Reference
Chapter 1
[1.1]D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., 46, 1288 (1967).
[1.2]S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, p. 504 (1981)
[1.3]J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[1.4]“International Technology Roadmap for Semiconductors, 2009 update at Uhttp://www.itrs.net/Links/2009ITRS/Home2009.htm
[1.5]S. Sakai and R. Ilangovan, "Metal–Ferroelectric–Insulator–SemiconductorMemory FET With Long Retentionand High Endurance," IEEE Electron Device Le¨tt., 25 (6), 369 (2004).
[1.6]J. HEGEDU S and S. R. ELLIOTT, “Microscopic origin of the fast crystallizationability of Ge–Sb–Te phase-change memory materials,” Nature Mater., 7, 399 (2008).
[1.7]M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, M. A. Arrio, A. Cornia, D. Gatteschi and R. Sessoli, "Magnetic memory of a single-molecule quantum magnet wired to a gold surface," Nature Mater., 8, 194 (2009).
[1.8]H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, F. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, M. J. Tsai, and C. Lien, “HfOx Bipolar Resistive Memory With Robust Endurance Using AlCu as Buffer Electrode,” IEEE Electron Device Lett., 30 (7), 703 (2009).
[1.9]G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, IEDM Tech. Dig., 567 (2004)
[1.10]Dudley A. Buck, "Ferroelectrics for Digital Information Storage and Switching." Report R-212, MIT, 1952.
[1.11]簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,“先進記憶體簡介,國研科技創刊號,2004年[1.12]C. H. Sie, PhD dissertation, "Memory Devices Using Bistable Resistivity in Amorphous As-Te-Ge Films," Iowa State University, Proquest/UMI publication #69-20670, 1969
[1.13]A. V. Pohm, C. H. Sie, R. R. Uttecht, V. Kao, and O. Agrawal, “Chalcogenide Glass Bistable Resistivity (Ovonic) Memories,” IEEE Trans. Magn., 6 (3) (1970)
[1.14]葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展—現在與未來”,物理雙月刊 廿六期四卷,2004年[1.15] “International Technology Roadmap for Semiconductors, 2007 update” at http://public.itrs.net/Files/2007Update/Home.pdf.
Chapter 2
[2.1]Chih-Yuan and Chin-Chieh Yeh, “Advenced Non-Volatile Memory Devices with Nano-Technology”, Invited Talk for 15th International Conference on Ion Implantation Technology (2004).
[2.2]Akihito Sawa, “Resistive switching in transition metal oxide”, Mater. Today., 11 (6), 28 (2008)
[2.3]G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung and I. T. Moon, “Highly Scalable Non-volatile Resistive Memory using Simple Binary OxideDriven by Asymmetric Unipolar Voltage Pulses,” IEDM Tech. Dig., 587 (2004)
[2.4]S. Yu, X. Guan, and H.-S. Philip Wong, “On the Switching Parameter Variation of Metal OxideRRAM—Part II: Model Corroborationand Device Design Strategy,” IEEE Trans. Electron Devices, 59(4), 1183 (2012)
[2.5]M. J. Rozenberg, I. H. Inoue et al., “Nonvolatile memory with Multilevel Switching: A Basic Model,” Phys. Rev. Lett., 92, 178302 (2004)
[2.6]J. Y. Son, Y. H. Shina, “Direct observation of conducting filaments on resistive switching of NiO thin films,” Appl. Phys. Lett., 92, 222106 (2008)
[2.7]S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh,1 J. S. Lee, B. Kahng, J. H. Jang, M. Y. Kim,3 D.-W. Kim, C. U. Jung, “Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors,” Appl. Phys. Lett., 92, 183507 (2008)
[2.8]M. Fujimoto, H. Koyama et al., “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching, “Appl. Phys. Lett., 89, 223509 (2006)
[2.9]Kou-Chen Liu, Wen-Hsien Tzeng, Kow-Ming Chang, Yi-Chun Chan, Chun-Chih Kuo, Chun-Wen Cheng, “The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device,” Microelectronics Reliability, 50(5), 670 (2010)
[2.10]Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng, “Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application,” Nano Lett., 9(4), 1636 (2009)
[2.11]C. Chen, Y. C. Yang, F. Zeng, and F. Pan, “Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device,” Appl. Phys. Lett., 97, 083502 (2010)
[2.12]施敏、伍國珏,“半導體元件物理學”,2008年
Chapter 3
[3.1]J. Lu, T. C. Chang, Y. T. Chen, J. J. Huang, P. C. Yang, S. C. Chen, H. C. Huang, D. S. Gan, N. J. Ho, Y. Shi, and A. K. Chu, “Enhanced retention characteristic of NiSi2/SiNx compound nanocrystal memory,” Appl. Phys. Lett., 96, 262107 (2010).
