跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃正杰
研究生(外文):Jheng-Jie Huang
論文名稱:電阻切換機制之研究與具有可修復能力之RRAM元件製作
論文名稱(外文):Investigation on the resistive switching mechanisms and fabrication of recoverable RRAM device
指導教授:張鼎張
指導教授(外文):Ting-Chang Chang
學位類別:博士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:162
中文關鍵詞:非揮發性記憶體銦鎵鋅氧化物薄膜電晶體氧化鎵鉍鐵氧化物電阻式隨機存取記憶體具有可修復特性之電阻式隨機存取記憶體
外文關鍵詞:gallium oxideindium-gallium-zinc oxide thin film transistorsBiFeOrecoverable RRAM devicenonvolatile memoryRRAMresistive random access memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:920
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的發展以及可攜式電子產品的進步,人們對於非揮發性記憶體的需求也就越來越高。為了要增加記憶體的容量,記憶體元件就必須要不斷的縮小以增加單位面積的記憶體密度。然而,隨著記憶體尺寸的微縮,將會面臨許多可靠度以及物理極限的問題。因此,發展次世代非揮發性記憶體是必須的。而在眾多種類的次世代非揮發性記憶體中,電阻式隨機存取記憶體是被認為具有發展潛力的非揮發性記憶體之一。然而,電阻式隨機存取記憶體同樣面臨一些問題有待去研究與解決。因此,本研究內容除了研究電阻切換之機制與原理外,更加提出了改善電阻切換機制之方法以及設計一具有可修復切換特性之電阻式隨機存儲記憶體。
從之前的研究文獻指出,電阻式非揮發性記憶體之切換特性與氧原子的飄移息息相關,因此,我們製作了一個以氧化鎵為主要電阻切換層的電阻式記憶體,並改變其電阻切換層之氧含量來觀察其電阻切換特性之變化與差異。
接著,我們利用鉍鐵氧化物來當作我們的主要電阻切換層,並研究其電阻切換特性。我們藉由觀察鉍鐵氧化物的電阻切換特性發現許多有趣的現象。電阻式非揮發性記憶體的工作原理是利用電阻切換層的阻值大小來記憶狀態,而其電阻切換的方是大多藉由導電途徑的產生與斷裂來達到電阻切換的目的,但是鉍鐵氧化物的電阻切換特性卻可以利用漏電途徑的完全破壞以及再建立來改善切換特性。這是一個非常實用的特性,因為電阻式非揮發性記憶體是屬於後段製程,並沒有辦法利用熱退火的方式來改善薄膜電阻切換特性,因此藉由單純的定性操作即可達到改善切換特性的目的是非常實用的特性。此外,它在崩潰後仍具有可修復特性,並在修復後依然有電阻切換特性。
本論文的另一部分著重在具有可修復特性之原件設計與分析,我們提出了一個具有可修復特性特性之原件結構,並研究其修復過程,此結構除了具有可修復特性外,其電阻切換可由單邊(unipolar mode)或雙邊(bipolar mode)操作,此特性在電路設計上是相當方便的。
論文的最後,我們利用一些特殊的操作方式使的銦鎵鋅氧化物薄膜電晶體(a-IGZO TFT)同時具有RRAM的電阻切換特性,如此一來可以增加薄膜電晶體在使用上的價值。
With the development of portable electronic products, the requirement of nonvolatile memory is higher than before. In order to increase the capacity of nonvolatile memory in portable electronic products, the nonvolatile memory device must be scaled down. However, traditional nonvolatile floating gate memory is confronting some physical limits as devices continuously scale down. Hence, it is necessary to develop other kinds of nonvolatile memory, and resistive random access memory (RRAM) is considered one of the most potential candidates of the next generation. However, the switching mechanism or some problems about RRAM has not been solved. Hence, this study will investigate the switching mechanism of RRAM and provide a RRAM device with recoverable property. In addition, the I-V cures will be analyzed during the recovering process.
In the first part, we proposed gallium oxide based RRAM devices with various oxygen concentration, and investigated the switching mechanism of gallium oxide with different oxygen concentration, because the resistive switching behavior is related to the migration of oxygen ion.
In the second part, we proposed a RRAM device with Pt/BiFeO3/TiN structure and investigated the resistive switching characteristics of BiFeO3 film. The resistive switching layer of BiFeO3 film exhibits some interesting properties. The resistive switching of BiFeO3 can be improved by applied DC bias without thermal anneal process. Furthermore, the resistive switching characteristic of BiFeO3 film can be recovered by constant current stress after hard breakdown.
