|
1.Sherry, L. J.; Chang, S.-H.; Schatz, G. C.; Van Duyne, R. P.; Wiley, B. J.; Xia, Y., Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Letters 2005, 5 (10), 2034-2038.
2.Crespo P Fau - Litran, R.; Litran R Fau - Rojas, T. C.; Rojas Tc Fau - Multigner, M.; Multigner M Fau - de la Fuente, J. M.; de la Fuente Jm Fau - Sanchez-Lopez, J. C.; Sanchez-Lopez Jc Fau - Garcia, M. A.; Garcia Ma Fau - Hernando, A.; Hernando A Fau - Penades, S.; Penades S Fau - Fernandez, A.; Fernandez, A., Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles.
3.Bigioni, T. P.; Whetten, R. L.; Dag, Ö., Near-Infrared Luminescence from Small Gold Nanocrystals. The Journal of Physical Chemistry B 2000, 104 (30), 6983-6986.
4.Gautier, C.; Bürgi, T., Chiral Inversion of Gold Nanoparticles. Journal of the American Chemical Society 2008, 130 (22), 7077-7084.
5.(a) Shang, L.; Dong, S.; Nienhaus, G. U., Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6 (4), 401-418; (b) Lu, Y.; Chen, W., Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chemical Society reviews 2012, 41 (9), 3594-623; (c) Xavier, P. L.; Chaudhari, K.; Baksi, A.; Pradeep, T., Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience. Nano reviews 2012, 3.
6.Qian, H.; Jin, R., Ambient Synthesis of Au144(SR)60 Nanoclusters in Methanol. Chemistry of Materials 2011, 23 (8), 2209-2217.
7.Habeeb Muhammed, M.; Ramesh, S.; Sinha, S.; Pal, S.; Pradeep, T., Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Res. 2008, 1 (4), 333-340.
8.Duan, H.; Nie, S., Etching Colloidal Gold Nanocrystals with Hyperbranched and Multivalent Polymers: A New Route to Fluorescent and Water-Soluble Atomic Clusters. Journal of the American Chemical Society 2007, 129 (9), 2412-2413.
9.Xie, J.; Zheng, Y.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. Journal of the American Chemical Society 2009, 131 (3), 888-889.
10.Guo, C.; Irudayaraj, J., Fluorescent Ag Clusters via a Protein-Directed Approach as a Hg(II) Ion Sensor. Analytical Chemistry 2011, 83 (8), 2883-2889.
11.Valden, M.; Lai, X.; Goodman, D. W., Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 281 (5383), 1647-1650.
12.Belloni, J., Photography: enhancing sensitivity by silver-halide crystal doping. Radiation Physics and Chemistry 2003, 67 (3–4), 291-296.
13.Wang, H.-H.; Lin, C.-A. J.; Lee, C.-H.; Lin, Y.-C.; Tseng, Y.-M.; Hsieh, C.-L.; Chen, C.-H.; Tsai, C.-H.; Hsieh, C.-T.; Shen, J.-L.; Chan, W.-H.; Chang, W. H.; Yeh, H.-I., Fluorescent Gold Nanoclusters as a Biocompatible Marker for In Vitro and In Vivo Tracking of Endothelial Cells. ACS Nano 2011, 5 (6), 4337-4344.
14.Jang, K.; Eom, K.; Lee, G.; Han, J.-H.; Haam, S.; Yang, J.; Kim, E.; Kim, W.-J.; Kwon, T., Water-stable single-walled carbon nanotubes coated by pyrenyl polyethylene glycol for fluorescence imaging and photothermal therapy. BioChip J 2012, 6 (4), 396-403.
15.Holmes, P.; James, K. A. F.; Levy, L. S., Is low-level environmental mercury exposure of concern to human health? Science of The Total Environment 2009, 408 (2), 171-182.
16.Xie, J.; Zheng, Y.; Ying, J. Y., Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chemical communications 2010, 46 (6), 961-963.
17.Lin, Y.-H.; Tseng, W.-L., Ultrasensitive Sensing of Hg2+ and CH3Hg+ Based on the Fluorescence Quenching of Lysozyme Type VI-Stabilized Gold Nanoclusters. Analytical Chemistry 2010, 82 (22), 9194-9200.
