跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭力
研究生(外文):Li Cheng
論文名稱:以二氧化錳摻雜碳奈米纖維作為電雙層電容器之電極材料
論文名稱(外文):Manganese Oxide-Doped Carbon Nanofiber as Electrode Materials for Electric Double Layer Capacitors
指導教授:許子建許子建引用關係
指導教授(外文):Tzu-Chien Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:79
中文關鍵詞:靜電紡絲碳奈米纖維超級電容器
外文關鍵詞:SupercapacitorsElectrospinningCarbon nanofiber
相關次數:
  • 被引用被引用:1
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用以靜電紡絲法製得的polyacrylonitrile (PAN)奈米纖維紙,經過穩定化、浸泡、碳化產生二氧化錳/碳奈米纖維複合材料。由於碳奈米纖維本身具備孔洞之特性,常常被應用來當作電池以及電容器之電極材料。碳材料經過摻雜金屬氧化物能夠有效提升其比電容。本實驗利用浸泡塗佈硫酸錳之方式,將二氧化錳摻雜至碳奈米纖維之中,提升電容效果。掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、熱重分析(TGA)、氮氣吸脫附分析(BET)、X光繞射儀(XRD)和循環伏安法(CV)在本實驗中被應用來做各項材料的分析和比較。
  在掃描式電子顯微鏡下,靜電紡絲法製作的PAN纖維布經過浸泡硫酸錳再經碳化後,纖維產生膨脹,直徑從0.2 μm膨脹至0.5 μm,且有彎曲、團聚、熔融的現象,纖維孔洞遭到破壞。從EDS分析中,經浸泡1小時的碳奈米纖維錳的含量只有0.65 %。從穿透式電子顯微鏡觀察,可以看到經過浸泡的碳纖維中產生微量二氧化錳顆粒。熱重分析結果顯示,浸泡後的碳纖維殘留率(67 %)較未經過浸泡之纖維(34 %)高。由X光繞射分析結果顯示出碳纖維主要呈現無序的低結晶度結構,尚未達到石墨之程度,在浸泡硫酸錳後,並無峰值生成,推測是酸化破壞纖維結構。最後利用本實驗製得之材料組裝成電雙層電容器,以循環伏安法做電性量測,循環伏安圖形均呈現狹長圖形,未經浸泡的碳纖維比電容值7.04 F/g,在浸泡5分鐘後碳化的碳奈米纖維比電容值急遽降低至1.18 F/g,隨著浸泡時間增加至60分鐘,比電容又些微上升至2.23 F/g。先碳化後浸泡之碳奈米纖維比電容則可達14.67 F/g,歸因於其碳纖維穩定度提高,微量的錳提升其比電容。
MnO2/CNF nanofiber composite material used for batteries and capacitors is produced by stabilization, dipping and carbonization on electrospun polyacrylonitrile(PAN) nanofiber paper in this experiment. This research uses dip-coating to dope manganese oxide into carbon nanofiber in order to enhance electro capacity. Scanning electron microscope (SEM), Transmission electron microscope (TEM), thermal gravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and cyclic voltammetry (CV) are utilized to analyze and research in this experiment.
  Under SEM, electrospun PAN nanofiber bended, melted, aggregated and swelled after dipping in manganese sulfate solution, which revels the breakdown of fiber structure. CNF after being dopped for 1 hour contains only 0.65 % of Mn element from EDS analysis. Small number of MnO2 particle can be seen in dipped CNF via TEM. Dipped CNF has higher retention (67 %) yield than undipped CNF (34 %), revealed by TGA result. XRD shows peak shifts without new peak appeared, attributed to breakdown of d-spacing in the structure by acid. CV curves show narrow shape and the undipped CNF has highest specific capacity and the specific capacity lowers severely from 7.04 F/g to 1.18 F/g after 5 minutes dipping process. With dipping by 60 minutes, specific capacity of CNF raises slightly to 2.23 F/g. CNF that dipped after carbonization has capacity of 14.67 F/g.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 理論基礎與文獻回顧 4
2.1 電化學原理 4
2.2 法拉第電解定律 6
2.3 電容的簡介 6
2.4 電容器介紹與種類 7
2.4.1 傳統電容器 7
2.4.2 超級電容器 7
2.5 超級電容器電極材料 16
2.6 超級電容器電解液的種類 22
2.7 電雙層結構及反應原理 23
2.8 金屬氧化物/活性碳纖維複合材料 27
第三章 研究方法與實驗步驟 31
3.1 實驗藥品 31
3.2 實驗器材 31
3.3 實驗流程 32
3.4 實驗 (對照實驗流程圖,圖3.1) 33
3.5 儀器分析 34
第四章 結果與討論 36
4.1 TGA熱重分析 36
4.2 SEM表面形態分析 41
4.3 TEM微結構分析 48
4.4 X-Ray繞射分析 50
4.5 循環伏安電性量測 53
4.6 浸泡時機之比較 62
第五章 結論 64
第六章 未來展望 66
6.1 石墨化程度更高之活性碳奈米纖維 66
6.2 均勻混融之MnO2/碳奈米纖維複合材料 66
參考文獻 67
附錄 69
[1] J. Zheng, P. Cygan, T. Jow, Journal of The Electrochemical Society, 142 (1995) 2699-2703.
[2] M. Toupin, T. Brousse, D. Bélanger, Chemistry of materials, 14 (2002) 3946-3952.