In the third part, we design a RRAM device with Pt/InO/SiO2/TiN structure which has fast recoverable characteristic. After hard breakdown process, the RRAM device with Pt/InO/SiO2/TiN exhibits fast recoverable property by constant current stress, and the recovering process is investigated by the analysis of carrier transport.
Finally, the indium-gallium-zinc-oxide (a-IGZO) TFTs exhibit transistor and RRAM characteristic after particular forming process, and this additional function can increase the value of a-IGZO TFTs for display industry.
Acknowledgements i
摘要 iii
Abstract v
Contents vii
Figure &; Table Captions x
Chapter 1 Introduction 1
1.1 Overview of Nonvolatile Memory Device 1
1.2 Resistance switching memory 4
1.3 Organization of the Dissertation 6
References: 8
Chapter 2 Basic Principle of Resistive Random Access Memory 19
2.1 Introduction of Memory Device 19
2.2 Advanced Non-volatile Memories 20
2.2.1 FeRAM (Ferroelectric Random Access Memory) 20
2.2.2 MRAM (Magnetic Random Access Memory) 21
2.2.3 PCRAM (Phase Change Random Access Memory) 22
2.2.4 RRAM (Resistance Random Access Memory) 22
2.3 The Materials of RRAM 23
2.3.1 Perovskite 24
2.3.2 Transition Metal Oxides 26
2.3.3 Organic Materials 27
2.4 The resistive switching mechanism of RRAM 27
2.4.1 Filament 28
2.4.1.1 Joule Heating Effect 28
2.4.1.2 Redox Processes by Cation Migration 29
2.4.1.3 Redox Processes by Anion Migration 29
2.4.2 Charge-Trap in Small Domain 30
2.4.3 Modified Schottky Barrier Model 31
2.5 The Mechanism of Current Conduction 32
2.5.1 Ohmic Conduction 32
2.5.2 Schottky Emission 33
2.5.3 Poole-Frenkel Emission 34
2.5.4 Space Charge Limited Current 35
References: 36
Chapter 3 Influence of oxygen concentration on resistance switching characteristics of gallium oxide 51
3.1 Abstract: 51
3.2 Introduction: 51
3.3 Experiment: 53
3.4 Results and Discussions: 54
3.5 Conclusion: 58
References: 59
Chapter 4 Investigation on the resistive switching characteristics of BiFeO3 69
4.1 Abstract: 69
4.2 Introduction: 70
4.3 Experiment: 71
4.4 Results and Discussions: 72
4.4.1 Enhancement of the stability of resistive switching characteristics by conduction path reconstruction 72
4.4.2 Investigation of multi-state switching mechanism for Set process 75
4.4.3 Investigation of constant current stress effect on RRAM device 79
4.5 Conclusion: 81
References: 83
Chapter 5 Fabrication and investigation of recoverable RRAM device 99
5.1 Abstract: 99
5.2 Introduction: 100
5.3 Experiment: 101
5.4 Results and Discussions: 101
5.4.1 Influence of forming process on resistance switching characteristics of In2O3/SiO2 bi-layer 101
5.4.2 Self-recovery phenomenon in a resistance random access memory device by constant current stress 106
5.5 Conclusion: 109
References: 111
Chapter 6 The application of RRAM on InGaZn oxide thin film transistor 126
6.1 Abstract: 126
6.2 Introduction: 126
6.3 Experiment: 127
6.4 Results and Discussions: 128
6.5 Conclusion: 132
References: 134
Chapter 7 Conclusion 143
References:
[1.1]: S. Lai, “Future Trends of Nonvolatile Memory Technology”, December (2001).
[1.2]: S. Aritome, “Advanced flash memory technology and trends for file storage application” IEEE IEDM Tech. Dig., 763 (2000).
[1.3]: R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, “Introduction to flash memory”. Proc. of IEEE, 91, 489 (2003).
[1.4]: D. Kahng and S. M. Sze, “A floating-gate and its application to memory devices”, Bell Syst. Tech. J. 46, 1288 (1967).
[1.5]: F. Masuoka, M. Momodomi, Y. Iwata, R. Shirota, “New ultra high density EPROM and Flash EEPROM with NAND structure cell”, IEEE IEDM Tech. Dig. 552 (1987).
[1.6]: P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview” Proc. IEEE, 85, 1248–1271 (1997).
[1.7]: Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti, “Introduction to Flash Memory” Proc. IEEE, 91 489 (2003).
[1.8]: “International Technology Roadmap for Semiconductors, 2009 update at Uhttp://www.itrs.net/Links/2009ITRS/Home2009.htm
[1.9]: King, Ya-Chin, “Thin Dielectric Technology and Memory Devices”, Ph.D dissertation, Univ. of California, Berkeley, CA (1999)
[1.10]: J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[1.11]: M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[1.12]: M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” IEEE circuits &; devices, 16, 22 (2000).
