(3.235.236.13) 您好!臺灣時間:2021/05/15 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張雅姿
研究生(外文):Ya-Tzu Chang
論文名稱:合成觸媒應用於催化性臭氧化去除二甲胺之研究
論文名稱(外文):Catalytic Ozonation of Dimethylamine with Synthesized Catalysts
指導教授:陳冠中
指導教授(外文):Kuan-chung Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:121
中文關鍵詞:高級氧化程序催化性臭氧化二甲胺緩衝溶液
外文關鍵詞:Advanced oxidation processesCatalytic ozonationDimethylamineBuffer solution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的係以高級臭氧程序處理水體中二甲胺(Dimethylamine, DMA),本研究主要探討在不同複合金屬觸媒、不同臭氧劑量、不同pH值、不同觸媒劑量、不同溫度下,進行半批次實驗,比較單獨臭氧化與催化性臭氧化處理效果之優劣。
實驗結果顯示:DMA在單獨臭氧處理效果變化,其最終處理效果在不同臭氧劑量下,12 mg/L > 8 mg/L > 4 mg/L,表示在高臭氧劑量處理效果最佳;在不同pH值下pH = 10 > pH = 8 則 pH = 2下,可能是因臭氧僅轉換有機物的構造,使其分子極性改變,故無礦化降解效果;不同溫度下,以溫度15℃處理效果最佳,主要是當水溫越低時,臭氧在水中的溶解度越高;在異相催化性臭氧化處理效果下,控制溫度15℃,使用複合金屬觸媒TiO2/Al2O3、Fe2O3/Al2O3,應用於不同觸媒劑量當增加觸媒劑量時添加下有明顯增加去除效果,並隨著臭氧劑量的提高,有明顯去除效果;最後使用複合金屬觸媒MnOx/Al2O3,進行有無添加緩衝溶液下探討DMA與DOC之去除效果。
模擬水源受DMA污染後之處理實驗結果顯示,於結合臭氧化下,隨著臭氧劑量的提升,對水中DOC與DMA的去除率均隨著臭氧劑量提升;結合催化性臭氧化與生物處理,當TiO2/Al2O3 與Fe2O3/Al2O3劑量為 0.1 g/L 時,以最高臭氧劑量下處理之DOC與DMA之最高去除率分別為85%與98%。當有添加緩衝溶液(Buffer)條件下,複合金屬觸媒MnOx/Al2O3觸媒劑量為0.5 g/L 時,達到最高之DOC與DMA之去除率效果。此三種複合金屬觸媒(TiO2/Al2O3 、Fe2O3/Al2O3、MnOx/Al2O3)相較下,複合金屬觸媒MnOx/Al2O3於催化性臭氧化條件下對水中有機物以及受污染物DMA具有較好的去除效果。
關鍵字:高級氧化程序(Advanced oxidation processes, AOPs)、催化性臭氧 化(Catalytic ozonation)、二甲胺(Dimethylamine, DMA)、緩衝溶液(Buffer solution)

The purpose of this study was to combine advanced oxidation to treat raw water has been contaminated by dimethylamine (Dimethylamine, DMA). This study investigated the treatment system using different synthesized catalysts,ozone doses, pH, catalysts doses and temperatures to compare ozonation alone with catalytic ozonation changes the pros and cons.
Preliminary experimental results : When testing the change of DMA by ozone treatment of different ozone doses, it was shown that 12 mg/L was more effective than 8 mg/L, while 8mg/L was more effective than 4 mg/L. This indicated that higher ozone doses can produce better results. When differing the pH level, it was found that pH 10 was more effective than than pH 8. As for pH2, because ozone only alters the structure of organic matters and induces change in molecular polarity, no mineralization or degradation effect was observed. When differing the temperature, 15℃ produced the best results because water of a lower temperature makes ozone more soluble. Under the effect of heterogeneous catalytic ozonation treatment, the investigators controlled the temperature at 15℃ and used metal composite catalysts TiO2/Al2O3 and Fe2O3/Al2O3. When altering the concentration of the catalysts, it was found that increasing the catalyst concentration can significantly enhance the removal effect. Furthermore, a larger dose of ozone generated a significant enhanced removal effect. Lastly, the investigators used metal composite catalyst MnOx/Al2O3 to examine the removal effect of DMA and DOC with or without buffer solution.
