(3.226.72.118) 您好!臺灣時間:2021/05/13 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許文明
研究生(外文):Hsu Wen-Ming
論文名稱:蛇紋岩土壤之鉻、鎳含量及其來源查證
論文名稱(外文):Chromium and nickel contents and their verification of source in serpentinitic soils
指導教授:許正一許正一引用關係
指導教授(外文):Hseu, Zeng-Yei
學位類別:博士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:關鍵字:土壤污染、鉻、鎳、蛇紋岩土壤
外文關鍵詞:Soil contaminationchromiumnickelserpentinitic soils
相關次數:
  • 被引用被引用:1
  • 點閱點閱:573
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
蛇紋岩是超基性火成岩經熱水蝕變而成,其所含的鐵鎂質原岩結晶構造以島狀矽酸鹽為主,故較易風化崩解,且鎂含量高於鈣,而鉻、鎳等重金屬含量偏高,其風化後之土壤特徵是Ca/Mg比值偏低,且含有大量鉻、鎳等重金屬。此類因地質因素所造成重金屬含量偏高之土壤,雖非人為污染所致,但一樣會影響生態環境與人體健康。本論文採集日本關西地區6個土壤剖面及台灣東部9個土壤剖面,共計95個化育層土壤,進行元素全量分析與鉻、鎳之DTPA萃取,研究結果指出,日本樣體Ca/Mg 比值較台灣低,風化程度較低,而所有樣體中鉻、鎳及鈷全量明顯高於非蛇紋石土壤,並且部分樣體已超過台灣的鉻、鎳土壤污染管制標準。在型態劃分中,鉻、鎳、鈷主要被固定在礦物晶格內,故集中在殘餘態,而鎳間移動性大於鉻。至於重金屬的DTPA萃取方面,鎳含量高於鉻,與序列萃取之型態分佈趨勢相符,表示蛇紋岩土壤中的鉻應不易被植物所攝取。土壤DTPA萃取之有效性鉻和鎳濃度遠低於總量,但有效性鉻和鎳分別與可交換鈣/鎂比值顯著地呈負相關,表示交換性鎂隨土壤化逐漸流失後,鉻與鎳的有效性濃度將因為氧化鐵固定作用而降低,這種現象是人為污染土壤不會有的,是驗證此類土壤鉻、鎳來源的重要證據。
Serpentinites were derived from ultramafic igneous rocks through hydrothermal alteration, which original rocks are island silicate framework and high in Fe and Mg. Serpentinites are weakly resistant in weathering and characterized with high Mg and low Ca and abundant levels of Cr and Ni.The serpentinitic soils are characterized low Ca/Mg ratios and large amounts of Cr and Ni. These heavy metals are not produced from human activities in serpentine soils, but may have adverse effects on eco-environment and human health. This study collected nine soil profiles from Japan and six soil profiles from eastern Taiwan which totally are 95 horizon soil samples. Total and DTPA extraction were performed for chromium and nickel measurement.
Experimental results indicates that the Japanese pedons were low weathered compared to Taiwanese ones due to the low Ca/Mg ratios in the Japanese soil samples. However, total contents of Cr and Ni in all soils were much higher than non-serpentine soils, and the metal levels in some of them were over the control standards of Taiwan. Regarding the metal fractionation, Cr and Ni were mainly from the mineral lattices, and thus were concentrated in the residual fractions. The mobility sequence followed as Ni > Cr. With respect to DTPA extractable amount, Ni was higher than Cr. The difference in the DTPA extraction between metals was corresponding to the results of lability evalauted by sequential extraction; however, Cr is hardly absorbed by plant. The soil DTPA extraction effectiveness of Cr and Ni concentrations were much lower than the total contents. However, the effectiveness of chromium and nickel and exchangeable Ca//Mg ratio was negatively correlated significantly. This means that the gradual loss of exchangeable Mg with soil weathering. The effectiveness of the Cr and Ni concentrations will be reduced because of the fixation by iron oxides. This phenomenon can not be discerned in artificially contaminated soils to support the verification of Cr and Ni sources for serpentinitic soils.