[1.13]: H. E. Maes, J. Witters, and G. Groeseneken, “Trends in non-volatile mem- ory devices and technologies” Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).
[1.14]: S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
[1.15]: S. Park, H. Im, I. Kim, and T. Hiramoto,” Impact of Drain Induced Barrier Lowering on Read Scheme in Silicon Nanocrystal Memory with Two-Bit-per-Cell Operation” Jpn. J. Appl. Phys., 45, 638 (2006)
[1.16]: J. H. Jung, J.-H. Kim, T. W. Kim, M. S. Song, Y.-H. Kim, and S. Jin, “Nonvolatile organic bistable devices fabricated utilizing Cu2O nanocrystals embedded in a polyimide layer” Appl. Phys. Lett. 89, 122110 (2006)
[1.17]: D. C. Worledge, ” Spin flop switching for magnetic random access memory” Appl. Phys. Lett. 84, 4559 (2004)
[1.18]: L. Chen, Y. Xia, X. Liang, K. Yin, J. Yin, Y. Chen, and Z. Liu,” Nonvolatile memory devices with Cu2S and Cu-Pc bilayered films” Appl. Phys. Lett. 91, 073511 (2007)
[1.19]: Chih-Yang Lin, Chen-Yu Wu, Chung-Yi Wu, Chenming Hu, and Tseung-Yuen Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” Journal of The Electrochemical Society, 154 G189-G192 (2007)
[1.20]: S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park,” Reproducible resistance switching in polycrystalline NiO films” Appl. Phys. Lett. 85, 5655 (2004)
[1.21]: H.-Y. Lee, P.-S. Chen, C.-C. Wang, S. Maikap, P.-J. Tzeng, C.-H. Lin, L.-S. Lee, and M.-J. Tsai,” Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide” Jpn. J. Appl. Phys., 46, 2175 (2007)
[1.22]: J. Sakai and S. Imai, “Room-temperature resistance switching and temperature hysteresis of Pr0.7Ca0.3MnO3 junctions” J. Appl. Phys. 97, 10H709 (2005)
[1.23]: X. F. Liang, Y. Chen, L. Chen, J. Yin, and Z. G. Liu,” Electric switching and memory devices made from RbAg4I5 films” Appl. Phys. Lett. 90, 022508 (2007)
[1.24]: Rainer Waser and Masakazu Aono “Nanoionics-based resistive switchingmemories” 2007 Nature Publishing Group.
[1.25]: Ni Zhong, Hisashi Shima , and Hiro Akinaga “Rectifying characteristic of Pt/TiOx/metal/Pt controlled by electronegativity” Appl. Phys. Lett. 96, 042107 (2010)
[1.26]: Ni Zhong, Hisashi Shima, and Hiro Akinaga “Switchable Pt/TiO2-x/Pt Schottky Diodes” Jpn. J. Appl. Phys. 48 05DF03 (2009)
[1.27]: Sungho Kim and Yang-Kyu Choi “A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM” IEEE TRANSACTIONS ON ELECTRON DEVICES 56, 3049 (2009)
[1.28]: J. JOSHUA YANG, MATTHEW D. PICKETT, XUEMA LI, DOUGLAS A. A. OHLBERG, DUNCAN R. STEWART* AND R. STANLEY WILLIAMS “Memristive switching mechanism for metal/oxide/metal nanodevices” Nature Nanotechnology 3, 429 (2008)
[1.29]: Sheng-Yu Wang, Dai-Ying Lee, Tseung-Yuen Tseng, and Chih-Yang Lin “Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films” Appl. Phys. Lett. 95, 112904 (2009)
[1.30]: Bing Sun, Lifeng Liu, Nuo Xu, Bin Gao, Yi Wang, Dedong Han, Xiaoyan Liu,Ruqi Han, and Jinfeng Kang “The Effect of Current Compliance on the Resistive Switching Behaviors in TiN/ZrO2/Pt Memory Device” The Japan Society of Applied Physics 48, 04C061 (2009)
[1.31]: U. Russo, D. Jelmini, C. Cagli, A. L. Lacaita, S. Spigat, C. Wiemert, M. Peregot and M. Fanciullit “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM”. IEDM 775-778 (2007)
[1.32]: Ming-Daou Lee, Chia-Hua Ho, Chi-Kuen Lo, Tai-Yen Peng, and Yeong-Der Yao ”Effect of Oxygen Concentration on Characteristics of NiOx-Based Resistance Random Access Memory” IEEE TRANSACTIONS ON MAGNETICS, 43, 939-942 (2007)
[1.33]: S. Seo,a_ M. J. Lee, D. C. Kim, S. E. Ahn, B.-H Park, Y. S. Kim, and I. K. Yoo, Korea I. S. Byun, I. R. Hwang, S. H. Kim, J.-S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park ”Electrode dependence of resistance switching in polycrystalline NiO films” Appl. Phys. Lett. 87, 263507 (2005)
[1.34]: Carlo Cagli, Federico Nardi, and Daniele Ielmini, “Modeling of Set/Reset Operations in NiO-Based Resistive-Switching Memory Devices” IEEE TRANSACTIONS ON ELECTRON DEVICES, 56, 1712 - 1720 (2009)
