跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃識頻
研究生(外文):Shih-Pin Huang
論文名稱:柳杉與相思樹木焦油作為木材防腐劑之潛力
論文名稱(外文):Potential of Wood Tars from Cryptomeria japonica and Acacia confusa as Wood Preservatives
指導教授:顏才博
指導教授(外文):Tsair-Bor Yen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業暨國際合作系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:150
中文關鍵詞:柳杉相思樹木焦油木材防腐劑木塊耐腐朽性淋溶性尺寸安定性
外文關鍵詞:Cryptomeria japonicaAcacia confusawood tarwood preservativessoil-block decay testleachabilitydimensional stability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的為研發以柳杉 (Cryptomeria japonica) 與相思樹 (Acacia confusa) 經炭化熱裂解製得之木焦油為基礎之低毒性木材防腐劑,以提升國產造林木之應用價值。國產柳杉與相思樹木材經炭化熱裂解後製得木焦油,再以不同極性之有機溶劑進行液相-液相分配,得到正己烷(n-Hexane)可溶部、乙酸乙酯(Ethyl acetate)可溶部及水可溶部。木焦油與其各可溶部分別以固態平板培養基法及土壤木塊試驗法,評估其抑菌效果。所使用之五種木材腐朽菌菌種分別為:白腐菌(Lenzites betulina及Trametes versicolor),褐腐菌(Laetiporus sulphureus,Fomitopsis pinicola及Gloeophyllum trabeum);木塊耐腐朽性評估係依照中華民國國家標準之CNS 6717標準法及美國材料試驗協會(ASTM D1413-07)標準法進行試 驗;處理材藥劑流失與保留之評估,則將試材經14天淋溶試驗後,計算其藥劑留存率及藥劑流失率。此外,木材之尺寸安定性評估,則將試材置於27°C與90%相對溼度恆溫恆濕箱中32天,測量處理材之尺寸變化。結果顯示兩種木焦油於1750 μg/mL時對L. betulina之抑制率最高,對於其他菌種之抑菌效果,皆隨濃度降低而明顯降低。進一步評估二種木焦油各可溶部之抗菌活性得知,正己烷可溶部的抗菌活性較乙酸乙酯可溶部佳。木塊耐腐朽試驗結果得知,4.0%濃度柳杉、相思樹木焦油處理之柳杉試材經G. trabeum與L. sulphureus褐腐菌腐朽後,其重量損失率分別僅為2.89% / 3.40%與3.26% / 2.98%;然而二種木焦油之正己烷可溶部之整體抑菌效果均優於其乙酸乙酯可溶部,證實木材分別經二種木焦油及其正己烷可溶部含浸處理後能有效地減少木材腐朽菌之危害。淋溶試驗結果顯示,柳杉、相思樹木焦油及其正己烷可溶部之藥劑留存率,則隨著藥劑濃度之增加而提升;其藥劑流失率,皆隨著藥劑濃度之增加而減少。此外,根據柳杉、相思樹木焦油及其正己烷與乙酸乙酯可溶部處理材尺寸安定性之評估結果得知,其平衡含水率(equilibrium moisture content)與體積膨脹率(volumetric swelling),皆明顯地低於對照組,同時亦證明二種木焦油及其正己烷可溶部能有效地改善試材之尺寸安定性。綜合上述結果顯示,柳杉、相思樹木焦油之正己烷可溶部,除具有良好的抗淋溶性,同時可有效地提升處理才之耐腐朽性與尺寸安定性,具有進一步研發為低毒性木材防腐劑之潛力。
Increasing the value and efficacy of utilization for the tree species in Taiwan’s forest is an important issue in the development of sustainable forest management. Therefore, the objective of this study is to investigate the potential of wood tars, obtained respectively from Cryptomeria japonica and Acacia confusa, as wood preservatives to increase their utilization and value. Wood tars were produced by carbonization of pyrolysis from the woods of C. japonica and A. confusa, and their different soluble fractions (n-Hexane, Ethyl acetate, and water) were partitioned by liquid-liquid chromatography. In this study, two white-rot fungi (Lenzites betulina and Trametes versicolor) and three brown-rot fungi (Laetiporus sulphureus, Fomitopsis pinicola, and Gloeophyllum trabeum) were used in the anti-fungal agar assay and soil-block decay test. Anti-fungal activity was carried out by agar plate assay, and wood decay resistance was evaluated by the soil-block decay test according to the Chinese National Standard (CNS 6717) and the American Society for Testing and Materials standard (ASTM D1413-07). Leachability was assessed on treated woods by measuring their chemical retention and chemical loss percentages after a 14 day leaching test. Dimensional stability was analyzed by the change of equilibrium moisture content and volumetric swelling in a 27°C and 90% relative humidity chamber for 32 days. Results of the anti-fungal agar assay indicated that both wood tars exhibited high inhibition against L. betulina at 1750 μg/mL. The results of anti-fungal activities for soluble fractions showed that n-Hexane soluble fractions of C. japonica and A. confusa performed better than those of Ethyl acetate soluble fractions on all wood decay fungi, while all water soluble fractions revealed no anti-fungal effect. Furthermore, results of the soil-block decay test indicated that wood (C. japonica) treated with 4.0% C. japonica and A. confusa wood tars inhibited G. trabeum growth with only 2.89% and 3.40% weight loss, respectively, while the weight loss of its control group was 35.89%. Similarly, woods treated