[3.2]T. C. Chang, F. Y. Jian, S. C. Chen, Y. T. Tsai, “Developments in nanocrystal memory,” Mater. Today, 14 (12), 526 (2011).
[3.3]S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien, “A Novel Nanowire Channel Poly-Si TFT Functioning as Transistor and Nonvolatile SONOS Memory,” IEEE Trans. Electron Device Lett., 28 (9), 809 (2007).
[3.4]M. Fujimoto, H. Koyama, Y. Nishi, and T. Suzuki, “Resistive switching properties of high crystallinity and low-resistance Pr0.7Ca0.3MnO3 thin film with point-contacted Ag electrodes,” Appl. Phys. Lett., 91, 223504 (2007).
[3.5]H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I. H. Inoue, and H. Takagi, “Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode,” Appl. Phys. Lett., 93, 113504 (2008).
[3.6]D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, “Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications,” Appl. Phys. Lett., 88, 082904 (2006).
[3.7]S. C. Chen, T. C. Chang, S. Y. Chen, C. W. Chen, S. C. Chen, S.M. Sze, M. J. Tsai, M. J. Kao, F. S. Yeh Huang, “Bipolar resistive switching of chromium oxide for resistive random access memory,” Solid-State Electron., 62, 40 (2011).
[3.8]Y. T. Tsai, T. C. Chang, C. C. Lin, S. C. Chen, C. W. Chen, S. M. Sze, F. S. Yeh(Huang), and T. Y. Tseng, “Influence of Nanocrystals on Resistive Switching Characteristic in Binary Metal Oxides Memory Devices,” Electrochem. Solid-State Lett., 14 (3), H135 (2011).
[3.9]M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, and S. M. Sze, “Bipolar Resistive Switching Characteristics of Transparent Indium Gallium Zinc Oxide Resistive Random Access Memory,” Electrochem. Solid-State Lett., 13 (6), H191 (2010).
[3.10]J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, S. M. Sze, A. K. Chu, and M. J. Tsai, “Influence of Oxygen Concentration on Resistance Switching Characteristics of Gallium Oxide,” IEEE Electron Device Lett., 33 (10), 1387 (2012).
[3.11]K. C. Chang, T. M. Tsai, T. C. Chang, Y. E. Syu, C. C. Wang, S. L. Chuang, C. H. Li, D. S. Gan, and S. M. Sze, “Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment,” Appl. Phys. Lett., 99, 263501 (2007).
[3.12]P. C. Yang, T. C. Chang, S. C. Chen, Y. S. Lin, H. C. Huang, and D. S. Gan, “Influence of Bias-Induced Copper Diffusion on the Resistive Switching Characteristics of a SiON Thin Film,” Electrochem. Solid-State Lett., 14 (2), H93 (2011).
[3.13]C. C. Lin, T. C. Chang, C. H. Tu, W. R. Chen, C. W. Hu, S. M. Sze, T. Y. Tseng, S. C. Chen, and J. Y. Lin, “Charge storage characteristics of Mo nanocrystal dependence on Mo oxide reduction,” Appl. Phys. Lett., 93, 222101 (2008).
[3.14]C. H. Tung, K. L. Pey, L. J. Tang, M. K. Radhakrishnan, W. H. Lin, F. Palumbo, and S. Lombardo, “Percolation path and dielectric-breakdown-induced-epitaxy evolution during ultrathin gate dielectric breakdown transient,” Appl. Phys. Lett., 83, 2223 (2003).
[3.15]J. Yi, X. D He, Y. Sun, Y. Li, “Electron beam-physical vapor deposition of SiC/SiO2 high emissivity thin film,” Appl. Surf. Sci., 253, 4361 (2007).
[3.16]J. G. Choi, D. Choi, L. T. Thompson, “Surface properties of high-surface-area powder and thin film molybdenum nitrides treated in H2 and H2S,” Appl. Surf. Sci., 108, 103 (1997).
[3.17]M. Liu, Z. Abid, W. Wang, X. He, Q. Liu, and W. Guan, “Multilevel resistive switching with ionic and metallic filaments,” Appl. Phys. Lett., 94, 233106 (2009).