18.Chen, W.; Tu, X.; Guo, X., Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chemical communications 2009, 0 (13), 1736-1738.
19.Shang, L.; Dong, S., Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II). Journal of Materials Chemistry 2008, 18 (39), 4636-4640.
20.Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K., Copper Quantum Clusters in Protein Matrix: Potential Sensor of Pb2+ Ion. Analytical Chemistry 2011, 83 (24), 9676-9680.
21.Chen, X.; Zhou, Y.; Peng, X.; Yoon, J., Fluorescent and colorimetric probes for detection of thiols. Chemical Society reviews 2010, 39 (6), 2120-2135.
22.Han, B.; Wang, E., Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids. Biosensors and Bioelectronics 2011, 26 (5), 2585-2589.
23.Shang, L.; Dong, S., Sensitive detection of cysteine based on fluorescent silver clusters. Biosensors and Bioelectronics 2009, 24 (6), 1569-1573.
24.Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L., Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. Advanced Functional Materials 2010, 20 (6), 951-956.
25.Chen, W.; Chen, S., Oxygen Electroreduction Catalyzed by Gold Nanoclusters: Strong Core Size Effects. Angewandte Chemie International Edition 2009, 48 (24), 4386-4389.
26.Wang, X.-X.; Wu, Q.; Shan, Z.; Huang, Q.-M., BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosensors and Bioelectronics 2011, 26 (8), 3614-3619.
27.Judai, K.; Abbet, S.; Wörz, A. S.; Heiz, U.; Henry, C. R., Low-Temperature Cluster Catalysis. Journal of the American Chemical Society 2004, 126 (9), 2732-2737.
28.Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P., Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nature materials 2009, 8 (3), 213-6.
29.Yamamoto, K.; Imaoka, T.; Chun, W. J.; Enoki, O.; Katoh, H.; Takenaga, M.; Sonoi, A., Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nature chemistry 2009, 1 (5), 397-402.
30.Makarava, N.; Parfenov, A.; Baskakov, I. V., Water-soluble hybrid nanoclusters with extra bright and photostable emissions: a new tool for biological imaging. Biophysical journal 2005, 89 (1), 572-80.
31.Wu, X.; He, X.; Wang, K.; Xie, C.; Zhou, B.; Qing, Z., Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2010, 2 (10), 2244-2249.
32.Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J., Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science 2008, 321 (5894), 1331-1335.
33.Yamamoto, H.; Yano, H.; Kouchi, H.; Obora, Y.; Arakawa, R.; Kawasaki, H., N,N-Dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol. Nanoscale 2012, 4 (14), 4148-4154. 34.Dobrin, S., CO oxidation on Pt nanoclusters, size and coverage effects: a density functional theory study. Physical Chemistry Chemical Physics 2012, 14 (35), 12122-12129.
35.(a) Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C., Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles. ACS Nano 2010, 4 (12), 7451-7458; (b) Ma, M.; Zhang, Y.; Gu, N., Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 373 (1–3), 6-10; (c) Jv, Y.; Li, B.; Cao, R., Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chemical communications 2010, 46 (42), 8017-8019; (d) Wang, S.; Chen, W.; Liu, A.-L.; Hong, L.; Deng, H.-H.; Lin, X.-H., Comparison of the Peroxidase-Like Activity of Unmodified, Amino-Modified, and Citrate-Capped Gold Nanoparticles. ChemPhysChem 2012, 13 (5), 1199-1204; (e) Jiang, H.; Chen, Z.; Cao, H.; Huang, Y., Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose. Analyst 2012, 137 (23), 5560-5564.
36.Zheng, J.; Zhang, C.; Dickson, R. M., Highly fluorescent, water-soluble, size-tunable gold quantum dots. Physical review letters 2004, 93 (7), 077402.
37.Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M., DNA-Templated Ag Nanocluster Formation. Journal of the American Chemical Society 2004, 126 (16), 5207-5212.
38.Kawasaki, H.; Yamamoto, H.; Fujimori, H.; Arakawa, R.; Inada, M.; Iwasaki, Y., Surfactant-free solution synthesis of fluorescent platinum subnanoclusters. Chemical communications 2010, 46 (21), 3759-3761.
