跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 16:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李國瑜
研究生(外文):Guo-Yu Li
論文名稱:利用濺鍍二氧化矽在氮氣高壓下熱退火製作量子井熱混合之電致吸收調變器與半導體光放大器
論文名稱(外文):Sputtered SiO2 nitrogen-surrounding Quantum Well Intermixing for Integration of Electroabsorption Modulators and Semiconductor Optical Amplifiers
指導教授:邱逸仁邱逸仁引用關係
指導教授(外文):Yi-Jen Chiu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:二氧化矽內部晶格缺位擴散光積體電路量子井熱混合擴散能隙工程
外文關鍵詞:Photonic integrated circuitImpurity Free Vacancy DiffusionQuantum Well IntermixingSiO2Bandgap engineering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了達成光電元件之積體化,晶圓能隙調整的區域選擇性是重要的議題。本文主要以濺鍍介電質達成量子井熱混合(quantum-well intermixing) (QWI),並通以高壓氮氣熱退火-非雜質之空缺擴散法(impurity-free vacancy diffusion)(IFVD),來達成晶圓能隙調整。利用黃光製程定義濺鍍二氧化矽的區域,進行區域性的能隙調整;而裸露的區域,熱退火時暴露在氮氣之下,以氮氣增加熱退火時的壓力,減少裸露區域之五族元素向外擴散的程度,以抑制該區域能隙的改變,達成晶圓區域性地能隙調整。
利用黃光製程定義能隙調整區域,已能控制面積在40um*200um以內進行能隙調整,利用光激發光(Photoluminescence ;PL)來監測能隙調整後的波長藍位移量,達成在單一晶圓上調整出三個不同的操作波長,為1470nm, 1510nm, 1540nm,且在熱退火7分鐘後,波長藍位移量已達60nm以上。最後將完成能隙調整的晶圓,依照定義的區域製作成EAM整合SOA之光電元件,所製作出的整合元件,已成功將SOA之最大增益波長與EAM之最大調變波長重合,讓此整合元件有最佳的工作效率。相較於沒有經過能隙調整之元件,元件訊號之穿透率已由-18dB大幅提昇至-3dB。SOA之增益也超過35dB,EAM的調變能力可達6.68dB,調變能力是受限於熱處理時,導電層之摻雜Zn擴散至主動層所致。我們進一步對製作出的整合元件進行高頻量測,對於40GB/s的訊號傳輸也能有清晰的眼圖,說明以高溫處理的方式進行能隙調整後,所製做出的元件也能夠正常地工作。不需重新磊晶,而是濺鍍介電質和熱退火的簡單方法達成區域性地能隙調整,達成光積體電路的實作。
In order to achieve the integration of photonic circuit, the spatial selectivity of bandgap tuning on a wafer is an important issue. In this work, a quantum well intermixing (QWI) technique by sputtering SiO2 and followed by rapid thermal annealing, called impurity free vacancy diffusion( IFVD ), was used to perform the spatially bandgap tuning on a wafer. Patterned SiO2 regions are defined as the bandgap tuning area, while in the other area (without SiO2 cap layer) the wavelength shift suppression is performed by exposing in nitrogen flow surrounding.
Defined by photolithography, the QWI area could narrow down to the scale from 40um by 200um. By monitoring the bandgap using photoluminescence (PL) method, three different operating wavelengths of 1470nm, 1510nm, 1540nm at different regions have been achieved in a single wafer. The blue-shift of PL can reach more than 60nm within 7mins annealing. The integration of a semiconductor optical amplifier (SOA) and electroabsorption modulator (EAM) with electrical isolation region (ISO) is used to test wafer. The result showed that the amplifying wavelength of SOA is the same as the modulating wavelength of EAM, which resulting in the optimized operating efficiency of the integrated devices. The transmission of QWI device reaching -3dB, in comparison to non-QWI device with transmission of -12dB, is greatly improved. The gain of SOA is up to 35dB and the modulation of EAM is 6.68dB, which is limited by Zn diffusion. An opened and clear 40GB/s eye diagram is demonstrated, which showed under high temperature processing, the fabricated device still work. Without re-growth, just simple processing like sputtering and annealing, spatially bandgap tuning and the photonic integrated circuit are realized.
第一章 簡介 1
1.1 前言 1
1.2 研究動機 1
1.3 量子材料能隙工程 4
1.4 先前工作 9
1.5 主要工作 11
第二章 理論與程式模擬 12
2.1 熱混合擴散機制 12
2.2 計算熱混合擴散之量子井 14
2.3 熱混合擴散效應下能帶結構的改變 16
2.4 量子井波函數與基態的計算 20
第三章 材料分析 22
3.1 先前工作 22
3.2 高壓之下壓力的影響 23
3.3通入氮氣,區域性的能隙調整 25
3.3.1 抑制波長位移 25
3.3.2 促進波長位移 25
3.3.3 促進波長位移,再抑制波長位移 27
第四章 熱混合擴散與整合元件之方法與製作 28
4.1 熱混合擴散製程 29
4.2 整合元件製程 33
4.2.1離子佈植與蒸鍍P型金屬 33
4.2.2濕式底切蝕刻光波導 34
4.2.3蝕刻N型接觸層、蒸鍍N型金屬與定義絕緣層 37
4.2.4 平坦化製程 39
4.2.6 蒸鍍共平面電極 40
第五章 元件特性量測與分析 42
5.1 單段EAMSOA整合元件直流分析 42
5.2 多段EAMSOA整合元件直流分析 45
5.3 多段EAMSOA整合元件高頻量測 49
第六章 結論 51
Reference
[1]http://projects.csail.mit.edu/angstrom/SLS/AngstromStudentMeeting12-1-10.pdf
[2] P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C.Jagadish, “Silane Flow Rate Dependence of SiOx Cap Layer Induced Impurity-Free Intermixing of GaAs/AlGaAs Quantum Wells,” Journal of The Electrochemical Society, Vol.147, 2000.