The results from treating simulated DMA-polluted water sources suggested that with ozonation alone, an increase of ozone dose was accompanied by an increase in the removal rate of DOC and DMA from water. When ozonation and biological treatment were used in combination and the highest ozone dose was applied, the highest removal rates of DOC and DMA were 85% when 0.1g/L of TiO2/Al2O3 was used and 98% when 0.1g/L of Fe2O3/Al2O3 was used. When buffer solution was added and a dose of 0.5g/L MnOx/Al2O3, a metal composite catalyst, was used, the highest DOC and DMA removal rate was obtained. When comparing among the three metal composite catalysts (TiO2/Al2O3, Fe2O3/Al2O3, MnOx/Al2O3), MnOx/Al2O3 was more effective in removing organic matters and DMA pollutants from water under catalytic ozonation conditions.
Key word: Advanced oxidation processes, Catalytic ozonation, Dimethylamine, Buffer solution.

目錄
摘 要 I
Abstract III
謝誌 V
目錄 VI
表目錄 XI
圖目錄 XII
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 二甲胺簡介 4
2.1.1 用途 4
2.1.2 流布情形及危害 5
2.1.3 處理技術 6
2.2 氧化處理技術 10
2.2.1 臭氧化處理 10
2.2.1. 臭氧氧化反應之影響 13
2.2.2 催化性臭氧化處理 17
2.3 觸媒 18
2.3.1 金屬氧化物 19
2.3.1.1 二氧化鈦 21
2.3.1.2 氧化鐵 22
2.3.1.2.1 氧化鐵表面化學特性 23
2.3.1.3 氧化錳 26
2.3.2 表面酸鹼官能基 27
2.4 吸附 28
2.4.1 物理與化學吸附 28
2.4.2 等溫吸附模式 30
第三章 實驗材料與方法 33
3.1 實驗流程規劃 33
3.1.1 實驗流程 33
3.1.2 數據整理與論文撰寫 34
3.2 實驗內容 38
3.2.1 DMA降解實驗 38
3.2.1.1 DMA實驗使用之原水 39
3.2.2 DMA單獨吸附 42
3.3 金屬觸媒製備 43
3.3.1 中孔性Al2O3製備 43
3.3.2 γ-氧化鐵(γ-Fe2O3)製備 44
3.3.3 二氧化鈦/氧化鋁(TiO2/Al2O3 )製備 45
3.3.4 γ-氧化鐵/氧化鋁 (γ-Fe2O3/Al2O3 )製備 46
3.3.5 錳氧化物/氧化鋁 (MnOx/Al2O3 )製備 48
3.4 金屬觸媒特性分析 51
3.5 水質分析方法 52
3.5.1 二甲胺 52
3.5.1.1 實驗步驟 52
3.5.1.2 試劑與藥品 53
3.5.1.3 緩衝溶液(Buffer) 54
3.5.1.4 分析儀器與參數設定 55
3.5.2 氣相臭氧 55
3.5.3 溶解性有機碳 56
3.5.4 pH值 56
3.5.4.1 試劑及藥品 57
3.6 數據的品保品管(QA/QC) 57
3.6.1 檢量線製作 57
3.6.2 方法偵測極限 57
3.6.3 樣品重複分析 58
3.6.4 查核樣品分析 58
3.6.5 儀器與方法偵測極限 58
第四章 結果與討論 60
4.1 表面酸鹼官能基 60
4.2 TiO2/Al2O3複合金屬觸媒 62
4.2.1 吸附試驗 62
4.2.2 臭氧化 65
4.2.3 催化性臭氧化 69