[3.18]H. C. Tseng, T. C. Chang, J. J. Huang, P. C. Yang, Y. T. Chen, F. Y. Jian, S. M. Sze, and M. J. Tsai, “Investigating the improvement of resistive switching trends after post-forming negative bias stress treatment,” Appl. Phys. Lett., 99, 132104 (2011).
[3.19]K. Jung, H. Seo, Y. Kim, H. Im, J. P. Hong, J. W. Park and J. K. Lee, “Temperature dependence of high- and low-resistance bistable states in polycrystalline NiO films,” Appl. Phys. Lett., 90, 052104 (2007).
[3.20]L. Goux, J. G. Lisoni, X. P. Wang, M. Jurczak, and D. J. Wouters, “Optimized Ni Oxidation in 80-nm Contact Holes for Integration of Forming-Free and Low-Power Ni/NiO/Ni Memory Cells,” IEEE Trans. Electron Devices, 56 (10), 2363 (2009).
[3.21]U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices,” IEEE Trans. Electron Devices, 56 (2), 193 (2009).
[3.22]K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, M. H. Lee, J. H. Yoon, and C. S. Hwang, “Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures,” Nanotechnology, 21, 305203 (2010).
[3.23]S. Yu, Y. Wu, and H.-S. P. Wong, “Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory,” Appl. Phys. Lett., 98, 103514 (2011).
[3.24]S. Yu, X. Guan, H.-S. P. Wong, “On the Switching Parameter Variation of Metal Oxide RRAM—Part II: Model Corroboration and Device Design Strategy,” IEEE Trans. Electron Device Lett., 59 (4), 1183 (2012).
[3.25]F. M. Yang, T. C. Chang, P. T. Liu, P. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide,” Appl. Phys. Lett., 90, 132102 (2007).
[3.26]T. C. Chen, T. C. Chang, F. Y. Jian, S. C. Chen, C. S. Lin, M. H. Lee, J. S. Chen, and C. C. Shih, “Improvement of Memory State Misidentification Caused by Trap-Assisted GIDL Current in aSONOS-TFT Memory Device,” IEEE Trans. Electron Device Lett., 30 (8), 834 (2009).
[3.27]X. Liu, K. P. Biju, E. M. Bourim, S. Park, W. Lee, D. Lee, K. Seo, and H. Hwang, “Filament-Type Resistive Switching in Homogeneous Bi-Layer Pr0.7Ca0.3MnO3 Thin Film Memory Devices,” Electrochem. Solid-State Lett., 14 (1), H9 (2011).
[3.28]D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, “Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications,” Appl. Phys. Lett., 88, 082904 (2006).
[3.29]S. C. Chen, T. C. Chang, S. Y. Chen, H. W. Li, Y. T. Tsai, C. W. Chen, S. M. Sze, F. S. Yeh(Huang), and Y. H. Tai, “Carrier Transport and Multilevel Switching Mechanism for Chromium Oxide Resistive Random-Access Memory,” Electrochem. Solid-State Lett., 14 (2), H103 (2011).
[3.30]Y. T. Tsai, T. C. Chang, W. L. Huang, C. W. Huang, Y. E. Syu, S. C. Chen, S. M. Sze, M. J. Tsai, and T. Y. Tseng, “Investigation for coexistence of dual resistive switching characteristics in DyMn2O5 memory devices,” Appl. Phys. Lett., 99, 132104 (2011).
[3.31]T. Y. Lin, L. M. Chen, S. C. Chang, and T. S. Chin, “Electrical resistance switching in Ti added amorphous SiOx, Appl. Phys. Lett., 95, 162105 (2009).
[3.32]Y. E. Syu, T. C. Chang, C. T. Tsai, G. W. Chang, T. M. Tsai, K. C. Chang, Y. H. Tai, M. J. Tsai, and S. M. Sze, “Improving Resistance Switching Characteristics with SiGeOx/SiGeON Double Layer for Nonvolatile Memory Applications,” Electrochem. Solid-State Lett., 14 (10), H419 (2011).
[3.33]M. H. Lin, M. C. Wu, C. H. Lin, and T. Y. Tseng, “Resistive switching characteristics and mechanisms of Pt-embedded SrZrO3 memory devices,” J. Appl. Phys., 107,124117 (2010).
[3.34]C. Y. Liu, X. J. Lin, H. Y. Wang, and C. H. Lai, “Improved Resistive Switching Dispersion of NiOx Thin Film by Cu-Doping Method,” Jpn. J. Appl. Phys., 49, 056507 (2010).