with 4.0% C. japonica and A. confusa wood tars revealed respective weight loss of 3.26% and 2.98% against L. sulphureus, which were lower than its control group (32.38%). Moreover, a concentration dependency was observed between weight loss and treatment; the higher the concentration of the treatment, the lower the weight loss percentage of the treated wood. The leaching test results showed that the chemical retention of wood treated with C. japonica, and A. confusa wood tars, and their n-Hexane fractions increased as the concentration increased. On the other hand, a decrease in the chemical loss of treated wood was observed as the concentration increased. According to the dimensional stability test, the significant decrease of equilibrium moisture content (EMC) and volumetric swelling (VS) indicated that C. japonica, and A. confusa wood tars, and their n-Hexane acetate soluble fractions could increase the dimensional stability of treated wood. As a result, wood tars of C. japonica and A. confusa, as well as their n-Hexane soluble fraction, demonstrated excellent performance on wood decay resistance, leachability and dimensional stability, suggesting great potential to be developed as wood preservatives in the future.
摘要.................................................I
Abstract............................................III
Acknowledgements....................................VI
Table of Contents...................................VII
List of Tables......................................X
List of Figures ....................................XII
1. Introduction.....................................1
2. Literature Review................................4
2.1 Cryptomeria japonica............................4
2.1.1 Description and Biology.......................4
2.1.2 Importance....................................5
2.2 Acacia confusa..................................5
2.2.1 Description and Biology.......................5
2.2.2 Importance....................................6
2.3 Wood tar........................................7
2.3.1 Pyrolysis of wood.............................7
2.3.2 Chemical composition of wood tar..............11
2.3.3 Application of wood tar.......................13
2.4 Fungal degradation of wood......................15
2.4.1 White-rot mechanisms..........................17
2.4.2 Brown-rot mechanisms..........................18
2.5 Wood preservatives..............................22
2.5.1 Oil-borne type preservatives..................22
2.5.2 Water-borne type preservatives................23
2.5.2.1 Chromated copper arsenate (CCA).............23
2.5.2.2 Ammoniacal copper quats (ACQ)...............25
2.5.2.3 Ammoniacal copper azole (CuAz)..............27
3. Materials and Methods............................29
3.1 Wood tars.......................................29
3.2 Fungal strains..................................31
3.3 Wood specimens..................................32
3.4 Preparation of soil substrate for soil-block decay test ....................................................32
3.5 Chemicals and instruments.......................33
3.6 Liquid-liquid partition of wood tars............33
3.7 Vacuum impregnation of wood specimens...........35
3.8 Fungal decay resistance.........................37
3.8.1 Anti-fungal agar assay........................37
3.8.2 Soil-block decay test.........................38
3.8.2.1 Determination of water-holding capacity of soil................................................38
3.8.2.2 Preparation of culture bottles..............39
3.8.2.3 Placement and incubation....................39
3.9 Leachability test...............................41
3.10 Dimensional stability test.....................42
3.11 Statistical analysis...........................42