頁次
中文摘要................................................... I
英文摘要..................................................III
誌謝.......................................................V
目錄......................................................VI
表目錄.....................................................X
圖目錄....................................................XI
第1章 前言..................................................1
1.1 研究緣起................................................1
1.2 研究動機及目的..........................................3
第2 章 文獻回顧.........................................................5
2.1土壤的形成和組成.........................................5
2.2 成土要素與作用..........................................5
2.3 蛇紋岩土壤分類..........................................5
2.4 蛇紋岩土壤理化性質.......................................7
2.5 蛇紋岩土壤鉻、鎳金屬含量.................................10
2.6 蛇紋石之礦物結晶構造及組織...............................12
2.7 蛇紋石礦物之組織.....………………………………………………...14
2.8 土壤重金屬管制標準......……………………………………….…..15
2.9 鉻、鎳生物有效性.........……………………….……………………17
第3 章 材料與方法..........................................20
3.1 研究區域概況...........................................20
3.1.1台東縣蛇紋岩概述.......................................20
3.1.2 花蓮縣蛇紋岩概況.....……………………………………………….21
3.1.3日本關西地區.....……………………………………………………..23
3.2 土壤樣品描述.....……………………………………………………...25
3.3 土壤理化性質分析.....………………………………………………...25
3.3.1 物理性質分析......……………………………………………………25
3.3.2 化學性質分析………......……………………………………………26
3.4 序列萃取程序…………………….....………………………………...37
3.5 土壤生物有效性之重金屬含量分析……......………………………..29
3.6 土壤生物有效性之重金屬含量分析…………….....………………...28
第4 章 結果與討論..........................................31
4.1 土壤物理性質...........................................31
4.1.1 粒徑分佈.............................................31
4.1.2 土壤樣體特徵.........................................35
4.2. 土壤化學性質..........................................39
4.2.1 pH值................................................39
4.2.2 有機碳……………………......………………………………………44
4.2.3 陽離子交換容量…………………......………………………………45
4.2.4 游離鐵……………………………………......………………………47
4.3 蛇紋岩土壤樣體中Ca/Mg比值與鉻、鎳含量之關係...............48
4.3.1 蛇紋岩土壤樣體中鈣、鎂全量與深度關係....................48
4.3.2 蛇紋岩土壤樣體中交換性Ca/Mg比值與深度關係…………........49
4.3.3 蛇紋岩土壤樣體中總鉻、鎳濃度與深度關係..................54
4.3.4 蛇紋岩土壤樣體中Cr與Ni關係............................58
4.3.5 蛇紋岩土壤樣體中Ca/Mg與Cr、Ni關係......................60
4.3.6 蛇紋岩土壤樣體中Ex Ca/Mg與Cr、Ni關係...................60
4.3.7 蛇紋岩土壤樣體中Ca/Mg與Ex-Ca/Mg關係...................61
4.3.8 有效性鉻、鎳與深度、Ex Ca/Mg關係….....................67
4.3.9 蛇紋岩土壤中鎳、鉻的結合型態分佈........................71
4.3.9.1 蛇紋岩土壤中鉻的結合型態分佈.........................71
4.4 礦物之組成與鑑定........................................78
第5 章 結論................................................79
參考文獻...................................................81
作者簡介..................................................102






















表目錄
頁次
表2-1 國內外蛇紋石土壤中鉻與鎳含量(g/kg)之範圍........................12
表2-2 台灣土壤污染監測基準與管制標準(mg/kg).............................16
表2-3 土壤中重金屬含量(mg/kg).........................................................16
表2-4 重金屬於受污染土壤及蛇紋岩土壤中之含量(mg/kg).............19
表 4-1 花東及日本關西地區土壤性質結果.........................................41
表 4-2 土壤T-Ca/Mg、ExCa/Mg與T-Cr、T-Ni、DTPA-Cr、DTPA-Ni、T-Ca、T-Mg、Ex.Ca、Ex.Mg分析結果.....................................62
表 4-3 花東地區土壤樣品Ca/Mg與鉻及鎳各結合態之濃度
(mg/kg)………………………………………………………...73
表 4-4 花東地區土壤樣品Ex Ca/Mg與鉻及鎳各結合態之濃度 (mg/kg)………………………………………………………....76













圖目錄
頁次
圖 2-1 蛇紋石的三八面體與四面體1:1之層狀構造............................12
圖 2-2 蛇紋石於X-Y 平面之原子結構投影圖....................................12
圖 3-1 台東縣蛇紋岩分布圖.................................................................21
圖 3-2 花蓮地區蛇紋岩分布……………………….............................23
圖 3-3 日本關西地區蛇紋岩分佈.....................................................

參考文獻
王一雄 (1997) 土壤環境污染與農藥。民文書局,第231頁。
台灣省環境保護處 (1989) 土壤污染調查研究報告彙編(第二輯)。
行政院環境保護署 (2010) 土壤污染及地下水污染整治法(2010.2.3華總一義字第09900024211 號令)。
行政院環境保護署 (2011) 土壤污染監測基準(2011.1.31 環署水字第
1000008485 號令)。
行政院環境保護署 (2011) 土壤污染管制標準(2011.1.31 環署水字第
第1000008495 號令)。
克司忠 (1988) 台灣地區蛇紋石結晶構造與礦物化學之研究。國立台灣大學地質學研究所碩士論文,48-49頁。
李子純 (1983) 磷素肥料在土壤中的變化聚積及其被旱作利用之研究。中華農業研究,32:172-184。
張仲民 (1991) 作物之營養與肥料。徐氏基金會,3-5頁。
陳映汝 (2001) 花蓮瑞穗地區及其角礫岩之變質岩石學。國立成功大學地球科學研究所碩士論文,4-5頁。
陳肇夏 (1998) 台灣的變質岩。經濟部中央地質調查所,74-119頁。
吳敏煌、顏美秀 (2001) 土壤污染管制標準及監測基準之研訂。第七屆土壤污染整治研討會論文集,51-74頁。
沈于超 (2005) 台東長濱海階土壤之時間序列。國立屏東科技大學環境工程與科學研究所碩士論文,46-47頁。
陳怡君 (2005) 台東池上地區蛇紋岩土壤中鉻及鎳之生物地質化學特徵。
國立屏東科技大學環境工程與科學研究所碩士論文,40-43頁。
陳尊賢 (2005) 台灣土壤及地下水污染整治之回顧與展望。研討會論文集,91頁。
黃佳鴻 (2006) 由台地紅壤性質探討第四紀之地形與氣候環境變遷。國立屏東科技大學環境工程與科學研究所碩士論文,84-92頁。
張英琇 (2007) 海岸山脈蛇紋岩土壤金屬元素之生物地質化學性質。國立屏東科技大學環境工程與科學研究所碩士論文,45-56頁。
鄭光喆 (2007) 重金屬污染土壤之不同單一與連續性抽出方法評估。國立中興大學土壤環境科學系碩士學位論文,第75頁。
吳景翰 (2009) 不同施肥條件下蛇紋石土壤中重金屬之溶出特性與水稻吸收量。國立屏東科技大學環境工程與科學研究所碩士論文,38-46頁。
包國輝 (2010) 日本關西及台灣東部地區蛇紋岩土壤性質之比較。國立屏東科技大學環境工程與科學研究所碩士論文,28-39頁。
范心彤 (2011) 花蓮萬榮地區蛇紋岩水田土壤之理化特性與重金屬含量
國立屏東科技大學環境工程與科學研究所碩士論文,3-5頁。
陳念祖 (2011) 蛇紋石生態系中巨量元素與微量元素在土壤與植物體之含量探討。國立屏東科技大學環境工程與科學研究所碩士論文,4-5頁。
旺 羅、劉東生、呂厚遠 (2000) 污染土壤磁化率特徵。科學通訊,45卷,1091-1093頁。
Adriano, D.C. and J.T. Weber (2001) Influence of fly ash on soil physical properties and turfgrass establishment.J. Environ. Qual. 30: 596-601.