[1.35]: Y. Liu • T.P. Chen • H.W. Lau • L. Ding • M. Yang • J.I. Wong • S. Zhang • Y.B. Li “Conduction switching in aluminum nitride thin films containing Al nanocrystals” Appl Phys A 93, 483-487 (2008)
[1.36]: Chih-Yang Lin a, Dai-Ying Lee a, Sheng-Yi Wang a, Chun-Chieh Lin a, Tseung-Yuen Tseng ”Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices” Surface &; Coatings Technology 203, 628-631 (2008)
[1.37]: H. B. Lv, M. Yin, P. Zhou, T. A. Tang, B.A.Chen, Y.Y. Lin “Improvement of Endurance and Switching Stability of Forming-free CuxO RRAM” Non-Volatile Semiconductor Memory Workshop, 2008 and 2008 International Conference on Memory Technology and Design. NVSMW/ICMTD 2008 Joint 52-53 (2008)
[1.38]: An Chen, Sameer Haddad, Yi-Ching (Jean) Wu, Tzu-Ning Fang, Zhida Lan, Steven Avanzino, Suzette Pangrle, Matthew Buynoski, Manuj Rathor, Wei (Daisy) Cai, Nick Tripsas, Colin Bill, Michael VanBuskirk, and Masao Taguchi “Non-Volatile Resistive Switching for Advanced Memory” Applications 2005 IEEE IEDM 746 - 749 (2005)
[1.39]: S. Muraoka, K. Osano, Y. Kanzawa, S. Mitani, S. Fujii, K.Katayama, Y. Katoh, Z. Wei, T. Mikawa, K. Arita, Y. Kawashima, R. Azuma, K. Kawai, K. Shimakawa, A. Odagawa, and T. Takagi “Fast switching and long retention Fe-O ReRAM and its switching mechanism” 2007 IEEE IEDM 779-782 (2007)
[1.40]: Li-Wei Feng, Chun-Yen Chang, Yao-Feng Chang, Wei-Ren Chen, Shin-Yuan Wang, Pei-Wei Chiang, and Ting-Chang Chang ”A study of resistive switching effects on a thin FeOx transition layer produced at the oxide/iron interface of TiN/SiO2 /Fe-contented electrode structures” Appl. Phys. Lett. 96, 052111 (2010)
[1.41]: Chia Hua Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, Rich Liu, and C. Y. Lu “A Highly Reliable Self-Aligned Graded Oxide WOx Resistance Memory: Conduction Mechanisms and Reliability 2007 Symposium on VLSI Technology Digest of Technical Papers 228-229 (2007)
[1.42]: W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh, R. Liu, Senior Member, IEEE, and Chih-Yuan Lu, Fellow, IEEE ”Unipolar Switching Behaviors of RTO WOx RRAM” Electron Device Letters, IEEE , 31, 126-128 (2010)
[1.43]: Xu, N., et al., “Bipolar switching behavior in TiN/ZnO/Pt resistivenonvolatile memory with fast switching and long retention. “ Semiconductor Science and Technology 23, 075019 (2008)
[1.44]: N. Xu, B. Gao, L.F. Liu, Bing Sun, X.Y. Liu, R.Q. Han, J.F. Kang, and B. Yu “A Unified Physical Model of Switching Behavior in Oxide-Based RRAM” 2008 Symposium on VLSI Technology Digest of Technical Papers. 100 (2008)
[1.45]: Heng Yuan Lee, Pang Shiu Chen, Tai Yuan Wu, Ching Chiun Wang, Pei Jer Tzeng, Cha Hsin Lin, Frederick Chen, Ming-Jinn Tsai, and Chenhsin Lien “Electrical evidence of unstable anodic interface in Ru/HfOx /TiN unipolar resistive memory” Appl. Phys. Lett. 92, 142911 (2008)
[1.46]: Shyh-Shyuan Sheu, Pei-Chia Chiang, Wen-Pin Lin, Heng-Yuan Lee, Pang-Shiu Chen, Yu-Sheng Chen, Tai-Yuan Wu , Frederick T. Chen, Keng-Li Su, Ming-Jer Kao, Kuo-Hsing Cheng, Ming-Jinn “A 5ns Fast Write Multi-Level Non-Volatile 1 K bits RRAM Memory with Advance Write Scheme” 2009 Symposium on VLSI Circuits Digest of Technical Papers 82- 83 (2009)
[1.47]: Heng-Yuan Lee, Pang-Shiu Chen, Tai-Yuan Wu, Ching-Chiun Wang, Pei-Jer Tzeng, Cha-Hsin Lin, Frederick Chen, Chen-Hsin Lien, and Ming-Jinn Tsai “HfO2 Bipolar Resistive Memory Device with Robust Endurance using AlCu as Electrode” Electron Device Letters, IEEE 30, 703-705 (2009)
[1.48]: H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai “Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM” 2008 IEDM 1-4 (2008)

References:
[2.1]: Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, IEEE, 2004
[2.2]: 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,“先進
記憶體簡介,國研科技創刊號,2004 年
[2.3]: http://karachissuet.blogspot.com/2009/07/ferroelectric-rand om-acc
ess-memory-fram.html
[2.4]: I. G Baek, M.S.L., S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C.