4.3 Fe2O3/Al2O3複合金屬觸媒 72
4.3.1 吸附試驗 72
4.3.2 催化性臭氧化 75
4.4 MnOx/Al2O3複合金屬觸媒 78
4.4.1 吸附試驗 78
4.4.2 臭氧化 83
4.4.3 催化性臭氧化 87
第五章 結論與建議 91
5.1 結論 91
5.2 建議 92
參考文獻 93
附錄 102
作者簡介 107


表目錄
表2-1臭氧直接反應與間接反應之比較 10
表2-2 臭氧於不同溫度下之水中溶解度 13
表2-3 臭氧應用範圍與其功能及用途 14
表2-4 二氧化鈦光觸媒特性 20
表2-5 自然界中氧化鐵 pHPZC 值 23
表2-6 物理吸附與化學吸附之比較 27
表3-1 DMA降解實驗操作條件與參數 34
表3-2 有無添加緩衝溶液操作條件與參數 35
表3-3 實驗分析方法 49
表3-4 DMA於HPLC之分析參數設定 52
表3-5 各項層析分析之 MDL 56
表4-1 複合金屬觸媒之成份特性分析 57
附表1 藥品名稱與廠牌 94
附表2 分析儀器設備與廠商 96


圖目錄
圖2-1 二甲胺臭氧化後之反應機制 12
圖2-2 氧化鐵表面水合作用反應圖 23
圖2-3 氧化鐵表面電荷受pH影響之變化圖 24
圖2-4 觸媒分解臭氧之活性比較 27
圖3-1 探討異相催化性臭氧化系統對DMA降解之實驗規劃圖 34
圖3-2 探討在室溫( 25℃)下,挑選複合金屬觸媒MnOx/Al2O3進行添加緩衝溶液並比較有無添加之去除效果 35
圖 3-3異相催化性臭氧化系統圖 41
圖 3-4 DMA 單獨吸附系統圖 42
圖3-5 氧化鋁製備流程圖 43
圖3-6 γ-Fe2O3製備流程圖 44
圖3-7 TiO2/Al2O3製備流程圖 45
圖3-9 γ-Fe2O3/Al2O3 備流程圖 47
圖3-10 γ-Fe2O3/Al2O3之 SEM/EDS分析 48
圖3-11 MnOx/Al2O3 製備流程圖 49
圖3-12 MnOx/Al2O3之 SEM/EDS分析 50
圖4-1 不同pH值下對 DMA 吸附之去除率影響 63
圖4-2 不同pH值下對DOC吸附之去除率影響 63
圖5-1(A)-(C) 臭氧化於不同pH值下對DMA去除率之影響 66
圖5-2(A)-(C) 臭氧化於不同pH值下對DOC去除率之影響 67
圖6-1(A)-(C) 催化性臭氧化於不同pH值下對DMA去除率之影響 70
圖6-2(A)-(C) 催化性臭氧化於不同pH值與不同臭氧劑量下對DOC去除率之影響 71
圖7-2 不同pH值下對DOC吸附之去除率影響 73
圖8-1(A)-(C) 催化性臭氧化於不同pH值下對DMA去除率之影響 76
圖8-2(A)-(C) 催化性臭氧化於不同pH值下對DOC去除率之影響 77
圖9-1 不同pH值下對DMA吸附之去除率影響 79
圖9-2 不同pH值下對DMA吸附之去除率影響 79
圖10-1 不同pH值下對DOC吸附之去除率影響 81
圖10-2 不同pH值下對DOC吸附之去除率影響 81
圖11-1(A)-(C) 臭氧化於不同pH值下對DMA去除率之影響 84
圖11-2(A)-(C) 臭氧化於不同pH值下對DOC去除率之影響 85
圖12-1(A)-(C) 臭氧化於不同pH值下對DMA去除率之影響 88
圖12-2(A)-(C) 臭氧化於不同pH值下對DOC去除率之影響 89
附圖1 TOC 檢量線 106
附圖2 DMA檢量線 106

參考文獻
呂彥錡,2009,催化性臭氧化結合濾膜及生物過濾對水質之影響,碩 士論文,國立屏東科技大學,屏東。
柯智文,2012,結合高級氧化及生物過濾技術之水處理系統開發研究,碩士論文,國立屏東科技大學,屏東。
李思儀,2009,化學混凝污泥回收應用於臭氧異相催化反應之觸媒備製與氧化研究,碩士論文,逢甲大學,台中。
許俊傑,2004,利用電泳沉積 Al2O3 粉末對微能量放電加工表面拋光的基礎研究,碩士論文,國立中央大學,桃園。
張錫卿,1992,甲胺的化學加工產品及其應用,化肥工業,第1期,p58-60。
謝國劍,1999,甲胺生產過程的優化,29(3):39-41。
沈耀良,王寶貞,2000,廢水生物處理新技術-理論與應用,p11-28。
皮運正,吳天寶,葉裕才,蹇興超,2000,Tsinghua University(Sci&;Tech),40,84-87。
賴進興,1995,氧化鐵覆膜濾砂吸附過濾水中銅離子之研究,國立台灣大學環境工程學研究所博士論文,台北。
鄭宏德,1991,氧化鐵覆膜濾於濾砂表面及其吸附重金屬能力之研究,碩士論文國立台灣大學環境工程學研究所,台北。