Agency for Toxic Substances and Disease Registry(ATSDR), (2006)
Toxicological profile for chromium. US Department of Health and
Human Services, Public Health Service, Atlanta, GA.
Ahumada I., J. Mendoza, E. Navarreta, and A. Scar (1999)Sequential
extraction of heavy metals in soils irrigated with wateswater.
Communications in Soil Science and Plant Analysis 30:1507-1519.
Alexander, E. B. (1988)Morphology, fertility and classification of productive soils on serpentinused peridotite in California, U.S.A. Geoderma 41:105 337-351.
Alexander, E. B., W. E. Wildan, and W. C. Lynn (1985) Ultramfic
(serpentinitic) mineralogy class. In Mineral classification of soils,
Special Publication 16. J. A. Kittrick, ed. Soil Science Society of America,Madison, WI:135-146.
Alexander, E. B., C. Adamson, P. J. Zinke, and R. C. Graham. (1989) Soil and conifer forest productivity on serpentinized peridotite of the Trinity Ophiolite California. Soil Sci. 148: 412-423.
Alexander, E.B., Ellis, C.C, Burke, R.,(2007), A chronosequence of
soils and vegetation on serpentine terraces in the Klamath Mountains
, Soil Science, 172: 565-576.
Allaway, W. H.,(1968), Advance in Agronomy, 20:240-243.
Alloway, B. J.,(1995), Heavy metal in soils, 2nd ed., Blackie Academic and Professional, Glasgow, UK.
Amir, H., Pineau, R.,(1998), Effects of metals on the germination and growth
of fungal isolates from New Caledonian ultramafic soils, Soil Biology
and Biochemistry, 30: 2043-2054.
Anderson, P. R., and T. H., Christensen (1988) Distribution coefficients of Cd, Co, Ni, and Zn in soils. Soil Sci. 39:15-22.
Aubert, H. and M. Pinta (1977) Trace elements in soils. Elsevier Sci. Publ.Co., Amsterdam. 395.
Baker, A. J. M. (1981) Accu, ulatators and excluders-Strategies in the
response of plants to heavy metals. Journal of Plant Nutrition 3:643-654.
Baker, A. J. M., and R. R. Brooks (1989) Terrestrial highter plants which
hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81-126.
Baker, D. E., and D. E. Amacher (1982) Nickel, Copper, Zinc and Cadmium.In A. L. Page et al. (eds.) Methods of soil analysis, Part Chemical and Microbiological Properties, 2nd Ed., Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA., 323-336.
Bales, R. C., and J. J. Morgan (1985) Dissolution kinetics of chrysotile at pH7 to 10. Geochimica et Cosmochimica Acta 49:2281-2288.
Becquer T., C. Quantin, M. Sicot, and J. P. Boudot (2003)Chromium
availability in ultramafic soils from New Caledonia. The Science of Total Environment 301:251-261.
Becquer, T., J., Petard, C., Duwig, E., Bourdon, R., Mourau, and A. J.,
Herbillon, (2001) Mineralogical, chemical and charge properties of Geric Ferralsols from New Caledonia. Geoderma. 103:291-306.
Becquer, T. C. Quantin, S. Rotte-Capet J. Ghandaja, C. Mustin and A. J.
Herbillon (2006) Sources of trace metals in Ferralsols in New Caledonia.Eur. J. Soil Sci. 57:200-213.
Blake, G. R., and Hartge, K. H.,(1986), Bulk density, In: Klut, A. et al.
(eds.), Methods of soil analysis, Part 1. Physical and Mineralogical
methods-Agronomy monograph No. 9 Agronomy Society of American
and Soil Science Society of America, Madison, Wisconsin,USA., 363-375.
Bonifacio,E.,Zanini, E., Boero, V., Franchini-Angela, M.,(1996), Pedogenesis
in a soil catena on serpentinite in north-western Italy, Geoderma,
75: 33-51.
Borchardt, G. A. (1989) Smectites. In J. B. Dixon and S. B. Weed (ed.)
Minerals in soil environments. 2nd ed. Agronomy monograph No. 9.
ASA and SSSA, Madison, Wisconsin, USA., 675-727.
Brady, K. U., Kruckeberg, A. R., Bradshaw Jr., H. D., 2005, Evolutionary
ecology of plant adaptation to serpentine soils, Annual Review of
Ecology, Evolution, and Systematics, 36: 243-266.