Park, IEDM Tech. Dig., 2005: p. 587-590
[2.5]: 葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展—現在與未來”,物理雙月刊 廿六期四卷,2004年
[2.6]: 劉志益、曾俊元,“電阻式非揮發性記憶體之近期發展”,電子月刊 第十一卷第四期,2005年
[2.7]: A Sawa, “Resistive switching in transition metal oxides, ”Materialtoday., vol.11,p6, Jun. 2008.
[2.8]: http://theeestory.com/topics/4141
[2.9]: Chih-Yi Liu, Pei-Hsun Wu, Arthur Wang et al. “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film”, IEEE, VOL. 26, NO. 6, JUNE 2005
[2.10]: Yin-Pin Yang, and Tseung-Yuen Tseng, “Electronic defect and trap-related current of (Ba0.4Sr0.6)TiO3 thin films,” J. Appl. Phys., vol. 81, pp. 6762-6766, May. 1997.
[2.11]: A. Asamitsu, Y. Tomioka et al. “Current switching of resistive states in magnetoresistive manganites”, Nature 338 (3), 1997
[2.12]: Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites, Mater, 200, 1, 1999
[2.13]: A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Applied Physics Letters, 85(18), 2000
[2.14]: S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films”, Applied Physics Letters, 76(19), 2000
[2.15]: B. Gao, S. Yu, N. Xu, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, Y.Y. Wang “Oxide-Based RRAM Switching Mechanism: A New Ion-Transport-Recombination Model”,(2008 IEDM)
[2.16]: S. Seo, M. J. Lee et al.,”Reproducible resistance switching in polycrystalline NiO films”, Applied Physics Letters, 85(23), 2004
[2.17]: L. P. Ma, J. Liu et al.,” Organic electrical bistable devices and rewritable memory cells”, Applied Physics Letters, 80(16), 2002
[2.18]: Akihito Sawa, “Resistive switching in transition metal oxide”, materials today, 11(6), 2008, p.28~36
[2.19]: B. Sun, L. F. Liu, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, 1. F. Kang, “Bipolar Resistive Switching Behaviors of Ag/SiN/Pt Memory Device”, IEEE, 2008
[2.20]: Y. Sato, K. Kinoshita, M. Aoki, "Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model," Applied Physics Letters 90, 033503, 2007
[2.21]: R. Waser, M. Aono, “Nanoionics-based resistive switching memories”, Nature materials, Vol. 6, 2007
[2.22]: M. Fujimoto, H. Koyama et al., “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching ” , Applied Physics Letters, 89, 223509, 2006
[2.23]: C. Yoshida, K. Tsunoda et al., “High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application”, Applied Physics Letters, 91, 2235110, 2007
[2.24]: M. J. Rozenberg, I. H. Inoue et al., “Nonvolatile memory with Multilevel Switching: A Basic Model”, Physical Review Letter, 2004
[2.25]: 施敏、伍國珏,“半導體元件物理學”,2008年

References:
[3.1]: D. Jiang, M. Zhang, Z. Huo, Q. Wang, J. Liu, Z. Yu, X. Yang, Y. Wang, B. Zhang, J. Chen, and M. Liu, “A study of cycling induced degradation mechanisms in Si nanocrystal memory devices,” Nanotechnology, vol. 22, no. 25, pp. 254 009-1–254 009-5, Jun. 2011.