39.Tanaka, S.-I.; Miyazaki, J.; Tiwari, D. K.; Jin, T.; Inouye, Y., Fluorescent Platinum Nanoclusters: Synthesis, Purification, Characterization, and Application to Bioimaging. Angewandte Chemie 2011, 123 (2), 451-455.
40.Le Guével, X.; Trouillet, V.; Spies, C.; Jung, G.; Schneider, M., Synthesis of Yellow-Emitting Platinum Nanoclusters by Ligand Etching. The Journal of Physical Chemistry C 2012, 116 (10), 6047-6051.
41.Yang, T.; Li, Z.; Wang, L.; Guo, C.; Sun, Y., Synthesis, Characterization, and Self-Assembly of Protein Lysozyme Monolayer-Stabilized Gold Nanoparticles. Langmuir 2007, 23 (21), 10533-10538.
42.Eby, D. M.; Schaeublin, N. M.; Farrington, K. E.; Hussain, S. M.; Johnson, G. R., Lysozyme Catalyzes the Formation of Antimicrobial Silver Nanoparticles. ACS Nano 2009, 3 (4), 984-994.
43.Luckarift, H. R.; Dickerson, M. B.; Sandhage, K. H.; Spain, J. C., Rapid, Room-Temperature Synthesis of Antibacterial Bionanocomposites of Lysozyme with Amorphous Silica or Titania. Small 2006, 2 (5), 640-643.
44.Chen, W.-Y.; Lin, J.-Y.; Chen, W.-J.; Luo, L.; Wei-Guang Diau, E.; Chen, Y.-C., Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine 2010, 5 (5), 755-764.
45.Chen, T.-H.; Tseng, W.-L., (Lysozyme Type VI)-Stabilized Au8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012, 8 (12), 1912-1919.
46.Tao, Y.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X., Incorporating Graphene Oxide and Gold Nanoclusters: A Synergistic Catalyst with Surprisingly High Peroxidase-Like Activity Over a Broad pH Range and its Application for Cancer Cell Detection. Advanced Materials 2013, 25 (18), 2594-2599.
47.Doerrer, L. H., Steric and electronic effects in metallophilic double salts. Dalton Transactions 2010, 39 (15), 3543-3553.
48.Sennuga, A.; van Marwijk, J.; Whiteley, C. G., Ferroxidase activity of apoferritin is increased in the presence of platinum nanoparticles. Nanotechnology 2012, 23 (3), 035102.
49.Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M., Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition. The Journal of Physical Chemistry B 1999, 103 (19), 3818-3827.
50.(a) Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature nanotechnology 2007, 2 (9), 577-83; (b) Liu, C.-H.; Tseng, W.-L., Oxidase-functionalized Fe3O4 nanoparticles for fluorescence sensing of specific substrate. Analytica Chimica Acta 2011, 703 (1), 87-93.
51.(a) Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M., Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angewandte Chemie International Edition 2009, 48 (13), 2308-2312; (b) He, W.; Liu, Y.; Yuan, J.; Yin, J.-J.; Wu, X.; Hu, X.; Zhang, K.; Liu, J.; Chen, C.; Ji, Y.; Guo, Y., Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 2011, 32 (4), 1139-1147.
52.Bisaglia, M.; Mammi, S.; Bubacco, L., Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. The Journal of biological chemistry 2007, 282 (21), 15597-605.
53.Dhakshinamoorthy, A.; Navalon, S.; Alvaro, M.; Garcia, H., Metal nanoparticles as heterogeneous Fenton catalysts. ChemSusChem 2012, 5 (1), 46-64.
54.Yuan, X.; Tay, Y.; Dou, X.; Luo, Z.; Leong, D. T.; Xie, J., Glutathione-Protected Silver Nanoclusters as Cysteine-Selective Fluorometric and Colorimetric Probe. Analytical Chemistry 2012, 85 (3), 1913-1919.
55.Chen, W.; Zhao, Y.; Seefeldt, T.; Guan, X., Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. Journal of pharmaceutical and biomedical analysis 2008, 48 (5), 1375-80.
56.Rahman, I.; Kode, A.; Biswas, S. K., Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature protocols 2006, 1 (6), 3159-65.
|