(3.92.96.236) 您好!臺灣時間:2021/05/07 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許本松
研究生(外文):Pen-Sung Hsu
論文名稱:以乾式製程技術於大氣環境下製備氧化鋅粉末之研究
論文名稱(外文):Preperations of Zinc Oxide Powerder Using Dry Processing Technology under Atmospheric Conditions
指導教授:黃培興
指導教授(外文):Pei-Hsing Huang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:乾式製程氧化鋅粉末廢鋅
外文關鍵詞:dry processzinc oxide powderwaste zinc
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
本研究是利用乾式製程技術於大氣環境下製備氧化鋅粉末,使氧化鋅粉末於生產過程中,可降低原料中的鎘、鉛含量,並減少團聚現象及與空氣中的雜質混合等製程改善,獲得粒徑縮小、純度提升的高品質氧化鋅粉體。
實驗過程乃藉由銑件熔爐及反射爐相互配合及熔煉作業參數調整等作法,達到鋅金屬的純化效果並增加量產之目標,將純度提升至99.7 %以上,有效降低「鋅液體」之鎘含量至10 ppm(0.001 wt%)以下及鉛含量降低至50 ppm(0.005 wt%)以下,另於負壓管路進行自然補氣冷卻部分,需與現有生產氧化鋅設備之負壓馬達、管徑與管路長度等相互匹配,至而進行參數優化,使氧化鋅粉末粒徑縮小至230 nm以下目標並降低氧化區之落粉量之生產效益。
因高溫氧化法為一種大氣製程,氧化過程容易與空氣中的雜質混合,造成製程污染導致粉體純度下降,所以建置一半封閉氧化爐隔離之空間,降低鋅蒸氣與空氣中的雜質混合,提升氧化鋅粉體的純度。而氧化鋅粉體於形成階段具有熱團聚之現象,因此於氧化爐出口與負壓抽管接合處,選擇使用氣體熱對流的方式進行有效的冷卻,並設計不同型態的開孔方式取得最佳化設計,使氧化爐出口溫度可迅速降低,來減少後續氧化鋅微粒團聚成長的機會,其冷卻系統考量後續維修製作成本,所以採用熱對流的方式進行負壓管路的有效冷卻,此方式可讓剛成形的氧化鋅粉體粒徑均勻,並使比表面積達4.1 cm2/g以上。

The study aims to use the dried process technology to produce the ZnO powder in the atmosphere. During the process of ZnO powder production, this technology could not only reduce the cadmium(Cd) and lead(Pb) but also decrease the aggregation from the materials as well as improve the process, such as the mixing impurity in the air. As a result, high-quality ZnO powder was produced with the narrow particle size and higher purity.
The goal of this experiment was to purify Zinc metal and to increase mass production with the methods of shiny metal fumace, reverberating fumace and parameter adjusting of smelting process. The purity was raised to 99.7 % and the content of Cd and Pb was decreased efficiently lower than 10 ppm(0.001 wt%) and 50 ppm(0.005 wt%) in the Zinc liquid. In addition, the nature air filling in the negative pressure piping system was designed to match with negative pressure motor, caliber, and the length of the piping. Furthermore, it optimized the parameter to shrink the ZnO powder particle size less than 230 nm and to produce efficiency of the powder deposition quantity in oxidization region.
Since the high-temperature oxidation process is a method of atmospheric processes, it occurred to be mixed with atmospheric impurity easily, resulting in production pollution and decreased powder purity. Therefore, a closed and isolated space was built in the half area of the oxidation furnace, in order to reduce the impurities of mixing zinc vapor with air, and to enhance the oxidation of zinc powder purity. However, since the zinc oxide powder has the agglomeration effect in the formative stage, the thermal convection was used at the joint of the exports and vacuum pumping tube in the oxidation furnace. Moreover, the different types of openings were applied to achieve an optimal design, so that the oxidation furnace outlet temperature was quickly decreased and the agglomeration effect was reduced. So as to reduce the cost of production and maintenance in the cooling system, the thermal convection was used to perform cooling of the vacuum pipe effectively. With this method, a uniform particle size of newly formed zinc oxide powder was produced, and the specific surface area was above 4.1 cm2/g.