[3.2]: C. Chang, T. Yan, T. Liu,W. Chen, H. Lin, and M. Sze, “A novel approach of fabricating germanium nanocrystals for nonvolatile memory application,” Electrochem. Solid State Lett., vol. 7, no. 1, pp. G17–G19, 2004.
[3.3]: W. R. Chen, T. C. Chang, P. T. Liu, P. S. Lin, C. H. Tu, and C. Y Chang, “Formation of stacked Ni silicide nanocrystals for nonvolatile memory application,” Appl. Phys. Lett., vol. 90, no. 11, pp. 112 108-1–112 108-3, Mar. 2007.
[3.4]: T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, “Developments in nanocrystal memory,” Mater. Today 14, vol. 12, pp. 608–615, 2011.
[3.5]: G. Asano, H. Morioka, and H. Funakubo, “Fatigue-free RuO2/Pb(Zr,Ti)O3/RuO2 capacitor prepared by metalorganic chemical vapor deposition at 395 ◦C,” Appl. Phys. Lett., vol. 83, no. 26, pp. 5506–5508, Dec. 2003.
[3.6]: A. Ney and J. S. Harris, Jr., “Reconfigurable magnetologic computing using the spin flop switching of a magnetic random access memory cell,” Appl. Phy. Lett., vol. 86, no. 1, pp. 013502-1–013502-3, Jan. 2004.
[3.7]: T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. N. Li, H. K. Lee, X. S Miao, A. Y. Du, and C. H Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett., vol. 88, no. 12, pp. 122 114-1–122 114-3, Mar. 2006.
[3.8]: C. Y. Lin, C. Y. Wu, C. Y.Wu, C. Hu, and T. Y. Tseng, “Bistable resistive switching in Al2O3 memory thin films,” J. Electrochem. Soc., vol. 154, no. 9, pp. G189–G192, Jul. 2007.
[3.9]: C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, and T. Y. Tseng, “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 351–353, Jun. 2005.
[3.10]: Y. T. Tsai, T. C. Chang, C. C. Lin, S. C. Chen, C. W. Chen, S. M. Sze, F. S. Yeh (Hung), and T. Y. Tseng, “Influence of nanocrystals on resistive switching characteristic in binary metal oxides memory devices,” Electrochem. Solid State Lett., vol. 14, no. 3, pp. H135–H138, 2011.
[3.11]: H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M. J. Tsai, and C. Lien, “Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory,” Appl. Phys. Lett., vol. 92, no. 14, pp. 142 911-1–142 911-3, Apr. 2008.
[3.12]: Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, “Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using metal nanocrystal cover bottom electrode,” Appl. Phys. Lett., vol. 4, no. 10, pp. 6162–6168, Oct. 2010.
[3.13]: N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories,” Appl. Phys. Lett., vol. 92, no. 23, pp. 232 112-1–232 112-3, Jun. 2008.
[3.14]: M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films,” Appl. Phys. Lett., vol. 96, no. 26, pp. 262 110-1–262 110-3, Jun. 2010.
[3.15]: M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, and S. M. Sze, “Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory,” Electrochem. Solid State Lett., vol. 13, no. 6, pp. H191–H193, 2010.
[3.16]: M. Ogita, Y. Higo, Y. Nakanishi, and Y. Hatanaka, “Ga2O3 thin film for oxygen sensor at high temperature,” Appl. Surf. Sci., vol. 175/176, pp. 721–725, May 2001.
[3.17]: M. C. Quinlan, M. J. O’Donnell, L. Binet, and D. Gourier, “Origin of the blue luminescence of b-Ga2O3,” J. Phys. Chem. Solids, vol. 59, pp. 1241– 1249, 1998.
[3.18]: P. C. Yang, T. C. Chang, S. C. Chen, Y. S. Lin, H. C. Huang, and D. S. Gan, “Influence of bias-induced copper diffusion on the resistive switching characteristics of SiON thin film,” Electrochem. Solid State Lett., vol. 14, no. 2, pp. H93–H95, 2011.
[3.19]: X. Gao, Y. Xai, J. Ji, H. Xu, Y. Su, H. Li, C. Yang, H. Guo, J. Yin, and Z. Liu, “Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films,” Appl. Phys. Lett., vol. 97, no. 19, pp. 193 501-1–193 501-3, Nov. 2010.