Brooks, R. R., Morrison, R. S., Reeves, R. D., Dudley, T. R., and Akman,
Y., 1979, Hyperaccumulation of nickel by Alyssum Linneaud
(Cruciferas). Proceeding of Royal Society of London. Series B,
Containing papers of a Biological character, Royal Society (Great
Britain), 203: 387-403.
Brooks, R.R., 1987, Serpentine and its Vegetation. Dioscorides Press,
Portland.
Brooks, R. R., Reeves, R. D., Baker, A. J. M.,(1992), The serpentine
vegetation of Goias State, Brazil, In: Baker, A. J. M., Proctor, J.,
Reeves, R. D. (eds.), The Vegetation of Ultramafic (Serpentine) Soils,7-81.
Bulmer, C. E., and Lavkulich, L. M.,(1992), Morphology, chemistry, and
mineralogy of soils derived from serpentinite and tephra in southwestern British Columbia, Soil Science, 154: 73-82.
Bulmer, C. E., Lavkulich, L. M.,(1994), Pedogenic and geochemical processes of ultramafic soils along a climatic gradient in southwestern British Columbia, Canadian Journal of Soil Science,74: 165-177.
Burt, R., Wilson, M. A., Mays, M. D., and Lee, C. W.,(2003), Major and trace elements of selected pedons in the USA, Journal of Environmental Quality, 32: 2109-2121.
Burt R., M. Fillmore, M. A Wilson, E. R. Gross, R. W. Langridge, and D. A Lammers (2001) Soil properties of selected pedons on ultramafic rocks in Klamath mountains, Oregon. Communications in Soil Science and Plant Analysis 32(13&14): 2145-2175.
Caillaud, J., D. Proust, D. Righi, and F. Martin (2004) Fe-rich clays in a
weathering profile developed from serpentinite. Clays and Clay Minerals 52(6):779-791.
Cécile Q, T. Becquer, and J. Berthelin (2002) Mn-oxide: a major soure of
easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. C. Quantin et al., C. R. Geoscience 334:273-278.
Chaney, R. L.,(1983), Potential effects of waste constituents on the food chain, In: Parr, J. F., Marsh, P. B. and Kla J. M. (eds), Land treatment of hazardous wastes, Noyes Data Corporation, Park Ridge, NJ,152-240.
Cheng, C. H., Jien, S. H. Tsai, H., Chang, Y. H., Chen, Y. C., and Hseu, Z.Y., 2009, Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan, Soil Science, 174:283-291.
Chino, M.,(1981), Uptake-transport of toxic metals in rice plants, In:Kakuzo, K., Yamane, I.,(eds), Heavy metal pollution on soil of Japan,Japan Scientific Societies Press, Tokyo, 81-89.
Choi, I., and R. W. Smith (1972) Kinetic study of dissolution of asbestos
fibers in water. Colloid Interface Science 40:253-262.
Cleaves, E. T., Fisher, D. W., and Bricker, O. P., 1974, Chemical weathering of serpentinite in the eastern Piedmont of Maryland, Geological Society of America Bulletin, 85: 437-444.
Cooper, G. R., (1978) Greenhouse experiments with maize grown in
ultramafic soils. Soil Sci. 165:152-157.
Covelli, S. and G. Fontolan (1997) Application of a normalization procedure in determining regional geochemical baseline. Environ. Geochem. 30:30-45.
D’Amico, M. M., &; Rivers, H. (2008). Working through college: Is a job part of your investment plan? In C. Watt &; G. McCombs (Eds.), Planning for college: A comprehensive guide for South Carolina families (pp. 69-78). Clemson, SC: Strom Thurmond Institute.
Diez Lázaro, J., Kidd, P.S., Monterroso Martínez, C.,(2006), A
phytogeochemical study of the Trás-os-Montes region (NEPortugal): Possible species for plant-based soil remediation technologies, Science of The Total Environment, 354: 265–277.
Dixon, J.B.,(1989), Kaolin and serpentine group minerals, In: Dixon, J. B.,and Weed, S.B. (eds.), Minerals in soil environments, 2nd Edition, Soil Science Society of America Book Series No. 1. Soil Science Society of America, 467-526.
Dungan, M. A. (1979a) Bastite psedomorphs after orthopyroxene,
clinopyroxene and tremolite. Canadian Mineralogist 17:729-740.
Dungan, M. A. (1979b) A microprobe study of antigorite and some serpentine pseudomorphs. Canadian Mineralogist 17:771-784.
Eisler, R., (1986) Chromium hazards to fish, wildlife, and invertebrates: a
synoptic review. Biological Report 85 1.6, Contaminated Hazard
Reviews Report 6. US Department of the Interior, Fish and Wildlife Service, Laurel, MD.
Fernandez, S., S. Seoane, and A. Merino (1999) Plant heavy metal
concentrations and soil biological properties in agricultural serpentine soils.Communications in Soil Science and Plant Analysis 30(13&;14):1867-1884.
Freitas H., M. N. V. Prasad, and J. Pratas (2004) Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation-relevance to the management of mine environment.Chemoshere 54:1625-1642.
Gambi, O.V.,(1992), The distribution and ecology of the vegetation of
ultramafic soils in Italy, In: Roberts, B.A., Proctor, J. (eds.), The Ecology of Areas with Serpentinized Rocks, A World View. Kluwer Academic Publishers, 17-247.