[3.35]T. Tomita, H. Utsunomiya, Y. Kamakura, and K. Taniguchi, “Hot hole induced breakdown of thin silicon dioxide films,” Appl. Phys. Lett. 71, 3664 (1997).
[3.36]K. Umeda, T. Tomita, and K. Taniguchi, “Silicon dioxide breakdown induced by SHE (substrate hot electron) injection,” Electron. Commun. Jpn., 80, 11, (1997).
[3.37]M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya, “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching,” Appl. Phys. Lett., 89, 223509 (2006).
[3.38]B. Chen, B. Gao, S. W. Sheng, L. F. Liu, Y. S. Chen, Y. Wang, R. Q. Han, B. Yu, and J. F. Kang, “A Novel Operation Scheme for Oxide-Based Resistive-Switching Memory Devices toAchieve Controlled Switching Behaviors,” IEEE Trans. Electron Device Lett., 32 (3), 282 (2011).
[3.39]M. Wittmer, J. Noser, and H. Melchior, “Oxidation kinetics of TiN thin films,” J. Appl. Phys., 52, 6659 (1981).
[3.40]F Borgioli, E Galvanetto, F.P Galliano and T Bacci, “Air treatment of pure titanium by furnace and glow-discharge processes,” Surf. Coat. Technol., 141, 103 (2001).
Chapter 4
[4.1]F. M. Yang, T. C. Chang, P. T. Liu, P. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide,” Appl. Phys. Lett., 90, 132102 (2007).
[4.2]J. Lu, T. C. Chang, Y. T. Chen, J. J. Huang, P. C. Yang, S. C. Chen, H. C. Huang, D. S. Gan, N. J. Ho, Y. Shi, and A. K. Chu, “Enhanced retention characteristic of NiSi2/SiNx compound nanocrystal memory,” Appl. Phys. Lett., 96, 262107 (2010).
[4.3]T. C. Chang, F. Y. Jian, S. C. Chen, Y. T. Tsai, “Developments in nanocrystal memory,” Mater. Today, 14 (12), 526 (2011).
[4.4]S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien, “A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory,” IEEE Electron Device Lett., 28 (9), 809 (2002).
[4.5]T. C. Chen, T. C. Chang, F. Y. Jian, S. C. Chen, C. S. Lin, M. H. Lee, J. S. Chen, and C. C. Shih, “Improvement of Memory State Misidentification Caused by Trap-Assisted GIDL Current in a SONOS-TFT Memory Device,” IEEE Electron Device Lett., 30 (8), 834 (2009).
[4.6]H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M. J. Tsai, and C. H. Lien, “Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory,” Appl. Phys. Lett., 92, 142911 (2008).
[4.7]M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, and S. M. Sze, “Bipolar Resistive Switching Characteristics of Transparent Indium Gallium Zinc Oxide Resistive Random Access Memory,” Electrochem. Solid-State Lett., 13 (6), H191 (2010).
[4.8]J. J. Huang, C. W. Kuo, W. C. Chang, and T. H. Hou, “Transition of stable rectification to resistive-switching in Ti/TiO2/Pt oxide diode,” Appl. Phys. Lett., 96, 262901 (2010).
[4.9]C. T. Tsai, T. C. Chang, P. T. Liu, Y. L. Cheng, and F. S. Huang, “Low temperature improvement on silicon oxide grown by electron-gun evaporation for resistance memory,” Appl. Phys. Lett., 93, 052903 (2008).
[4.10]T. Y. Lin, L. M. Chen, S. C. Chang, and T. S. Chin, “Electrical resistance switching in Ti added amorphous SiOx,” Appl. Phys. Lett., 95, 162105 (2009).
[4.11]H. C. Tseng, T. C. Chang, J. J. Huang, P. C. Yang, Y. T. Chen, F. Y. Jian, S. M. Sze, and M. J. Tsai, “Investigating the improvement of resistive switching trends after post-forming negative bias stress,” Appl. Phys. Lett., 99, 132104 (2011).
[4.12]Y. E. Syu, T. C. Chang, T. M. Tsai, G. W. Chang, K. C. Chang, Y. H. Tai, M. J. Tsai, Y. L. Wang, and S. M. Sze, “Silicon introduced effect on resistive switching characteristics of WOX thin films,” Appl. Phys. Lett., 95, 022904 (2012).
[4.13]S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York 1981, pp. 154-236.