4. Results and Discussion...........................43
4.1 Cryptomeria japonica............................43
4.1.1 Recovery of wood tar and its soluble fractions...........................................43
4.1.2 Fungal decay resistance.......................44
4.1.2.1 Anti-fungal activity of wood tar............44
4.1.2.2 Anti-fungal activity of soluble fractions from wood tar.................................................46
4.1.2.3 Soil-block decay test of wood treated with wood tar ....................................................50
4.1.2.4 Soil-block decay test of wood treated with different soluble fractions from wood tar ....................56
4.1.3 Leachability test.............................62
4.1.3.1 Chemical retention and loss of wood treated with wood tar............................................62
4.1.3.2 Chemical retention and loss of wood treated with soluble fractions from wood tar.....................66
4.1.4 Dimensional stability test....................70
4.1.4.1 Equilibrium moisture content and volumetric swelling of wood treated with wood tar.......................70
4.1.4.2 Equilibrium moisture content and volumetric swelling of wood treated with soluble fractions from wood tar.................................................78
4.2 Acacia confusa..................................90
4.2.1 Recovery of wood tar and its soluble fractions...........................................90
4.2.2 Fungal decay resistance.......................91
4.2.2.1 Anti-fungal activity of wood tar............91
4.2.2.2 Anti-fungal activity of soluble fractions from wood tar.................................................93
4.2.2.3 Soil-block decay test of wood treated with wood tar ....................................................97
4.2.2.4 Soil-block decay test of wood treated with soluble fractions from wood tar.............................103
4.2.3 Leachability test.............................109
4.2.3.1 Chemical retention and loss of wood treated with wood tar............................................109
4.2.3.2 Chemical retention and loss of wood treated with soluble fractions from wood tar.....................113
4.2.4 Dimensional stability test..................117
4.2.4.1 Equilibrium moisture content and volumetric swelling of wood treated with wood tar.......................117
4.2.4.2 Equilibrium moisture content and volumetric swelling of wood treated with soluble fractions from wood tar.125
5. Conclusions......................................137
6. References.......................................139
Biosketch of Author.................................150

Alén, R., E. Kouppala, and P. Oesch. 1996. Formation of the main degradation compound groups from wood and its components during pyrolysis. Journal of Analytical and Applied Pyrolysis 36: 137-148.
Arantes, V., B. Goodell, A. M. F. Milagres, Y. Qian, T. Filley, J. Jellison, and S. Kelley. 2010. Fungal attack on lignin and cellulose: Elucidation of brown- and white-rot mechanisms comparing biomimetic and in-vivo degradation patterns. In: Proceedings of the IRG 41st Annual Meeting. May 9-13, 2010. Biarritz, France.
Araújo, R. C. S. and V. M. D. Pasa. 2003. Mechanical and thermal properties of polyurethane elastomers based on hydroxyl-terminated polybutadienes and biopitch. Journal of Applied Polymer Science 88(3): 759-766.
ASTM. 2007. Standard method (D1413-07) for wood preservatives by laboratory soil-block cultures. In: Annual book of ASTM standards, West Conshohocken, PA: American Society for Testing and Materials, p. 452-460.
Atte, A., K. Narendra, E. Kari, H. Bjarne, H. Mikko, S. Tapio, and D. Y. Murzin. 2008. Pyrolysis of softwood carbohydrates in a fluidized bed reactor. International Journal of Molecular Sciences 9: 1665-1675.