Gardner, W. H., and K. H. Hartge (1986) Bulk density. In A. Klut et al.(ed.) Methods of soil analysis, Part 1. Physical and Mineralogical methods- Agronomy monograph No. 9. ASA and SSSA, Madison,Wisconsin, USA., 383-411.
Garnier, J. E.S. Martins, and T. Becquer, (2006) Solid speciation and
availability of chromium in ultramafic soils from Niquelandia, Brazil. J.Gechem. Explor. 88:206-209.
Garnier, J., Quantin, C., Guimaraes, E., and Becquer, T.,(2008), Can chromite weathering be a source of Cr in soils? Mineralogical Magazine, 72:49-53.
Gasser, U. G. and R. A. Dahlgren (1994) Solid-phase speciation and surface association of metals in serpentinitic soils. Soil Sci. 158:409-420.
Gee, G. W., and J. W. Bauder (1986) Particle-size analysis. In A. Klut (ed.) Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9. ASA and SSSA, Madison,
Wisconsin, USA., 383-411.
Ghaderian, S. M. A. Mohtadi, M. R. Rahiminejad, and A. J. M. Baker, (2007a) Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environ. Pollut.145:293-298.
Ghaderian, S. M. A. J. M. Baker (2007b) Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. J. Geochem. Explor.92:34-42.
Goles, G.G., (1967) Trace elements in ultramafic rocks. In: Wyllie, P.J.(Ed.), Ultramafic and Related Rocks. Wiley, New York, 352-362.
Gouch, L. P., G. R. Meadows, L. L. Jackson, and S. Dudka (1989)
Biogeochemistry of a highly serpentinized, chromite rich ultramafic area,Tehama County, Califormia. USGS Bulletin No. 1901 US Department of the Interior, Washington, DC.
Gough, L.P., Meadows, G.R., Jackson, L.L., and Dudka, S.,(1989),
Biogeochemistry of a highly serpentinized, chromite-rich ultramafic
area, Tehama County, California, US Geological Survey Bulletin, 1901: 1-24.
Graham, R.C., M. M. Diallo, and L. J. Lund (1990) Soils and mineral
weathering on phyllite colluvium and serpentinite in northwestern
California. Soil Sci. Soc. Am. J. 54:1682-1690.
Gylseth, B., N, Gundersen, S, Langard, (1977) Evaluation of Chromium
Exposure Based on a Simplified Method for Urinary Chromium
Determination, Scand J.Work Environ Health, 3: 28-31.
Hamid A. and P. René (2003) Relationships between extractable Ni, Co, and metals and some minerobiogical characteristics of different ultramfic soils from New Caledonia. Australian Journal of Soil Research 41:215-228.
Harington, J. S., A. C. Allison, and D. V. Badami (1975) Mineral fibres:
Chemical, physiochemical and biological properties. Advances in
Pharmacology and Chemotherapy 12:291-402.
Harvey, G., M. Page, and L. Dumas (1984) Binding of environmental
carcinogens to asbestos and mineral fibers. British Journal of Industrial Mediciene 41:396-400.
He, Q. B., and B. R. Singh (1993) Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. Soil Science 44:641-650.
Hossner, L. R.,(1996), Dissolution for Total Elemental Analysis, In: Bigham, J. M. (eds.), Methods of Soil Analysis, Part 3, Chemical Methods, Soil Science Society of America Book Series No. 5,Agronomy Society of American and Soil Science Society ofAmerica, Madison, Wisconsin, USA., 49-64.
Hseu Z. Y., (2006) Concentration and distribution of chromium and nickel fractions along a serpentintic toposequence. Soil Sci. 171:341-353.
Hseu, Z. Y., H. Tsai, H. C. Hsi, and Y. C. Chen. (2007) Weathering
sequences of clay minerals in soils along a serpentinitic toposequence.
Clays and Clay Miner. (Accepted).
Hsiao, K. H., Bao, K. H., Wang, S. H., and Hseu, Z. Y.,(2009), Extractable
concentrations of cobalt from serpentine soils with several
single-extraction procedures. Communications in Soil Science and Plant
Analysis, 40: 13: 2200-2224.
Istok, J, D., and M.E. Harward (1982) Influence of soil moisture on smectite formation in soil derived from serpentinite. Soil Science Society of America Journal 46:1106-1108.
Isbell R.F., McDonald W.S. &; Ashton L.J.(1997), Concepts and Rationale of the Australian Soil Classification, Australian Collaborative Land Evaluation Program, CSIRO Land and Water, Canberra.
Jing, C.Y. L.Suqin. (2006) Leaching behavior of Cr(ш) in tabilized/ solidified
soil. Chemosphere 64 379-385.
John P. (2000) Fundamentals of site remediation. For metal- and
hydrocarbon-contaminated soils, Government Institutes Rockville,
Maryland, USA, 31-285.
John, W. D., R. E. Grim, and W. F. Bradley (1954) Quantitative estimations of clay minerals by diffraction methods. Journal of Sedimentary Petrology 24(4):242-251.
Johnston, W. R. and J. Proctor. (1981) Growth of serpentine and
non-serpentine races of Festuca rubra in solutions simulating the
chemical conditions in a toxic serpentine soil. J. Ecol. 69:855-869.
Kabata-Pendias, A. (1993) Behavioural properties of trace metals in soils.
Applied Geochemistry 2:3-9.
Kabata-Pendias, A. and H. Pendias (1992) Trace elements in soils and plants.2nd Ed. CRC Press, Boca Raton, FL.