烏錫康,1999,有機化學廢水處理技術,p241。
葉建峰,2006,廢水生物脫氮處理新技術,p18。
曲晶心,陳均志,2009,物化法處理合成革廠二甲胺廢水研究發展,31(13):38-41。
吳榮宗著,「工業觸媒概論」,國興出版社,1989。
趙振國著,「吸附作用應用原理」,化學工業出版社,2005。
皮運正,王建龍,吳迪,2005,CuO和Cu(Ⅱ )催化臭氧氧化的研究,環境化學,第24卷,第2期 ,3月。
介曉磊,劉凡,李學垣,2000,磷酸鹽吸附對針鐵礦表面電化學性質及及鋅次級吸附的影響, 34(2):119-121.
白德奎,朱霞萍,王艷艷,曾美蘭,2010,氧化鋁、氧化鐵、氧化錳對砷(III)的吸附行為之研究,29(1):55-60。
Aaron,W., 1993. Photocatalytic Properties of TiO2. Chem.Mater., Vol.5,pp.280-283.
Adams,C. D., R. A. Cozzens, and B. J. Kim., 1997. Effect of Ozonation on the Biodegradability of Substituted Phenols,” Water Research, 31(10),pp. 2655-2663.
Akhtar, J., N.S. Amin and A. Aris., 2011. Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using Fe2O3/CeO2 loaded activated carbon. Chem. Eng. J. 170: 136-144.
Andreozzi, R., Insola, A., Caprio, V., Marotta, R. ang Tufano, V., 1996, “The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution,” Applied Catalysis A: General, Vol. 138, No. 1, pp. 75-81.
Andrzejewski P., Barbara Kasprzyk-Hordern., Jacek Nawrockia., 2008. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters. Water Research 42. 863 – 870.
Andrzejewski P., Fijolek L., Nawrocki J., 2012. An influence of hypothetical products of dimethylamine ozonation on N-nitrosodimethylamine formation. Journal of Hazardous Materials. 229– 230, 340– 345.
Andrzejewski P., Nawrocki J., 2007. N-nitrosodimethylamine formation during treatment with strong oxidants of dimethylamine containing water. Water Sci. Technol. 56 (12), 125–131.
Andrzejewski P., Kasprzyk-Hordern B., 2008. Nawrocki, J. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine containing waters. Water Res. 42 (4-5),863–870.
Bekkouche, S., Bouhelassa, M., Hadj Salah, N., Meghlaoui F.Z., 2004. Study of adsorption of phenol on titanium oxide(TiO2). Desalination, 166. 355-362.
Beltran, F.J., F.J. Rivas and R. Montero-de-Espinosa., 2002. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Appl. Catal. B-Environ. 39: 221-231.