[4.14]Y. T. Chen, T. C. Chang, J. J. Huang, H. C. Tseng, P. C. Yang, A. K. Chu, J. B. Yang, M. J. Tsai, Y. L. Wang, and S. M. Sze, “Thermal impact on the activation of resistive switch in silicon oxide based RRAM,” ECS Solid State Letters, 1 (4), 57 (2012).
[4.15]X. Guan, S. Yu, and H.-S. P. Wong, “On the Switching Parameter Variation of Metal-Oxide RRAM—Part I: Physical Modeling and Simulation Methodology,” IEEE Trans. Elecrron Devices, 59 (4), 1172 (2012).
[4.16]Z. Fang, H. Y. Yu, W. J. Liu, Z. R. Wang, X. A. Tran, B. Gao, and J. F. Kang, “Temperature Instability of Resistive Switching on HfOx-Based RRAM Devices,” IEEE Electron Device Lett., 31 (5), 476 (2010).
[4.17]T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, “Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress,” Appl. Phys. Lett., 97, 112104 (2010).
[4.18]C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C.Y. Wu, and C. Y. Huang, “Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” Appl. Phys. Lett., 96, 242105 (2010).
[4.19]H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, F. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, M. J. Tsai, and C. Lien, “HfOx Bipolar Resistive Memory With Robust Endurance Using AlCu as Buffer Electrode,” IEEE Electron Device Lett., 30 (7), 703 (2009).
[4.20]Q. Liu, W. Guan, S. Long, M. Liu, S. Zhang, Q. Wang, and J. Chen, “Resistance switching of Au-implanted-ZrO2 film for nonvolatile memory application,” J. Appl. Phys., 104, 114514 (2008).
[4.21]M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films,” Appl. Phys. Lett., 96, 262110 (2010).
[4.22]S. H. Jo, K. H0 Kim, and W. Lu, “Programmable Resistance Switching in Nanoscale Two-Terminal Devices,” Nano Lett., 9 (1), 496 (2009).
[4.23]J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, S. M. Sze, A. K. Chu, and M. J. Tsai, “Influence of Oxygen Concentration on Resistance Switching Characteristics of Gallium Oxide,” IEEE Electron Device Lett., 33 (10), 1387 (2012).
[4.24]S. B. Lee, A. Kim, J. S. Lee, S. H. Chang, H. K. Yoo, T. W. Noh, B. Kahng, M. J. Lee, C. J. Kim, and B. S. Kang, “Reduction in high reset currents in unipolar resistance switching Pt/SrTiOx /Pt capacitors using acceptor doping,” Appl. Phys. Lett., 97, 093505 (2010).
[4.25]S. Y. Wang, D. Y. Lee, T. Y. Huang, J. W. Wu and T. Y. Tseng, “Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer,” Nanotechnology, 21, 495201 (2010).
[4.26]H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, “Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach,” Appl. Phys. Lett., 98, 042105 (2011).
[4.27]S. Cheylan, R. G. Elliman, K. Gaff, A. Durandet, “Luminescence from Si nanocrystals in silica deposited by helicon activated reactive evaporation,” Appl. Phys. Lett., 78 (12), 1670 (2001).
[4.28]D. Choi, G. E. Blomgren, and P. N. Kumta, “Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors,” Adv. Mater., 18, 1178 (2006).
[4.29]X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, “Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3,” Appl. Phys. Lett., 86, 062903 (2005).
[4.30]H. Sun, J. Zhu, and H. Fang, “Large remnant polarization and excellent fatigue property of vanadium-doped SrBi4Ti4O15 thin films,” J. Appl. Phys., 100, 074102 (2006).
[4.31]L. Zhao, J. Zhang, Y. He, X. Guan, H. Qian, and Z. Yu, “Dynamic modeling and atomistic simulations of SET and RESET operations in TiO2-Based unipolar resistive memory,” IEEE Electron Device Lett., 32, 677 (2011).
[4.32]L. Zhang, R. Huang, D. Gao, D. Wu, Y. Kuang, P. Tang, W. Ding, A. Z. H. Wang, Y. Wang, “Unipolar resistive switch based on silicon monoxide realized by CMOS technology,” IEEE Electron Device Lett., 30, 870 (2009).
[4.33]K. C. Chang, T. M. Tsai, T. C. Chang, Y. E. Syu, C. C. Wang, S. L. Chuang, C. H. Li, D. S. Gan, and S. M. Sze, “Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment,” Appl. Phys. Lett., 99, 263501 (2011).