AWPA. 2010. Standard method (P5-09) for waterborne preservations. In: AWPA book of standards, Granbury, TX: American Wood Protection Association, p. 1-6.
AWPA. 1999. Standard method (E11-97) for laboratory evaluation to determine resistance to subterranean termites. In: AWPA book of standards, Granbury, TX: American Wood Protection Association, p. 340-344.
Booker, C. J., R. Bedmutha, I. M. Scott, K. Conn, F. Berruti, C. Briens, and K. K. C. Yeung. 2010. Bioenergy II: Characterization of the pesticide properties of tobacco bio-oil. International Journal of Chemical Reactor Engineering 8: Art. 26.
Bridgwater, A. V., A. J. Toft, and J. G. Brammer. 2002. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable and Sustainable Energy Review 6(3): 181-246.
Bridgwater, A. V., S. Czernik, and J. Piskorz. 2001. An overview of fast pyrolysis. In: Progress in Thermochemical Biomass Conversion, A. V. Bridgwater (eds.), Oxford: Blackwell Science Ltd., p. 977-997.
Call, H. P. and I. Muncke. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator systems (lignozyme(R)-process). Journal of Biotechnology 53: 163-202.
Cha, J. D. and J. Y. Kim. 2012. Essential oil from Cryptomeria japonica induces apoptosis in human oral epidermoid carcinoma cells via mitochondrial stress and activation of caspases. Molecules 17: 3890-3901.
Chang, S. T. and S. S. Cheng. 2001. Effects of environmental factors on the color of sugi (Cryptomeria japonica D. Don) yellowish heartwood. Holzforschung 55: 459-463.
Chang, S. T., S. Y. Wang, C. L. Wu, Y. C. Su, and Y. H. Kuo. 1999. Anti-fungal compounds in the ethyl acetate soluble fraction of the extractives of Taiwania (Taiwania cryptomeriodies Hayata) heartwood. Holzforschung 53: 487-490.
Chen, X. H., T. Kashiwagi, S. Tebayashi, and C. S. Kim. 2005. Germination inhibitor from the Japanese cedar (Cryptomeria japonica). Zeitschrift für Naturforschung 60: 79-82.
Cheng, S. S. and S. T. Chang. 2002. Antitermite activity of essential oils from Cryptomeria japonica. Quarterly Journal of Chinese Forestry 35: 193-199.
Cheng, S. S., C. G. Huang, W. J. Chen, Y. H. Kuo, and S. T. Chang. 2008. Larvicidal activity of tectoquinone isolated from red heartwood-type Cryptomeria japonica against two mosquito species. Bioresource Technology 99: 3617-3622.
Cheng, S. S., H. T. Chang, H. J. Gu, C. Y. Ku, and S. T. Chang. 2006. Anti-fungal activity of essential oils and their constituents from black heartwood-type Cryptomeria japonica. Quarterly Journal of Chinese Forestry 39(4): 557-574.
Cheng, S. S., M. T. Chua, E. H. Chang, C. G. Huang, W. J. Chen, and S. T. Chang. 2009. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresource Technology 100: 465-470.
Chou, C. H., C. Y. Fu, S. Y. Li, and Y. F. Wang. 1998. Allelopathic potential of Acacia confusa and related species in Taiwan. Journal of Chemical Ecology 24: 2131-2150.
CNS. 1981. Standard method (6717) of test for decay of wood. Taipei, Taiwan: National Bureau of Standards, Department of Economics.
Cohen, R, M. R. Suzuki, and K. E. Hammel. 2004. Differential stress-induced regulation of two quinone reductases in the brown rot basidiomycete Gloeophyllum trabeum. Applied and Environmental Microbiology 70: 324-331.
Cooper, P. A., Y. T. Ung, and G. Zanjani. 1994. Comparison of methods for monitoring CCA fixation. In: Proceedings of the 25th Annual Meeting of the International Research Group on Wood Preservation. June, 1994. University of Toronto, Canada.