Beltran, F.J., F.J. Rivas and R. Montero-de-Espinosa., 2004. A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water. Appl. Catal. B-Environ. 47: 101-109.
Biniak,S.,M.Pakula,G.S.Szymanski and Swiatkowski., 1999. Effect of activated carbon surface oxygen-and/or nitrogen-containing groups on adsorption of copper(II)Ions from aqueous solution. Langmuir 15:6117.
Boehm, H. P., 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759-769.
Borah, D., Senapati, K., 2006. Adsorption of Cd(II) from aqueous solution ontopyrite. Fuel, 85, 1929-1937.
Brunet, R., M. M. Bourbigot, and M. Dore., 1982. The Influence of the Ozonation Dosage on the Structure and Biodegradability of Pollutants in Water, and Its Effect on Activated Carbon Filtration,” Ozone Science and Engineering, 4(1), pp. 15-32.
Cai, L., Zhao, Y., Gong, S., Dong, L., Wu, C., 2003. Use of a novel sol–gel dibenzo-18-crown-6 solid-phase microextraction fiber and a new derivatizing reagent for determination of aliphatic amines in lake water and human urine. hromatographia 58 (9/10), 615–622.
Chen, K.C., Y.H. Wang and Y.H. Chang., 2009. Using catalytic ozonation and biofiltration to decrease the formation of disinfection by-products. Desalination 249: 929-935.
Christiane Gottschalk, Judy Ann Libra,Adrian Saupe., 2010. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its Applications. Weinheim : Wiley-VCH.
Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G., 1987. Principle and Applications of Organotransition Metal Chemistry , Mill Valley.
Dhananjeyan M. R., Annapoorani R., Renganathan R., 1997. A comparative study on the TiO2 mediated photo-oxidation of uracil, thymine and 6-methyluracil. Journal of Photochemistry and PhotobiologyA:Chemistry. 109 147-153.
Dhandapani, B. and Oyama, S.T., 1997. Gas Phase Ozone Decomposition Catalysts. Appl. Catal., B. 11: 129–166. Radhakrishnan, R., Oyama, S. T., and Chen, J. G., 2001. Electron transfer effects in ozone decomposition on supported manganese oxide, J. Phys. Chem. B, 105, 4245-4253.
Einaga, H., Harada, M., and Futamura, S., 2005. Structural changes in alumina-supported manganese oxides during ozone decomposition, Chem. Phys. Lett. 408, 377-380.
F.N. Wataru, O. Mitsumasa., 2003. Improvement of DOC removal by multistage AOP-biological treatment. Chemosphere V. 50 P. 1043-1048.
Gilbert, E., 1987. Biodegradability of Ozonation Products as a Function of COD and DOC Elimination by Example of Substituted Aromatic Substances. Water Research, 21(10), pp. 1273-1278.
Hall, C. R, and Hollmes, R. J., 1992. The preparation and properties of some activated carbons modified by treatment with phosgene or chlorine. Carbon,30. pp.173.
Hearly, T. W., Herring, A. P., and Fuerstenau, D. W., 1966. The Effect of Crystal Structure on The Surface Properties of A Series of Manganese Dioxides. Colloid Interface Sci.,Vol 21, pp. 435-444.
Imamura, S. and Ikebata, M., 1991. Decomposition of ozone on a silver catalyst,Ind. Eng. Chem. Res., 30, 217-221.
James J. Spive., 1987. Complete Catalytic Oxidation of Volatile Organics. Industrial Engineering Chemical Research,Vol.26, No.11,p.2165-2180.
Jung, H.Y. and H.C. Choi., 2006. Catalytic decomposition of ozone and para-Chlorobenzoic acid (pCBA) in the presence of nanosized ZnO. Appl. Catal. B-Environ. 66: 288-294.
Kasprzyk-Hordern, B., Ziolek M. and Nawrocki J., 2003. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B-Environ. 46: 639-669.
Kasprzyk-Hordern, Maria Ziółek, Jacek Nawrocki., 2003. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental 46(4) 639-669.