Kabata-Pendias, A., and Pendias,H.,(2001), Trace elements in soils and plants.Boca Raton, Fl.: CRC Press, 413.
Kaupenjohann, M. and W. Wilcke. (1995) Heavy metal release from a
serpentine soil using a pH-salt technique. Soil Sci. Soc. Am. J.
59:1027-1031.
Kerger, B., et al., (1996) Absorption and Elimination of Trivalent and
Hexavalent Chromium in Humans following Ingestion of a Bolus dose in Drinking Water, Toxicol.Appl.Pharmacol., 141(1): 145-158.
Knight, B., F. J. Zhao, S. P. McGrath, and Z. G. Shen (1997) Zinc and
cadmium uptake by hyperaccumulator Thlaspi caerulescena in
contaminated soils and iits effects on the concentration and chemical speciation of metals in soil solution. Plant and Soil 197:71-78.
Kramer, U., R. D. Smith, W. W. Wenzel, I. Raskin, and D. M. Salt (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingenes Hálácsy. Plant Physiology 115:1641-1650.
Kram, P., Hruska, J., Wenner, B.S., Driscoll, C.T., Johnson, C.E., (1997) The biogeochemistry of basic cations in two forest catchments with
contrasting lithology in the Czecn Republic. Biogeochemistry. 37,
173-202.
Laindon, J. R. (1991) Booker Tropical Soil Manual: A handbook for soil
survey and agricultural land evaluation in the tropics and subtropics.
Longman Sci &; Techn., England.
Landsay, W. L. (1979) Chemical equilibria in soil. John Wiley &; Sons, New York.
Lee, B. D., S. K. Sears, R. C. Graham, C. Amrhein, and H. Vali (2003)
Secondary mineral genesis from chlorite and serpentine in an ultramfic soil toposequence. Soil Science Society of America Journal 67:1309-1317.
Lee, B. D., R. C. Graham, T. E. Laurent, C. Amrhein, and R. M. Creasy (2001) Spatial distribution of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Sci. Soc. Am. J. 65:1183-1196.
Lee, B. D., R. C. Graham, T. E. Laurent, and C. Amrhein, (2004) Pedogenesis in a wetland meadow and surrounding serpentinic landslide terrain, northem Califormia, USA. Geoderma. 118:303-320.
Lee, J., R. R. Brooks, C. R. Reeves, and T. Jaffré (1977) Plant-soil
relationships in a New Caledonian serpentine flora. Plant and Soil
46:675-680.
Lindsay, W. L., and Norvell, W. A., 1978, Development of a DTPA soil test for zinc, iron, manganese and copper, Soil Science Society of America Journal, 42: 421-428.
L’Huillier L., and S. Edighoffer (1996) Extractability of nickel and its
concentration in cultivated plants in Ni rich ultramafic soils of New
Caledonia. Plant and Soil 186:255-264.
Lockwood, T. H. (1974) The analysis of asbestos for trace metals. American Industrial Hygiene Association Journal 35:244-250.
Lyon, G. L., Brooks, R. R., Peterson, P. J., Butler, G. W., 1968, Trace
elements in a New Zealand serpentine flora, Plant and Soil, 29:
225-240.
Maize. I., I. Arambarri, R. Garcia, and E. Millan (2000) Evaluation of metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environmential Pollution 110:3-9.
Massoura, S. T. G. Echevarria, T. Becquer, J. Ghanbaja, E. L. Cessac, and J.L., Morel (2006) Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma. 136:28-37.
Mclean, E. O.,(1982), Soil pH and lime requirement, In: Page, A. L. et al. (eds) , Methods of soil analysis, Part 2. Chemical and microbiological
properties, Agronomy monograph No. 9, Agronomy Society of American and Soil Science Society of America, Madison, Wisconsin, USA., 199-244.
McGrath, S. P., Z. N. Schen, and F. J. Zhao (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant and Soil 188:153-159.
McKeague, J. A., and J. H. Day (1966) Dithionite and oxalate extractable Fe and Al as acids in different various classes of soils. Canadian Journal of Soil Science 46:13-22.
Mckinzie, R.M., (1980) The adsorption of lead and other heavy metals on
oxides of manganese and iron. Soil Res. 18, 61-73.
Mclean, E. O. (1982) Soil pH and lime requirement. In A. L. Page et al. (eds.)
Mehra, O. P., and M. L. Jackson (1960) Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate.Clays and Clay Miner. 7:317-327.
Methods of soil analysis, Part 2. Chemical and microbiological
properties. Agronomy monograph No. 9. ASA and SSSA, Madison,
Wisconsin, USA., 199-244.
Miranda, M., Benedito, J. L., Blanco-Penedo, I., and López-Lamas,
C.,(2009), Metal accumulation in cattle raised in a serpentine-soil
area: Relationship between metal concentrations in soil, forage
and animal tissues, Journal of Trace Elements in Medicine and
Biology, 23: 231-238.
Mitchell, R. L.,(1955), Trace elements, In: Van Nostrand R. (esd.), Chemistry of the Soil, 253-285.
Morgan, A., and A. Holmes (1986) Solubility of asbestos and manmade
mineral fibers in vitro and in vivo: Its significance in lung disease.
Environmental Research 39:475-483.
Nelson, D. W., and L. E. Sommer (1982) Total carbon. Organic carbon, and organic matter. In A. L. Page et al. (ed.) Methods of soil and analysis, Part 2. Chemical and microbiological properties. Agronomy monograph No. 2.ASA and SSSA, Madison, Wisconsin, USA., 539-577.
