K.G. Neoh, E.T. Kang, W. Wang, Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles, Biomaterials 27 (2006) 2440-2449.
[16] B.D. Kalyon, U. Olgun, Antibacterial efficacy of triclosan-incorporated Polymers, Am. J. Infect. Control 29 (2001) 124-126.
[17] V. Alt, T. Bechert, P. Steinrucke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, R. Schnettler, Biomaterials 25 (2004) 4383-4391.
[18] P. Airey, Poverty and infection in the developing world: Healthcare-related infections and infection control in the tropics, J. Hosp. Infect. 67 (2007) 217-224.
[19] J. Kielemoes, W. Verstraete, Influence of copper-alloying of austenitic stainless steel on multi-species biofilm development, Lett. Appl. Microbiol. 33 (2001) 148-152.
[20] Marcinak CF, Toung FA, Spector M. Biocompatibility od a new Ti-Cu dental casting alloy. J Dent Res 1980;59;472 Abstr. No, 821.
[21] Taira M, Moser JB, Greener EH. Studies of Ti alloys for dental castings. Dent Master 1989;2;45-50.
[22] Oda Y, Funasaka M, Sumi T. Corrosion of dental titanium alloys binary system of Ti-Al, Ti-Cu, Ti-Ni. J Jpn Soc Dent Mat Dev 1990;9;314-319.
[23] S.A. Souza, C.R.M. Afonso, P.L. Ferrandini, A.A. Coelho, R. Caram. Effect of cooling rate on Ti–Cu eutectoid alloy microstructure. Materials Science and Engineering C 29 (2009) 1023–1028.
[24] F.F. Cardoso, A. Cremasco, R.J. Contieri, E.S.N. Lopes, C.R.M. Afonso, R. Caram. Hexagonal martensite decomposition and phase precipitation in Ti–Cu alloys. Materials and Design 32 (2011) 4608–4613.
[25] Avigdor Zangvil, Satoru Yamamoto and Yotaro Murakami.Morphology and substructure of Ti-Cu martensite and its aged martensite. Trans. JIM Vol. 17 No. 9 (1976) pp.575-581.
[26] J. C. Williams, R. Taggart, D. H. Polonis. The morphology and substructure of Ti-Cu martensite. Metallurgical Transactions August 1970, Volume 1, Issue 8, pp 2265-2270.
[27] J. C. Williams, R. Taggart, D. H. Polonis .An Electron Microscopy Study of Modes of Intermetallic Precipitation in Ti-Cu Alloys. Metallurgical Transactions April 1971, Volume 2, Issue 4, pp 1139-1148.
[28] Bhaskaran, TA and Krishnan, RV and Srinivasa Raghavan, K (1985).The Decomposition of hexagonal martensite in a titanium-copper alloy. Scripta Metallurgica, 19 (3). pp. 319-322.
[29] G. Lütjering, S. Weissmann. Mechanical Properties and Structure of Age-Hardened Ti-Cu Alloys. Metallurgical Transactions June 1970, Volume 1, Issue 6, pp 1641-1649.
[30] Tachai Luangvaranunt and Patchara Pripanapong. Pin-On-Disc Wear of Precipitation Hardened Titanium-CopperAlloys Fabricated by Powder Metallurgy. Materials Transactions, Vol.53 No.3 (2012) pp.518-523.
[31] V. N. Eremenko, Yu. I. Buyanov, S. B. Prima. PHASE-DIAGRAM STRUCIXRE OF THE TITANIUM-COPPER SYSTEM. Soviet Powder Metallurgy and Metal Ceramics June 1966, Volume 5, Issue 6, pp 494-502
[32] J.L. Murray. The Cu-Ti(Copper-Titanium) system. Bulletin of Alloy Phase Diagrams Vol.4 No.1(1983) 81.
[33] X. Yao, L. Xiao, J. Sun.Effect of Ti2Cu precipitates on mechanical behavior of Ti–2.5Cu alloy subjected to different heat treatments. Journal of Alloys and Compounds. Volume 484, Issues 1–2, 18 September 2009, Pages 196–202
[34] Q.Y. Sun, Z.T. Yu, R.H. Zhu, H.C. Gu. Mechanical behavior and deformation mechanisms of Ti–2.5Cu alloy reinforced by nano-scale precipitates at 293 and 77 K. Materials Science and Engineering A364 (2004) 159–165.
[35] Masafumi Kikuchi, Yukyo Takada, Seigo Kiyosue, Masanobu Yoda, Margaret Woldu, Zhuo Cai, Osamu Okuno, Toru Okabe.Mechanical properties and microstructures of cast Ti–Cu alloys. Dental Material 19 (2003) 174-181.
[36] Masafumi Kikuchi, Masatoshi Takahashi, Osamu Okuno. Elastic moduli of cast Ti–Au, Ti–Ag, and Ti–Cu alloys. Dental Materials (2006) 22, 641–646.
[37] C. Ohkubo, I. Shimura, T. Aoki, S. Hanatani, T. Hosoi, M. Hattori, Y. Oda, T. Okabe. Wear resistance of experimental Ti–Cu alloys. Biomaterials 24 (2003) 3377–3381.
[38] K. Y. ZHU, Y. Q. ZHAO, H. L. QU, Z. L. WU, X. M. ZHAO. Microstructure and properties of burn-resistant TiAlCu alloy. JOURNAL OF MATERIALS SCIENCE 35 (2000) 5609 – 5612.
[39] M. Koike and T. Okabe. Properties Characterization of Cast Ti-Al-Cu Alloys for Dental Applications. Medical Device Materials IV: Proceedings from the Materials &; Processes for Medical Devices Conference 2007 (ASM International), Oct.2008, pp. 109-113.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