Lee C., Schmidt C., Yoon J., 2007. Oxidation of N-nitrosodimethylamine (NDMA)precursorswitI1ozoneand chlorine dioxide:Kinetics an d efect on NDMA formation protential. Environ Sci Technol. 41:2056-2063.
Leyva-Ramos, R.; Bernal-Jacome, L.A.; Acosta-Rodrigues, I., 2005. Adsorption of cadmium(Ⅱ) from aqueous solution on natural and oxidized corncob. Sep. Purif. Technol. 45, 41-49.
Li, Y. H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D., and Wei, B., 2003. Competitive adsorption of Pb+2, Cu+2 and Cd+2 ions from aqueous solution by multiwalled carbon nanmtubes, Carbon.41. 2787-2792.
Lopez, A., G. Ricco, G. Mascolo, G. Tiravanti, A. C. D. Pinto, and R. Passino., 1988. Biodegradability Enhancement of Refractory Pollutants by Ozonation: a Laboratory Investigation on an Azo-Dyez Intermediate. Water Science and Technology, 38(4/5), pp. 239-245.
Lv, A., C. Hu, Y. Nie and J. Qu., 2010. Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped γ-Fe2O3. Applied Catalysis B: Environmental 100: 62-67.
Mitch,W.A.,Gerecke,A.,Sedlak,D.L., 2003a. N-nitrosodimethylamine(NDMA) precursor analysis for chlorination of water and wastewater. Water Res. 37, 3733–3741.
Mustafa , S., Dilara B. and Nargis K. and Naeem A. and Shahida P., 2002. Surface properties of the mides of iron and silica. Colloid Surf. A: Physicochem. and Eng. Aspects., 205, pp.273-282.
Nawrocki, J. and B. Kasprzyk-Hordern., 2010. The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B-Environ. 99: 27-42.
P. Andrzejewski, L. Fijolek , J. Nawrocki.,2012. An influence of hypothetical products of dimethylamine ozonation on N-nitrosodimethylamine formation. Journal of Hazardous Materials. 229– 230,340– 345.
Park G. A., 1965. The Isoelectric Points of Solid Oxides,Solid Hydroxides,and A queous Hydroxo Complex System. Chemical Review 65,177.
Park, H. K.; Kim, D. K. and Kim, C. H., 1997. Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4,” ournal of American Ceram Socienty, Vol.80, pp.743-749.
Parsons, S.A., Byrne, A., 2004. Water treatment applications. In: Parsons, S. (Ed.), Advanced Oxidation Processes for Water and Wastewater Treatment. IWA Publishing, London, 329-346.
Pietsch, J., Sacher, F., Schmidt, W., Brauch, H.J., 2001. Polar nitrogen compounds and their behaviour in the water treatment process. Water Res. 35, 3537–3544.
Pignatello, J. J., 1992. Dark and Photoassisted Fe3+-Catalyaed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide. Environmental Science and Technology. 26(5), pp. 944-951.
Przemytaw Andrzejewski., Barbara Kasprzyk-Hordern., Jacek Nawrockia., 2008. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters. Water Research 42. 863 – 870.
Qin W, Li D L, Dai Y Y., 2003. Development of Complexation Extraction Technologies for Organic Wastewater Treatment. J Chem Eng Date, 48(8):1606-1608.
Rice, R. G., 1997. Application of Ozone for Industrial Wastewater Treatment — A Review. Ozone Science and Engineering,18(6), pp. 477-515.
Rouquerol, F., Rouquerol, J., Sing, K., 1999. Adsorption by powders &; porous solids. Academic Press.
Ruthven, D.M., 1984. Principles of adsorption and adsorption Process. John Wiley &; Sons, Inc. New York.
Sacher, F., Lenz, S., Brauch, H.-J., 1997. Analysis of primary and secondary aliphatic amines in waste water and surface water by gas chromatography–mass spectrometry after derivatization with 2,4-dinitrofluorobenzene or benzenosulfonyl chloride. J. Chromatogr. A 764, 85–93.