[3] D. L. Green and E. L. Hu, ”Effect of superlattices on the low-energy ion-induced damage in GaAs/Al(Ga)As structures,” J. Vac. Sci. Technol. B12(6),Nov/Dec 1994.
[4] H. S. Diie and T. Mei, ”Plasma-Induced Quantum Well Intermixing for Monolithic Photonic Integration,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 2, March/April 2005.
[5] H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, ”Experimental and Theoretical Analysis of Argon Plasma-Enhanced Quantum-Well Intermixing,” IEEE Journal of Quantum Electronics, Vol. 40, No. 2, February 2004.
[6] S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, ”Photonic Integrated Circuits Fabricated Using Ion Implantation,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4, No. 4, July/August 1998.
[7] O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, “A universal damage induced technique for quantum well intermixing,” Appl. Vol. 72, 5 Number /2 February 1998.
[8] I. Gontijo, T. Krauss, J. H. Marsh, and R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE Journal of Quantum Electronic, vol. 30, May 1994.
[9] L.J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, and W.E. Plano, “Effects of dielectric encapsulation and As overpressure on Al-Ga interdiffusion in AlGaAs/GaAs quantum well heterostructures,” Journal Appl. Phys. 61(4), 15 February 1987.
[10] O. BS, M. K, Street MW, ”Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion” IEEE Journal of quantum electronic Vol. 33 , October 1997.
[11] S. SK, Y. DH, Y. KH, ” Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE Journal of Selected Topics in Quantum Electronics Vol.4, July/August 1998.
[12] 16]J. E. Epler, F.A. Ponce, F.J. Endicott, and T.L. Paoli, “Layer disordering of GaAs/AlGaAs superlattices by diffusion of laser-incorporated Si,” J. Appl. Phys. 64(7), 1 October 1988.
[13] E. H. Li, and B. L. Weiss, “Analytical Solution of the Subbands and Absorption Coefficients of AlGaAs/GaAs Hyperbolic,” IEEE Journal of quantum electronic, Vol. 29, No. 2. February 1993
[14] H. Kroemer, “Quantum Mechanics: For Engineering, Materials Science and Applied Physics, Prentice Hall, 1994.
[15] 李政鍵 , Unsymmetry Spiked-Quantum Well Design and Electroabsorption Modulators Based on the InAlAs/InGaAlAs Material System,2004.
[16] R. JW, J. LA, S. EJ,” 40 Gbit/s photonic receivers integrating UTC photodiodes with high- and low-confinement SOAs using quantum well intermixing and MOCVD regrowth,” electronic letter Vol.42, 3 August 2006.
[17] V. Hofsass, J. Kuhn, C. Kaden, “Optical integration of laterally modified multiple quantum well structures by implantation enhanced intermixing to realize gain coupled DFB lasers,” NUCLEAR INSTRUMENTS &; METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, Vol. 104, December 1995.
[18] D. Hofstetter, B. Maisenholder, and H. P. Zappe, “Quantum-well intermixing for fabrication of lasers and photonic integrated circuits,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, July/August 1998.
[19] Masayuki Katayama, Yutaka Tokuda, Yajiro lnoue, Akira Usami, Takao and Wada, “Ga out-diffusion in rapid-thermal-processed GaAs with SiO2 encapsulant,” American Institute of Physics,vol. 69, pp. 3541-3546, 1991
[20] S C Du, L Fu, H H Tan and C Jagadish, “Investigations of impurity-free vacancy disordering in (Al)InGaAs(P)/InGaAs quantum wells,” Semiconductor Science and Technology, vol. 25, 2010
[21] Hyun-Soo Kim, Jeong Woo Park, Dae Kon Oh, Kwang Ryong Oh, Sung June Kim and In-Hoon Choi,“ Quantum Well Intermixing of In1−xGaxAs/In1−xGaxAs1 −yPy multiple-quantum-well structures by using the impurity-free vacancy diffusion technique,” Semicond. Sci. Technol, vol. 15, pp. 1005-1009, 2000
[22] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/InP/thermal.html
[23] [16] H. Peyre, F. Alsina, J. Camassel, J. Pascual, R. W. Glew” Thermal stability of InGaAsAnGaAsP quantum wells”, J. Appl. Phys. 73 (6), 15 April 1993
[24] Shun Lien Chuang, “Physics of Optoelectronic Devices,”
[25] N. Bottka and L. D. Hutcheson, J. Appl. Phys. vol. 46,pp. 2645-2649, 1975
[26] N. Bottka,Opt. Eng.,17,530,1978
[27] J. C. Cambell, J. C. DeWinter, M. A. Pollack, and R. E. Nahory, Appl. Phys. Lett., 32,471,1978
[28] A.S.W.Lee,M. MacKenzie, D.A. Thompson, J. Bursik, B. J. Robinson, Appl. Phys. Lett. 78, 3199 (2001);
[29] http://www.ioffe.ru/SVA/NSM/Semicond/GaInAsP/bandstr.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top