References:
[4.1]: C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M.C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, ” Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” Appl. Phys. Lett. 96, 242105 (2010)
[4.2]: T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, ” Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress,” Appl. Phys. Lett. 97, 112104 (2010)
[4.3]: T. C. Chang, F. Y. Jian, S. C. Chen, Y. T. Tsai, ” Developments in nanocrystal memory,” Mater. Today 14(12), 608 (2011)
[4.4]: S. S. Sheu, P. C. Chiang, W. P. Lin, H. Y. Lee, P. S. Chen, Y. S. Chen, T. Y. Wu, Frederick T. Chen, K. L. Su, M. J. Kao, K. H. Cheng, M. J. Tsai, ” A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme,” VLSI Circuits Dig. pp. 82–83 (2009)
[4.5]: W.C. Chien, F.M. Lee, Y.Y. Lin, M.H. Lee, S.H. Chen, C.C. Hsieh, E.K. Lai, H.H. Hui, Y.K. Huang, C.C. Yu, C.F. Chen, H.L. Lung, K.Y. Hsieh, and Chih-Yuan Lu, ” Multi-layer sidewall WOX resistive memory suitable for 3D ReRAM,” VLSI Tech. Symp. pp. 153-154 (2012)
[4.6]: S. Kim, H. Moon, D. Gupta, S. Yoo, and Y. K. Choi, “Resistive Switching Characteristics of Sol–Gel Zinc Oxide Films for Flexible Memory Applications,” TRANSACTIONS ON ELECTRON DEVICES, 56, 696(2009)
[4.7]H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, ” Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” IEDM tech. dig., 1 (2008)
[4.8]M. Terai, Y. Sakotsubo, S. Kotsuji, and H. Hada, “Resistance Controllability of Ta2O5/TiO2 Stack ReRAM for Low-Voltage and Multilevel Operation,” IEEE ELECTRON DEVICE LETTERS, 31, 204 (2010)
[4.9]: Y. W. Chiang and J. M. Wu, Appl. Phys. Lett. “Characterization of metal-ferroelectric (BiFeO3)-insulator (ZrO2)-silicon capacitors for nonvolatile memory applications,” 91, 142103(2007)
[4.10]: J. Allibe, I. C. Infante, S. Fusil, K. Bouzehouane, E. Jacquet, C. Deranlot, M. Bibes, and A. Barthélémy, Appl. Phys. Lett. “Coengineering of ferroelectric and exchange bias properties in BiFeO3 based heterostructures,” 95, 182503(2009)
[4.11]: Y. E. Syu, T. C. Chang, T. M. Tsai, Y. C. Hung, K. C. Chang, M. J. Tsai, M. J. Kao, and S. M. Sze, “Redox Reaction Switching Mechanism in RRAM device with Pt/CoSiOX/TiN structure,” IEEE Electron Device Lett. 32(4), 545-547 (2011)
[4.12]: Y. T. Chen, T. C. Chang, P. C. Yang, J. J. Huang, H. C. Tseng, H. C. Huang, J. B. Yang, A. K. Chu, D. S. Gan, M. J. Tsai, and Simon M. Sze, “Improvement of Resistive Switching Characteristics by Thermally Assisted Forming Process for SiO2 -Based Structure,” IEEE Electron Device Lett., 34, 226(2013)
[4.13]: J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, Simon M. Sze, A. K. Chu, and M. J. Tsai, “Influence of oxygen concentration on resistance switching characteristics of gallium oxide,” IEEE Electron Device Lett., 33 , 1387, (2012)

References:
[5.1]: Y. T. Chen, T. C. Chang, P. C. Yang, J. J. Huang, H. C. Tseng, H. C. Huang ,J. B. Yang, A. K. Chu, D. S. Gan, M. J. Tsai, and Simon M. Sze, “Improvement of Resistive Switching Characteristics by Thermally Assisted Forming Process for SiO2-Based Structure,” IEEE Electron Device Lett., 34 (2), 226, (2013)
[5.2]: J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, Simon M. Sze, A. K. Chu, and M. J. Tsai, “Influence of oxygen concentration on resistance switching characteristics of gallium oxide,” IEEE Electron Device Lett., 33 , 1387, (2012)
[5.3]: Y. T. Chen, T. C. Chang, J. J. Huang, H. C. Tseng, P. C. Yang, A. K. Chu, J. B. Yang, H. C. Huang, D. S. Gan, M. J. Tsai, and Simon M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett., 102, 043508 (2013)
[5.4]: C. Y. Lin, C. Y. Wu, C. Y. Wu, C. Hu, and T. Y. Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” Journal of The Electrochemical Society, 154, G189 (2007)
[5.5]: Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, “Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using metal nanocrystal cover bottom electrode,” ACS Nano, 4 (10), pp.6162 (2010).
[5.6]: Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, “Real-Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide-Electrolyte-Based ReRAM,” Adv. Mater.24, 1844(2012)
[5.7]: Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation of conducting filament growth in nanoscale resistive memories,” Nature Communications, 3, 732(2010).