Sahasrabuddhey, Bhushan, Archana Jain et Krishna K. Verma., 1999. Determination of Ammonia and Aliphatic Amines in Environmental Aqueous Samples Utilizing Pre-Column Derivatization to their Phenylthioureas and High Performance Liquid Chromatography. Analyst, vol. 124, p. 1017-1021.
Schwertman, U. and Cornell R. M., 1991. Iron Oxides in the Laboratory: Preparation and Characterization, WILEY-VCH, New York, USA.
Schwertmann U, Taylor RM., 1989. Iron oxides. In:Dixon JB, Weed SR, editors. Minerals in Soils Environments. 2nd ed.Madison, Wisconsin: Soil Sci Soc Am 379-439.
Serpone, N., Lawless, D., Disdier, J. and Herrmann, J. D., 1994. Spectroscopic, Photoconductivity and Photocatalytic Studies of TiO2 Colloids : Naked and with the Lattice Doped with Cr3+, Fe2+ and V5+ Cations, Langmuir, Vol.10, pp.643-652.
Smith, J.M., Van-Ness, H.C., Abbott, M.M., 1996. Introduction to Chemical Engineering Thermodynamics. McGraw Hill.
Sonntag, C. V., P. Dowideit, X. Fang, R. Mertens, X. Pan, M. N.Schuchmann, and H. P. Schuchmann., 1997. The Fate of Peroxyl Radicals in Aqueous Solution. Water Science and Technology, 35(4), pp. 9-15.
Staehelin J, Hoigne J,. 1985. Decomposition of Ozone in Water in The Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Cha in Reactions, Environ.Sci. &; Tech., 19 ( 12). 1206-1213.
Teramota M., 1981. Kinetics of the self-decomposition of ozone and the ozonation of cyanide ion and dyes in aqueous solutions. J. Chem. Eng. Japan, 14, 383.
Toupance, T., M. Kermarec, and C. Louis,. 2000. Metal Particles Size in Silica-Supported Copper Catalysts. Influence Condition of Preperation and of Thermal Pretreatments. J. Phys. Chem.B, 104, 965.
Van der Grift, C.J.G., A.F.H. Wielers, B.P.J. Joghi, J. van Beijnum, M.de Boer, M. Versluijs-Helder, J.W. Geus., 1991. Effect of the reduction treatment on the structure and reactivity of silice-supported copper particles., Journal of Catalysis, 131, 178.
Wang, Y. J., D. M. Zhou, R. J. Sun, D. A. Jia, H. W. Zhu, and S. Q. Wang., 2008. Zinc adsorption on goethite as affected by glyphosate. Journal of Hazardous Materials. 151,179-184.
Westerhoff, P., R. Song, G. Amy, and R. Minear., 1997. Applications of Ozone Decomposition Models. Ozone Science and Engineering.19(1), pp.55-73.
Wu, J.J., M. Muruganandham, L.T. Chang, G.J. Lee, V.N. Batalova and G.M. Mokrousov., 2011. Catalytic Ozonation of Oxalic Acid Using SrTiO3 Catalyst. Ozone-Science &; Engineering 33: 74-79.
Xu, B., T. Xiao, Z. Yan, X. Sun, J. Sloan, S.L. González-Cortés, F. Alshahrani and M.L.H. Green., 2006. Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system. Microporous Mesoporous Mat. 91: 293-295.
Yang L., Chen Z., Shen J., Xu Z., Liang H., Tian J., Ben Y., Zhai X., Shi W., Li G., 2009. Reinvestigation of the nitrosamine-formation mechanism during ozonation,Environ. Sci. Technol. 43, 5481–5487.
Yang, L., C. Hu, Y. Nie and J. Qu., 2009. Catalytic Ozonation of Selected Pharmaceuticals over Mesoporous Alumina-Supported Manganese Oxide. Environmental Science &; Technology 43: 2525-2529.
Zumdahl, S. S. Chemical Principles, 5th edition., 2003. Houghton Mifflin Company: Boston, p. 279-293.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top