Cowling, E. B. 1957. The relative preservative tolerances of 18 wood-destroying fungi. Forest Products Journal 7(10): 355-359.
Cullen, D. and P. J. Kersten. 2004. Enzymology and molecular biology of lignin degradation. In: The Mycota III Biochemistry and Molecular Biology, R. Brambl and G. A. Marzluf (eds.), Berlin-Heidelberg: Springer-Verlag, p. 249-273.
De Vries, R. P., H. C. M. Kester, C. H. Poulsen, J. A. E. Benen, and J. Viser. 2000. Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydrate Research 327: 401-410.
D'souza, T. M., C. S. Merritt, and A. C. Reddy. 1999. Lignin modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Applied and Environmental Microbiology 65(12): 5307-5313.
Eriksson, K. E. 1978. Enzyme mechanisms involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum. Biotechnology and Bioengineering 20: 317-332.
Fagbemi, L., L. Khezami, and L. Carpat. 2001. Pyrolysis products from different biomasses: Application to the thermal cracking of tar. Applied Energy 69: 293-306.
Faix, O., E. Jakab, F. Till, and T. Szekely. 1988. Study on low mass degradation products of milled wood lignins by thermo-gravimetry mass spectrometry. Wood Science and Technology 22: 323-334.
Filley, T. R., G. D. Cody, B. Goodell, J. Jellison, C. Noser, and A. Ostrofsky. 2002. Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Organic Geochemistry 33: 111-124.
Flournoy, D. S., T. K. Kirk, and T. L. Highley. 1991. Wood decay by brown-rot fungi: Changes in pore structure and cell wall volume. Holzforschung 45: 383-388.
Freeman, M. H. and C. R. Mcintyre. 2008. A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. Forest Products Journal 58(11): 6-27.
Girard, J. P. 1992. Smoking in technology of meat and meat products. England: Ellis Horwood Press, p. 94-198.
Goodell, B., Y. Qian, and J. Jellison. 2008. Fungal Decay of Wood: Soft Rot, Brown Rot, White Rot. In: Development of Commercial Wood Preservatives Efficacy, Environmental, and Health Issues, Vol. 982, Washington, DC: American Chemical Society, p. 9-31.
Grazyb, B., J. Machnikowski, J. V. Weber, A. Koch, and O. Heintz. 2003. Mechanism of co-pyrolysis of coal-tar pitch with polyacrylonitrile. Journal of Analytical and Applied Pyrolysis 67(1): 77-93.
Grazyb, B., J. Machnikowski, and J. V. Weber. 2004. Mechanism of co-pyrolysis of coal-tar pitch with polyvinylpyridine. Journal of Analytical and Applied Pyrolysis 72(1): 121-130.
Green, F. and T. L. Highley. 1997. Mechanism of brown-rot decay: Paradigm or paradox1. International Biodeterioration and Biodegradation 39: 113-124.
Harvey, P. J., H. E. Schoemaker, and J. M. Palmer. 1986. Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Letters 195: 242-246.
Hatakka, A. I. 2001. Biodegradation of lignin. In: Biopolymer, M. Hofrichter and A. Steinbuchel (eds.), Vol. 1, Weinheim, Germany: Wiley-VCH, 129-180.
Heo, H. S., H. J. Park, Y. K. Park, C. Ryu, D. J. Suh, Y. W. Suh, J. H. Yim, and S. S. Kim. 2010. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresource Technology 101: 591-596.
Highley, T. L. and W. V. Dashek. 1998. Biotechnology in the study of brown- and white-rot decay. In: Forest products biotechnology, A. Bruce and J. W. Palfreyman (eds.), London: Taylor and Francis Ltd, p. 15-36.
Hingston, J. A., C. D. Collins, R. J. Murphy, and J. N. Lester. 2001. Leaching of chromated copper arsenate wood preservatives: A review. Journal of Environmental Pollution 111: 53-66.