Noble, A. D., and J. C. Hughes (1991) Sequential fraction of chromium and nickel from some serpentinite-derived soils from the eastern Transvaal.Communications in Soil Science and Plant Analysis 22:1963-1973.
Norvell, W. A. (1991) Reactions of metal chelates in soils and nutrient
solutions. In: Micronutrients in Agriculture, 2 nd ed., J. J. Mortvedt, F. R.Cox, L. M. Shuman, and R. M. Welch (eds.). SSSA Book Series, No. 4.SSSA, Madison, WI, 187-223.
Novozamsky, I., Lexmond, T. H. M., and Houba, V. J. G.,(1993), A single
extraction procedure of soil for evaluation of uptake of some heavy
metals by plant, International Journal of Environmental Analytical
Chemistry, 51: 47-58.
O’Dell, R. E. and V. P. Claassen (2006) Serpentine and nonserpentine
Achillea millefolium accessions differ in serpentine substrate tolerance and response to organic and inorganic amendments. Plant Soil.279:253-269.
Otero, X.L. and M.A. Huerta-Diaz, and F. Macias (2000) Heavy metal
geochemistry of saltmarsh soils from the Ria of Ortigueira (mafic and ultramafic areas, NW Iberian Peninsula) Palumbo, B. M. Angelone, A. Bellanca, C. Dazzi, S. Hauser, R. Neri, and J.Wilson (2000) Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma 95:247-266.
Oze, C., Fendorf, S., Bird, D. K., and Coleman, R. G.,(2004a), Chromium
geochemistry of serpentine soils, International Geology Review, 46:
97-126.
Oze, C., Fendorf, S., Bird, D. K., and Coleman, R. G.,(2004b), Chromium
geochemistry in serpentinized ultramafic rocks and serpentine soils
from the Franciscan complex of California, American Journal of
Science, 304: 67-101.
Oze, C., Bird, D.K., and Fendorf, S.,(2007), Genesis of hexavalent
chromium from natural sources in soil and groundwater, The
National Academy of Sciences of the USA, 104: 6544-6549
Proctor, J., and S. Woodell (1975) The ecology of serpentine soils. Advances in Ecological Research 9:255-366.
Proctor, J., (1999) Toxin, mutrient shortages and droughts: the serpentine
challenge. Trends Ecological Evol 14:334-335.
Pueyo, M., Lopez-Sanchez, J. F., and Rauret, G.,(2004), Assessment of
CaCl2,NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils, Analytica Chimica Acta, 504: 217-226.
Quantin, C., T., Becqure, J. H., Rouiller, and J., Berthelin (2001) Oxide
weathering and trace metal release by bacterial reduction in a New
Caledonia Ferralsol. Biogeochemistry. 53:323-340.
Quantin, C., T., Becqure, and J., Berthelin, (2002) Mn-oxide : a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. C. R. Acad. Sci. Paris 334:273-278.
Quantin, C. T. Becqure, J. H., Rouiller, and J., Berthelin (2002b)
Redistribution of metals in a New Caledonia Ferralsol after microbial weathering. Soil Sci. Soc. Am. J. 66:1797-1804.
Quantin, C., Ettler, V., Garnier, J., and Sebek O.,(2008), Sources and
extractibility of chromium and nickel in soil profiles developed on Czech
serpentinites, Comptes Rendus Geoscience, 340: 872-882.
Quick, J. E. (1981) Petrology and petrogenesis of Trinity peridotite, an upper mantle diaper in the easterm Klamath mountains, northern California.Journal of geophysical research 86:11837-11863.
Rabenhorst, M. C., J. E. Foss, and D. S. Fanning (1982) Genesis of Maryland soils formed from serpentine. Soil Science Society of America Journal 46:607-616.
Rabenhorst, M. C.,and J. E. Foss (1981) Soil and geologic mapping over
mafic and ultramafic parent materials in Maryland. Soil Science Society of America Journal 45:1156-1160.
Reeves, R. D., (1992) The hyperaccumulation of nickel by serpentine plant.UK 193-229.
Reeves, R. D. A. J. M. Baker, A. Borhidi, and R. Berazain (1999) Nickel
Hyperaccumulation in the Serpentine Flora of Cuba. Ann. Bot. 83:29-38.
Reeves, R. D. and R. R. Brooks (1983) European species of Thlaspi L.
(Crucifease) as indicators of nickel and zinc. Journal of Geochemical Exploration 18:275-283.
Reeves, R.D., Baker, A.J.M., Romero, R.,(2007), The ultramafic flora of the Santa Elena peninsula, Costa Rica: A biogeochemical reconnaissance, Journal of Geochemical Exploration, 93:153-159.
Reeves, R. D., A. J. M. Baker, A. Borthidi, and R. Berazain (1996) Nickel-
accumulating plants from the ancient serpentine soils of Cuba.New Phytologist 133:217-244.
Reimschussel, G. (1975) Association of trace metals with chrysotile asbestos.CIM-Bulletin 68:76-83.
Risser, J. A., and D. E. Baker, (1991) Testing soils for toxic metals. In: Soil Testing and Plant Analysis, 3 rd ed., R. L. Westerman, J. V. Baird, N. W.Christensen, P. E. Fixen, and D. A. Whitney (eds.) SSSA Book Series,No. 3. SSSA Madison, WI, 275-298.
Robinson, B.H., Brooks, R.R., Clothier, B.E.,(1999), Soil Amendments
affecting nickel and cobalt uptake by Berkheya coddii: Potential use for phytomining and phytoremediation, Annals of botany, 84:689-694.