摘要............................................I
Abstract.......................................Ⅲ
誌謝............................................Ⅴ
目錄............................................Ⅵ
圖目錄..........................................Ⅷ
表目錄..........................................XI
第一章 緒論與文獻回顧.............................01
1.1前言........................................01
1.2研究動機.....................................01
1.3氧化鋅粉體的製備方法..........................02
1.3.1電弧電漿法................................02
1.3.2溶膠-凝膠法...............................03
1.3.3沉澱法...................................04
1.3.4溶熱法...................................05
1.3.5高溫氧化法...............................06
1.3.6現有氧化鋅粉體之技術現況...................07
第二章 理論基礎..................................09
2.1氧化鋅材料介紹...............................09
2.2模擬軟體介紹(FLUENT).........................10
2.3模擬理論基礎.................................12
第三章 實驗流程與規劃.............................15
3.1高溫氧化法之製程介紹..........................15
3.1.1高溫氧化法之製程改善方式...................15
3.2實驗設備....................................17
3.2.1熔爐銑件.................................17
3.2.2氧化坩鍋.................................18
3.2.3電熱爐...................................19
3.2.4反射爐...................................19
3.2.5小型活動集塵機............................20
3.2.6氧化集塵罩................................20
3.2.7熱電偶...................................21
3.2.8溫度檢測儀器之紅外線溫度儀..................22
3.2.9溫度減測儀器之高溫熱線風溫、風速儀...........23
3.2.10光譜分光儀...............................24
3.2.11掃描式電子顯微鏡..........................25
3.2.12感應耦合電漿原子發射光譜儀.................25
3.2.13雷射奈米粒徑暨介面電位量測儀...............27
3.2.14比表面積分析儀...........................27
第四章 結果與討論.................................28
4.1製程改善與技術整合方法........................28
4.2實驗材料介紹.................................29
4.3反射爐及熔爐參數介紹..........................30
4.4負壓管路模擬設計.............................35
4.5氧化坩鍋的設計與流場分析......................49
第五章 結論......................................61
參考文獻........................................62
作者資料........................................65

[1] 黃政誠, “電漿電弧氣凝合成法製備奈米微粒”, 國立台北科技大學機械工程系碩士論文, (2003).

[2] B. Jirhennsons and M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York (1962).

[3] K. Kamata and K. Miyokawa, “Synthesis of Zinc Oxide Powder by Hydrolysis of BIS(Acetylacetonato)-Zinc(Ⅱ) in Aqueous Solution”, Chemitry Letters, 2021-2022 (1984).

[4] C. L. Carnes and K. J. Klabunde, “Synthesis, Isolation and Chemical Reactivity Studies of Nanocrystalline Zinc Oxide”, Langmuir 16, 3764-3772 (2000).

[5] M. Castellano and E. Matijevic, “Uniform colloidal zinc compounds of various morphologies”, Chem. of Mater., 1, 78-82 (1989).

[6] S. M. Haile and W. Johnson, “Aqueous Precipitation Spherical Zinc Oxide Powders for Varistor Applications”, J. Am. Ceram. Soc., 72, 10, 2004 (1989).

[7] R. I. Walton, “Subcritical Solvothermal Synthesis of Condensed Inorganic Materials”, Chem. Soc. Rev., 31, 230 (2002) 230-238.

[8] 許智雄, “氧化鋅奈米粉體之製備與特性分析”, 國立成功大學化學工程學系碩士論文, (2006).

[9] O. Milosevic and D. Uskokovic,“Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis”, J. of Mater. Sci. and., A128,249-252(1993).

[10] O. Milosevic, D. Uskokovic, L. J. Karanovic, M. Tomasevic-Canovic and M. Trontelj, “Synthesis of ZnO-based varistor precursor powders by means of the reaction spray process ”, J. of Mater. Sci., 28, 5211-5217 (1993).

[11] O. Milosevic, B. Jordovic and D. Uskokovic, “Preparation of fine spherical ZnO powders by an ultrasonic spray pyrolysis method”, J. of Mater. Lett., 19[4], 165-170 (1994).

[12] 黎佩玲, “奈米氧化鋅的製備與應用”, 中國紡織工業研究中心, (2003).

[13] K. Y. Jung, Y. C. Kang and S. B. Park, “ Photodegradation of trichloroethylene using nanometer-sized ZnO particles prepared by spray pyrolysis”, Journal of Materials Science Letters, 16, 1848-1849 (1997).

[14] 陳彥宏, 甘炯耀, “ZnO之薄膜製備與發光性質研究”, 國立清華大學材料科學工程學系碩士論文, (2001).

[15] M. Krunks, A. Katerski, T. Dedova, I. Oja Acik and A. Mere, “Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array”, J. of Solar Energy Materials &; Solar Cells 92 (2008) 1016– 1019.

[16] J. Lee, D. Lee, D. Lim and K. Yang “Structural, electrical and optical properties of ZnO:Al films depositedon flexible organic substrates for solar cell applications” Thin Solid Films 515 (2007) 6094–6098.

[17] 于勇, “FLUENT入門與進階教程”, 北京理工大學出版社, (2008).

[18] 張維倫, “反算法於封裝晶片熱源預測及散熱模組最佳化之研究”, 國立成功大學系統與船舶機電工程學系碩士論文, (2009).

[19] 張庭碩, “利用FLUENT進行高容量乾式貯存系統傳送護箱暫態熱流分析”, 國立清華大學核子工程與科學研究所碩士論文, (2010).

[20] 吳乾榮, “高質化氧化鋅粉體生產製程改善及技術整合之研究”, 國立高雄應用科技大學機械與精密工程研究所碩士論文, (2012).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