Ho, C. L., E. I. C. Wang, H. T. Yu, H. M. Yu, and Y. C. Su. 2010. Compositions and antioxidant activities of essential oils of different tissues from Cryptomeria japonica D. Don. Quarterly Journal of Forest Research 32(1): 63-76.
Hyde, S. M. and P. M. Wood. 1997. A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143: 259-266.
Jung, K. H. 2007. Growth inhibition effect of pyroligenous acid on pathogenic fungus, Alternaria mali, the agent of Alternaria blotch of apple. Biotechnology Bioprocess Engineering 12: 318-322.
Kartal, S. N., Y. Imamura, F. Tsuchiya, and K. Ohsato. 2004. Evaluation of fungicidal and termiticidal activities of hydrolysates from biomass slurry fuel production from wood. Bioresource Technology 95: 41-47.
Kashiwagi, T., B. Wu, K. Iyota, X. H. Chen, S. I. Tebayashi, and C. S. Kim. 2007. Antifeedants against Locusta migratoria from Japanese cedar, Cryptomeria japonica. Bioscience, Biotechnology, and Biochemistry 71(4): 966-970.
Kirk, T. K. and D. Cullen. 1998. Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Environmentally Friendly Technologies for the Pulp and Paper Industry, R. A. Young, and M. Akhtar (eds.), New York: John Wiley and Sons, p. 273-308.
Kirk, T. K. 1975. Effects of a brown-rot fungus, Lenzites trabea, on lignin in spruce wood. Holzforschung 29: 99-107.
Kleman-Leyer, K. M., K. E. Agosin, A. H. Conner, and T. K. Kirk. 1992. Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Applied and Environmental Microbiology 58: 1266-1270.
Kofujita, H., Y. Fujino, M. Ota, and K. Takahashi. 2006. Anti-fungal diterpenes from the bark of Cryptomeria japonica D. Don. Holzforschung 60: 20-23.
Kongkeaw, N. and S. Patumsawad. 2011. Thermal upgrading of biomass as a fuel by torrefaction. In: Proceedings of the 2nd International Conference on Environmental Engineering and Applications. August 19-21, 2011. Shanghai, China: ICEEA Press.
Ku, C. Y., S. S. Cheng, H. J. Chen, S. T. Chang, and H. T. Chang. 2007. Antibacterial compounds of wood essential oil from Cryptomeria japonica. Quarterly Journal of Forest Research 40: 241-250.
Kuofopanos, C. A., G. Maschino, and A. Lucchesi. 1989. Kinetic modelling of the pyrolysis of biomass and biomass components. Canadian Journal of Chemical Engineering 67: 75-84.
Lebow, S. T. 2010. Wood preservatives. In: Wood Handbook-Wood as an engineering material. Centennial (eds.), Madison, Wisconsin: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. Chapter 15, p. 1-27.
Lee, J. C., W. C. Chen, S. F. Wu, C. K. Tseng, C. Y. Chiou, F. R. Chang, S. H. Hsu, and Y. C. Wu. 2011. Anti-hepatitis C virus activity of Acacia confusa extract via suppressing cyclooxygenase-2. Antiviral Research 89: 35-42.
Lee, S. H., P. S. H’ng, A. N. Lee, A. S. Sajap, B. T. Tey, and U. Salmiah. 2010. Production of pyroligneous acid from lignocellulosic biomass and their effectiveness against biological attacks. Journal of Applied Science 10: 2440-2446.
Lee, T. H., F. Qiu, G. R. Waller, and C. H. Chou. 2000. Three new flavonol galloylglycosides from leaves of Acacia confusa. Journal of Natural Products 63: 710-712.
Lin, Q., T. Li, C. Zheng, Y. Zhao, and S. Song. 2004. Carbonization behavior of coal-tar pitch modified with divinylbenzene and optical texture of resultant semi-cokes. Journal of Analytical and Applied Pyrolysis 71(2): 817-826.