Salt, D. E., and U. Krämer (2000) Mechanisms of metal hyperaccumulation in plant. In: Raskin, I., Ensley, B. D. (Eds.), Phytoremediation of Toxic Metals:Using Plants to Clean Up the Environment. John Wiley&;Sons, Inc,231-246.
Schreier, H., J. A. Omuenti, and L. M. Lavkulich (1987) Weathering processes of asbestos-rich serpentinitic sediments. Soil Science Society of America Journal 51:993-999.
Senkayi, A. L. (1987) Clay mineralogy of poorly drained soils developed
from serpentine rocks. Ph. D. diss. Univ. of California, Davis, CA.
Shallari, S., C. Schwartz, A. Hasko, and J. L. Morel (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. The Science of the Total Environment 209:133-142.
Smith, L. A., J. L. Means, A. Chen, B. Allemam, C. C. Chapman, S. E.
Brauning, A. R. Gavaskar, and M. D. Royer (1997) Remedial Options for metals-contaminated soils. CRC Lewis Publishers. Boca Raton, FL.Soil Survey Staff (1993) Soil Survey Manual, USDA Handbook No. 18.Washington, DC: U. S. Gov. Pint. Office.
Soil Survey Staff.(2010). Keys to Soil Taxonomy, 11th edition. USDA-NRCS, U.S. Government Printing Office, Washington, D.C.
Sparks, D. L. (1988) Kinetics of soil chemical processes. Academic Press, San Diego, CA.Steadman, R. (1964) The structures of trioctahedral kolin-type silicates. Acta Crystallographica 17:924-927.
Steadman, R.(1964). The structure of trioctahedral kaolintype silicates. Acta Crystallog. 17: 924-927.
Sutherland, R A., F. M. G. Tack (2003) Fractionation of Cu, Pb and Zn in
certified reference soils SRM 2710 and SRM 271 using the optimized BCR sequential extraction procedure. Advances in Environmental Research 8:37-50.
Szefer, P. G. P., Glasby D. Stuben, A. Kusak, J. Geldon, and Z. Berner (1999) Distribution of selected heavy metals and rare earth elements in surficial sediments from the polish sector of the vistula lagoon. Chemosphere 39:2785-2798.
Tessier A., Gampbell P., and Bisson M.“Sequential Extraction Procedure for the Speciation of Particulate Trace Metals”, Anal. Chem., 51, pp. 844-851,(1979).
Thomas, G. W. (1982) Exchangeable cation. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2. Chemical and microbiological properties.Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA.,159-165.
Tibbetts, R. A., Smith, J. A. C.,(1992), Vaculor accumulation of calcium and its interaction with magnesium availability, In: Baker, A.J.M., Proctor, J., Reeves, R.D. (eds.), The Vegetation of Ultramafic (Serpentine Soils), Intercept, Andover, England, 367-373.
Turitzin, S. N.,(1982), Nutrient limitations to plant growth in a California
serpentine grassland, American Midland Naturalist, 107: 95-99.
Ubald, G. G., and R. A. Dahlgen (1994) Soils-phase speciation and surface association of metals in serpentintic soils. Soil Science 158:409-420.
Ure, A. M., PH. Quevauviller, H. Muntau, and B. Griepink (1992) Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communites. International Journal of Environmental Analytical Chemistry 51:135-151.
Ure, A. M.,(1996), Single extraction schemes for soil analysis and related
application, Science of the Total Environment, 178: 3-10.
Vangronsveld J, Cunningham SD (1998) Introduction to the concepts.In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in-situ inactivation and phytorestoration. Springer, Berlin, pp 1–15. ISBN ISBN 1-57059-531-3
Vicks, F. J., and E. J. W. Whittaker (1977) Serpentine textures and
serpentinization. Canadian Mining. 15:459-488.
Walker, R.B.,(1954), Factors affecting plant growth on serpentine soils, In:
Whittaker, R.H. (eds.), The Ecology of Serpentine Soils, A Symposium Ecology, 35: 259-266.
Wenzel, W. W., and F. Jockwer (1999) Accumlation of heavey metals in plants grown on mineralised soils of the Austrian Alps. Environment Pollution 104:145-155.
Wenzel, W. W., M. Bunkowski, M. Puschenreiter, and O. Horak (2003)
Rhizosphere characteristics of indigenously growing nickel
hyperaccumulator and excluder plants on serpentine soil. Environment Pollution 123:131-138.
Wicks, F. J., and A. G. Plant (1979) Electron-microprobe and X-ray-microbeam studies of serpentine texture. Canadian Mineralogist 17:785-830.uantin, C., T. Becquer, J. H. Rouiller, and J. Berthelin (2002)Redistribution of Metals in a New Caledonia ferralsol after microbial weathering. Soil Science Society of America Journal 66:1787-1804.
Wildman, W. E., M. L. Jackson, and L. D. Whitting (1968) Iron-rich
montmorillonite formation in soils derived from serpentinite. Soil Science Society of America Journal 32:787-794.
Zalidis G., and N. Matsi (1999) Forms and distribution of heavy in soils of Axios Dalta of Northern Gressce. Communications in Soil Science and Plant Analysis 30:817-827.
Zvyagin, B. B., K. S. Mishchenko, and V. A. Shitov (1966) Ordered and
disordered polymorphic varieties of serpentine type minerals and their diagnosis. Soviet Physics-Crystallography 10:539-546.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