[5.8]: T. C. Chen, T. C. Chang, T. Y. Hsieh, C. T. Tsai, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, “Light-induced instability of an InGaZnO thin film transistor with and without SiOx passivation layer formed by plasma-enhanced-chemical-vapor-deposition,” Appl. Phys. Lett. 97, 192103 (2010)
[5.9]: T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen “Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress,” Appl. Phys. Lett. 97, 112104 (2010)
[5.10]: F. De Stefano, M. Houssa, J. A. Kittl, M. Jurczak, V. V. Afanas’ev, and A. Stesmans, “Semiconducting-like filament formation in TiN/HfO2/TiN resistive switching random access memories,” Appl. Phys. Lett., 100, p. 142102 (200612)
[5.11]: Simon M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, third ed., Wiley-Interscience, 2006.
[5.12]: Y. T. Tsai, T. C. Chang, W. L. Huang, C. W. Huang, Y. E. Syu, S. C. Chen, S. M. Sze, M. J. Tsai, and T. Y. Tseng, “Investigation for coexistence of dual resistive switching characteristics in DyMn2O5 memory devices,” Appl. Phys. Lett. 99, p.092106 (2011)
[5.13]: D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, I. K. Yoo, I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” Appl. Phys. Lett., 88, p.202102 (2006)
[5.14]: P. C. Yang, T. C. Chang, S. C. Chen, Y. S. Lin, H. C. Huang, and D. S. Gan, “Influence of bias-induced copper diffusion on the resistive switching characteristics of SiON thin film,” Electrochem. Solid State Lett., 14(2), H93-H95 (2011)

References:
[6.1]: W. F. Chung , T. C. Chang, H. W. Li , C. W. Chen , Y. C. Chen , S. C. Chen , T. Y. Tseng , and Y. H Tai, “Influence of H2O dipole on subthreshold swing of amorphous indium-gallium-zinc-oxide thin film transistors,” Electrochem. Solid State Lett., 14, H114-H116 (2011)
[6.2]: T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, “Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress,” Appl. Phys. Lett. 97, 112104 (2010)
[6.3]: W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng, and Y. H. Tai, “Environment-Dependent Thermal Instability of Sol-gel derived Amorphous Indium-Gallium-Zinc-Oxide Thin Film Transistors,” Appl. Phys. Lett. 98, 152109 (2011)
[6.4]: Y. C. Chen, T. C. Chang, H. W. Li, W. F. Chung, C. P. Wu, S. C. Chen, J. Lu, Y. H. Chen, Y. H. Tai, “High-stability oxygen sensor based on amorphous zinc tin oxide thin film transistor,” Appl. Phys. Lett. 100, 262908(2012)
[6.5]: S. S. Sheu, P. C. Chiang, W. P. Lin, H. Y. Lee, P. S. Chen, Y. S. Chen, T. Y. Wu, Frederick T. Chen, K. L. Su, M. J. Kao, K. H. Cheng, M. J. Tsai, ” A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme,” VLSI Circuits Dig. pp. 82–83 (2009)
[6.6]: W.C. Chien, F.M. Lee, Y.Y. Lin, M.H. Lee, S.H. Chen, C.C. Hsieh, E.K. Lai, H.H. Hui, Y.K. Huang, C.C. Yu, C.F. Chen, H.L. Lung, K.Y. Hsieh, and Chih-Yuan Lu, ” Multi-layer sidewall WOX resistive memory suitable for 3D ReRAM,” VLSI Tech. Symp. pp. 153-154 (2012)
[6.7]: Y. T. Chen, T. C. Chang, P. C. Yang, J. J. Huang, H. C. Tseng, H. C. Huang ,J. B. Yang, A. K. Chu, D. S. Gan, M. J. Tsai, and Simon M. Sze, “Improvement of Resistive Switching Characteristics by Thermally Assisted Forming Process for SiO2-Based Structure,” IEEE Electron Device Lett., 34 (2), 226, (2013)
[6.8]: J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, Simon M. Sze, A. K. Chu, and M. J. Tsai, “Influence of oxygen concentration on resistance switching characteristics of gallium oxide,” IEEE Electron Device Lett., 33 , 1387, (2012)
[6.9]: C. Y. Lin, C. Y. Wu, C. Y. Wu, C. Hu, and T. Y. Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” Journal of The Electrochemical Society, 154, G189 (2007)
[6.10]: Y. T. Tsai, T. C. Chang, W. L. Huang, C. W. Huang, Y. E. Syu, S. C. Chen, S. M. Sze, M. J. Tsai, and T. Y. Tseng, “Investigation for coexistence of dual resistive switching characteristics in DyMn2O5 memory devices,” Appl. Phys. Lett. 99, 092106 (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top