Lin, Q., W. Su, and Y. Xie. 2009. Effect of rosin to coal-tar pitch on carbonization behavior and optical texture of resultant semi-cokes. Journal of Analytical and Applied Pyrolysis 86(1): 8-13.
Lin, S. S., I. L. Shiau, and S. T. Chang. 2009. Antioxidant activity of constituents from the methanolic extract of Acacia confusa leaves. Taiwan Journal of Forest Science 24(1): 61-68.
Louime, C. and H. Uckehmann. 2008. Potential and prospects of cellulosic ethanol in the world. Current Science 94: 1567-1568.
Lu, K. T. and J. L. Hong. 2010. Bamboo tar-based polyurethane wood coatings. Journal of Applied Polymer Science 116(6): 3718-3724.
Martinez, A. T., M. Speranza, F. J. Ruiz-Duenas, P. Ferreira, S. Camarero, F. Guillen, M. J. Martinez, A. Gutierrez, and J. C. Del-Rio. 2005. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology 8: 195-204.
Martinez, A. T. 2002. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme and Microbial Technology 30: 425-444.
Matsunaga, T., C. Hasegawa, T. Kawasuji, H. Suzuki, H. Saito, and T. Sagioka. 2000. Isolation of the antiulcer compound in essential oil from the leaves of Cryptomeria japonica. Biological and Pharmaceutical Bulletin 23: 595-598.
Messner, K., K. Fackler, P. Lamaipis, W. Gindl, E. Srebotnik, and T. Watanabe. 2003. Overview of white-rot research: Where we are today. p. 73-96. In: ACS Symposium series 845 on Wood deterioration and preservation. Washington DC, USA.
Micales, J. A. 1997. Localization and induction of oxalate decarboxylase in the brown-rot wood decay fungus Postia placenta. International Biodeterioration and Biodegradation 39: 125-132.
Mohan, D., J. Shi, D. D. Nicholas, C. U. Pittman Jr., P. H. Steele, and J. E. Cooper. 2008. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis. Chemosphere 71: 456-465.
Mohan, D., U. C. Pittman, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels 20(3): 848-889.
Morisawa, J., C. S. Kim, T. Kashiwagi, S. Tebayashi, and M. Horiike. 2002. Repellents in the Japanese cedar, Cryptomeria japonica, against the pill-bug, Armadillidium vulgare. Bioscience, Biotechnology, and Biochemistry 66: 2424-2428.
Morita, S. and M. Yatagai. 1994. Antimite components of the hexane extractive from Domaiboku of Yakusugi (Cryptomeria japonica). Mokuzai Gakkaishi 40: 996-1002.
Mourant, D., D. Q. Yang, X. Lu, and C. Roy. 2005. Anti-fungal properties of the pyroligneous liquor from the pyrolysis of softwood bark. Wood and Fiber Science 73: 542-548.
Nico, P. S., S. E. Fendorf, Y. W. Lowney, S. E. Holm, and M. V. Ruby. 2004. Chemical structure of arsenic and chromium in CCA-treated wood:  Implications of environmental weathering. Journal of Environmental Science and Technology 38(19): 5253-5260.
Park, I. K. and S. C. Shin. 2005. Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese termite (Reticulitermes speratus Kolbe). Journal of Agricultural and Food Chemistry 53: 4388-4392.
Paszczynski, A., R. Crawford, D. Funk, and B. Goodell. 1999. De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Applied and Environmental Microbiology 65(2): 674-679.
Perez, J., J. Munoz-Durado, T. De la Rubia, and J. Martinez. 2002. Biodegradation and biological treatment of cellulose, hemicellulose and lignin: An overview. International Microbiology 5: 53-63.
Rajeswara, R. T. and A. Sharma. 1998. Pyrolysis rate of biomass materials. Energy 23(11): 973-978.
Sanchez, C. 2009. Lignocellulosic residues - Biodegradation and bioconversion by fungi. Biotechnology Advances 27: 185-194.