[3] C.C. Hu, T.W. Tsou, Electrochemistry Communications, 4 (2002) 105-109.
[4] R. Kötz, M. Carlen, Electrochimica Acta, 45 (2000) 2483-2498.
[5] R.N. Reddy, R.G. Reddy, Journal of Power Sources, 124 (2003) 330-337.
[6] R.T. Marler, J.S. Arora, Structural and multidisciplinary optimization, 26 (2004) 369-395.
[7] K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Advanced functional materials, 11 (2001) 387-392.
[8] V.V.N. Obreja, Physica E: Low-dimensional Systems and Nanostructures, 40 (2008) 2596-2605.
[9] J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Carbon, 48 (2010) 487-493.
[10] J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, Journal of Power Sources, 195 (2010) 3041-3045.
[11] H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Journal of the American Chemical Society, 132 (2010) 7472-7477.
[12] Y.W. Ju, G.R. Choi, H.R. Jung, C. Kim, K.S. Yang, W.J. Lee, Journal of The Electrochemical Society, 154 (2007) A192-A197.
[13] C.-C. Hu, M.-J. Liu, K.-H. Chang, Electrochimica Acta, 53 (2008) 2679-2687.
[14] V. Patake, S. Pawar, V. Shinde, T. Gujar, C. Lokhande, Current Applied Physics, 10 (2010) 99-103.
[15] Q. Li, Z.-L. Wang, G.-R. Li, R. Guo, L.-X. Ding, Y.-X. Tong, Nano letters, 12 (2012) 3803-3807.
[16] G. Inzelt, Conducting polymers: a new era in electrochemistry, Springer, 2012.
[17] N. Nagarajan, H. Humadi, I. Zhitomirsky, Electrochimica acta, 51 (2006) 3039-3045.
[18] Y.-W. Ju, G.-R. Choi, H.-R. Jung, W.-J. Lee, Electrochimica Acta, 53 (2008) 5796-5803.
[19] M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H.W. Kroto, Journal of Physics and Chemistry of Solids, 54 (1993) 1841-1848.
[20] V.I. Merkulov, A. Melechko, M. Guillorn, D. Lowndes, M. Simpson, Chemical physics letters, 361 (2002) 492-498.
[21] Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou, D.H. Reneker, H. Fong, Polymer, 50 (2009) 2999-3006.
[22] E. Zussman, X. Chen, W. Ding, L. Calabri, D. Dikin, J. Quintana, R. Ruoff, Carbon, 43 (2005) 2175-2185.
[23] Q.P. Pham, U. Sharma, A.G. Mikos, Biomacromolecules, 7 (2006) 2796-2805.
[24] E. Ra, E. Raymundo-Piñero, Y. Lee, F. Béguin, Carbon, 47 (2009) 2984-2992.
[25] L. Ji, X. Zhang, Electrochemistry Communications, 11 (2009) 795-798.
[26] C. Kim, B.T.N. Ngoc, K.S. Yang, M. Kojima, Y.A. Kim, Y.J. Kim, M. Endo, S.C. Yang, Advanced Materials, 19 (2007) 2341-2346.
[27] A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, W. Jeffrey, Nano letters, 7 (2007) 281-286.
[28] M. Shafiei, A.T. Alpas, Journal of Power Sources, 196 (2011) 7771-7778.
[29] S.S. Djokić, P.L. Cavallotti, Electroless deposition: theory and applications, in: Electrodeposition, Springer, 2010, pp. 251-289.
[30] V. Khomenko, E. Raymundo-Pinero, F. Béguin, Journal of power Sources, 153 (2006) 183-190.
[31] S.B. Ma, K.Y. Ahn, E.S. Lee, K.H. Oh, K.B. Kim, Carbon, 45 (2007) 375-382.
[32] S.C. Pang, M.A. Anderson, Journal of Materials Research, 15 (2000) 2096-2106.
[33] V. Gupta, N. Miura, Electrochimica acta, 52 (2006) 1721-1726.
[34] C.J. Hung, J.H. Hung, P. Lin, T.Y. Tseng, Journal of The Electrochemical Society, 158 (2011) A942-A947.
[35] C.-C. Hu, T.-W. Tsou, Electrochemistry Communications, 4 (2002) 105-109.
[36] J. Wei, N. Nagarajan, I. Zhitomirsky, Journal of materials processing technology, 186 (2007) 356-361.
[37] Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Advanced Materials, 23 (2011) 4828-4850.
[38] S.F. Chin, S.C. Pang, M.A. Anderson, Journal of the Electrochemical Society, 149 (2002) A379-A384.
[39] J. Le Roux, D. Paul, Journal of membrane science, 74 (1992) 233-252.
[40] M.N. Rahaman, Ceramic processing, CRC Press, 2007.
[41] D. Patil, J. Shaikh, D. Dalavi, M. Karanjkar, R. Devan, Y. Ma, P. Patil, Journal of The Electrochemical Society, 158 (2011) A653-A657.
[42] Y.Y. J.-G. Wang, et al., Electrochimica Acta, 56 (2011) 9240-9247 .
[43] M. Rahaman, A.F. Ismail, A. Mustafa, Polymer Degradation and Stability, 92 (2007) 1421-1432.
[44] J.-B. Donnet, R.-Y. Qin, Carbon, 31 (1993) 7-12.
[45] Y.Y.A.C. L.Chen, Carbon, 49 (2011) 3395.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