[4.34]Z. J. Liu, J. Y. Gan, and T. R. Yew, “ZnO-based one diode-one resistor device structure for crossbar memory applications,” Appl. Phys. Lett., 100, 153503 (2012).
[4.35]Y. S. Chen, H. Y. Lee, P. S. Chen, W. H. Liu, S. M. Wang, P. Y. Gu, Y. Y. Hsu, C. H. Tsai, W. S. Chen, F. Chen, M. J. Tsai, and C. Lien, “Robust high-resistance state and improved endurance of HfOX resistive memory by suppression of current overshoot,” IEEE Electron Device Lett., 32, 1585 (2011).
[4.36]C. Y. Lin, C. Y. Wu, C. Y. Wu, T. Y. Tseng, C. Hu, “Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode,” J. Appl. Phys., 102, 094101 (2007).
[4.37]Y. Sato, K. Tsunoda, K. Kinoshita, H. Noshiro, M. Aoki, and Y. Sugiyama, “Sub-100-μA reset current of nickel oxide resistive memory through control of filamentary conductance by current limit of MOSFET,” IEEE Trans. Elecrron Devices, 55, 1185 (2008).
[4.38]J. J. Huang, Y. M. Tseng, W. C. Luo, C. W. Hsu, and T. H. Hou, “One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications,” IEDM Tech. Dig., 733 (2011).
[4.39]J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, “TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application,” J. Appl. Phys., 109, 033712 (2011).
[4.40]D. Lee, J. Park, S. Jung, G. Choi, J. Lee, S. Kim, J. Woo, M. Siddik, E. Cha, and H. Hwang, “Operation voltage control in complementary resistive switches using heterodevice,” IEEE Electron Device Lett., 33, 600 (2012).
Chapter 5
[5.1]F. M. Yang, T. C. Chang, P. T. Liu, P. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Memory characteristics of Co nanocrystal memory device with HfO2 as blocking oxide,” Appl. Phys. Lett., 90, 132102 (2007).
[5.2]S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. H. Yeh, C. F. Weng, S. M. Sze, C. Y. Chang, and C. H. Lien, “Nonvolatile polycrystalline silicon thin-film-transistor memory with oxide/nitride/oxide stack gate dielectrics and nanowire channels,” Appl. Phys. Lett., 90, 122111 (2007).
[5.3]J. Lu, T. C. Chang, Y. T. Chen, J. J. Huang, P. C. Yang, S. C. Chen, H. C. Huang, D. S. Gan, N. J. Ho, Y. Shi, and A. K. Chu, “Enhanced retention characteristic of NiSi2/SiNx compound nanocrystal memory,” Appl. Phys. Lett., 96, 262107 (2010).
[5.4]L. Goux, P. Czarnecki, Y. Y. Chen, L. Pantisano, X. P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D. J. Wouters, and L. Altimime, “Evidences of oxygen-mediated resistive-switching mechanism in TiNHfO2Pt cells,” Appl. Phys. Lett., 97, 243509 (2010).
[5.5]C. Y. Lin, C. Y. Wu, C. Y. Wu, C. Hu, and T. Y. Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” J. Electrochem Soc.,154, G189 (2007).
[5.6]H. C. Tseng, T. C. Chang, K. H. Cheng, J. J. Huang, Y. T. Chen, F. Y. Jian, S. M. Sze, M. J. Tsai, A. K. Chu, Y. L. Wang, “Investigating bipolar resistive switching characteristics in filament type and interface type BON-based resistive switching memory,” Thin Solid Films, 529, 389 (2013).
[5.7]C. T. Tsai, T. C. Chang, P. T. Liu, Y. L. Cheng, and F. S. Huang, “Low temperature improvement on silicon oxide grown by electron-gun evaporation for resistance memory,” Appl. Phys. Lett., 93, 052903 (2008).
[5.8]T. Y. Lin, L. M. Chen, S. C. Chang, and T. S. Chin, “Electrical resistance switching in Ti added amorphous SiOx,” Appl. Phys. Lett., 95, 162105 (2009).
[5.9]Y. S. Chen, H. Y. Lee, P. S. Chen, W. H. Liu, S. M. Wang, P. Y. Gu, Y. Y. Hsu, C. H. Tsai, W. S. Chen, F. Chen, M. J. Tsai, and C. Lien, “Robust high-resistance state and improved endurance of HfOX resistive memory by suppression of current overshoot,” IEEE Electron Device Lett., 32, 1585 (2011).