Sanders, J. G. and G. F. Riedel. 1987. Control of trace element toxicity by phytoplankton. In: Phytochemical Effects on Environmental Compounds, J. A. Saunders, L. K. Channing, and E. E. Conn (eds.), New York: Plenum Press, p. 131-149.
Scheller, H. V. and P. Ulvskov. 2010. Hemicelluloses. Annual Review of Plant Physiology 61: 263-289.
Schultz, T. P. and D. D. Nicholas. 2002. Development of environmentally-benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators. Phytochemistry 61: 555-560.
Shafizadeh, F. 1982. Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis 3: 283-305.
Sinha, S., A. Jhalani, M. R. Ravi, and A. Ray. 2000. Modelling of pyrolysis in wood: A review. Journal of the Solar Energy Society of India 10(1): 41-62.
Soltes, E. J. and T. J. Elder. 1981. Pyrolysis. In: Organic Chemicals from Biomass, I. S. Goldstein (eds.), Boca Raton, Florida: CRC Press, p. 63-95.
Stenseng, M., A. Jensen, and K. D. Johansen. 2001. Investigation of biomass pyrolysis by thermogravimetric analysis and deferential scanning calorimetry. Journal of Analytical and Applied Pyrolysis 58: 765-780.
Tung, Y. T., J. H. Wu, C. Y. Huang, Y. H. Kuo, and S. T. Chang. 2009. Antioxidant activities and phytochemical characteristics of extracts from Acacia confusa bark. Bioresource Technology 100: 509-514.
Varner, R. E. and R. L. Krause. 1951. Agar-block and soil-block methods for testing wood preservatives. Industrial and Engineering Chemistry 43: 1102-1107.
Vasile, C. and M. A. Brebu. 2006. Thermal valorization of biomass and synthetic polymer waste: upgrading of pyrolysis oils. Journal of Cellulose Chemistry and Technology 40(7): 489-512.
Voda, K., B. Boha, M. Vrta-Cnika, and F. Pohleven. 2003. Effect of the anti-fungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. International Biodeterioration and Biodegradation 51: 51-59.
Wang, S. Y., W. C. Lai, F. H. Chu, C. T. Lin, S. Y. Shen, and S. T. Chang. 2006. Essential oil from the leaf of Cryptomeria japonica acts as a silverfish (Lepisma saccharina) repellent and insecticide. Journal of Wood Science 52: 522-526.
Wu, L. Y. 2010. The properties of wood tar and its application for manufacturing of water soluble resol-type penol formaldehyde resins. Master’s Thesis. National Chung Hsing University, Taiwan, p. 21-24.
Wu, J. H., Y. T. Tung, S. H. Chien, S. Y. Wang, Y. H. Kuo, L. F. Shyur, and S. T. Chang. 2008. Effect of phytocompounds from the heartwood of Acacia confusa on inflammatory mediator production. Journal of Agricultural Food Chemistry 56: 1567-1573.
Wu, J. H., Y. T. Tung, S. H. Chien, S. Y. Wang, Y. H. Kuo, L. F. Shyur, Y. H., Kuo, and S. T. Chang. 2005. Phenolics antioxidants from the heartwood of Acacia confusa. Journal of Agricultural Food Chemistry 53: 5917-5921.
Yatagai, M., M. Nishimoto, K. Hori, T. Ohira, and A. Shibata. 2002. Termiticidal activity of wood vinegar, its components and their homologues. Journal of Wood Science 48: 338-342.
Zabel, R. A. and J. J. Morrell. 1992. General features, recognition and anatomical aspects of wood decay. In: Wood Microbiology: decay and its prevention. San Diego, California: Academic Press, p. 168-194.
Zagury, G. J., R. Samson, and L. J. Deschenes. 2003. Occurrence of metals in soil and groundwater near chromated copper arsenate-treated utility poles. Journal of Environmental Quality 32: 507-514.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top