References:
[1.1]: S. Lai, “Future Trends of Nonvolatile Memory Technology”, December (2001).
[1.2]: S. Aritome, “Advanced flash memory technology and trends for file storage application” IEEE IEDM Tech. Dig., 763 (2000).
[1.3]: R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, “Introduction to flash memory”. Proc. of IEEE, 91, 489 (2003).
[1.4]: D. Kahng and S. M. Sze, “A floating-gate and its application to memory devices”, Bell Syst. Tech. J. 46, 1288 (1967).
[1.5]: F. Masuoka, M. Momodomi, Y. Iwata, R. Shirota, “New ultra high density EPROM and Flash EEPROM with NAND structure cell”, IEEE IEDM Tech. Dig. 552 (1987).
[1.6]: P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview” Proc. IEEE, 85, 1248–1271 (1997).
[1.7]: Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti, “Introduction to Flash Memory” Proc. IEEE, 91 489 (2003).
[1.8]: “International Technology Roadmap for Semiconductors, 2009 update at Uhttp://www.itrs.net/Links/2009ITRS/Home2009.htm
[1.9]: King, Ya-Chin, “Thin Dielectric Technology and Memory Devices”, Ph.D dissertation, Univ. of California, Berkeley, CA (1999)
[1.10]: J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[1.11]: M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[1.12]: M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” IEEE circuits &; devices, 16, 22 (2000).
[1.13]: H. E. Maes, J. Witters, and G. Groeseneken, “Trends in non-volatile mem- ory devices and technologies” Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).
[1.14]: S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
[1.15]: S. Park, H. Im, I. Kim, and T. Hiramoto,” Impact of Drain Induced Barrier Lowering on Read Scheme in Silicon Nanocrystal Memory with Two-Bit-per-Cell Operation” Jpn. J. Appl. Phys., 45, 638 (2006)
[1.16]: J. H. Jung, J.-H. Kim, T. W. Kim, M. S. Song, Y.-H. Kim, and S. Jin, “Nonvolatile organic bistable devices fabricated utilizing Cu2O nanocrystals embedded in a polyimide layer” Appl. Phys. Lett. 89, 122110 (2006)
[1.17]: D. C. Worledge, ” Spin flop switching for magnetic random access memory” Appl. Phys. Lett. 84, 4559 (2004)
[1.18]: L. Chen, Y. Xia, X. Liang, K. Yin, J. Yin, Y. Chen, and Z. Liu,” Nonvolatile memory devices with Cu2S and Cu-Pc bilayered films” Appl. Phys. Lett. 91, 073511 (2007)
[1.19]: Chih-Yang Lin, Chen-Yu Wu, Chung-Yi Wu, Chenming Hu, and Tseung-Yuen Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” Journal of The Electrochemical Society, 154 G189-G192 (2007)
[1.20]: S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park,” Reproducible resistance switching in polycrystalline NiO films” Appl. Phys. Lett. 85, 5655 (2004)
[1.21]: H.-Y. Lee, P.-S. Chen, C.-C. Wang, S. Maikap, P.-J. Tzeng, C.-H. Lin, L.-S. Lee, and M.-J. Tsai,” Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide” Jpn. J. Appl. Phys., 46, 2175 (2007)
[1.22]: J. Sakai and S. Imai, “Room-temperature resistance switching and temperature hysteresis of Pr0.7Ca0.3MnO3 junctions” J. Appl. Phys. 97, 10H709 (2005)
[1.23]: X. F. Liang, Y. Chen, L. Chen, J. Yin, and Z. G. Liu,” Electric switching and memory devices made from RbAg4I5 films” Appl. Phys. Lett. 90, 022508 (2007)
[1.24]: Rainer Waser and Masakazu Aono “Nanoionics-based resistive switchingmemories” 2007 Nature Publishing Group.
[1.25]: Ni Zhong, Hisashi Shima , and Hiro Akinaga “Rectifying characteristic of Pt/TiOx/metal/Pt controlled by electronegativity” Appl. Phys. Lett. 96, 042107 (2010)
[1.26]: Ni Zhong, Hisashi Shima, and Hiro Akinaga “Switchable Pt/TiO2-x/Pt Schottky Diodes” Jpn. J. Appl. Phys. 48 05DF03 (2009)
[1.27]: Sungho Kim and Yang-Kyu Choi “A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM” IEEE TRANSACTIONS ON ELECTRON DEVICES 56, 3049 (2009)
[1.28]: J. JOSHUA YANG, MATTHEW D. PICKETT, XUEMA LI, DOUGLAS A. A. OHLBERG, DUNCAN R. STEWART* AND R. STANLEY WILLIAMS “Memristive switching mechanism for metal/oxide/metal nanodevices” Nature Nanotechnology 3, 429 (2008)
[1.29]: Sheng-Yu Wang, Dai-Ying Lee, Tseung-Yuen Tseng, and Chih-Yang Lin “Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films” Appl. Phys. Lett. 95, 112904 (2009)
[1.30]: Bing Sun, Lifeng Liu, Nuo Xu, Bin Gao, Yi Wang, Dedong Han, Xiaoyan Liu,Ruqi Han, and Jinfeng Kang “The Effect of Current Compliance on the Resistive Switching Behaviors in TiN/ZrO2/Pt Memory Device” The Japan Society of Applied Physics 48, 04C061 (2009)
[1.31]: U. Russo, D. Jelmini, C. Cagli, A. L. Lacaita, S. Spigat, C. Wiemert, M. Peregot and M. Fanciullit “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM”. IEDM 775-778 (2007)
[1.32]: Ming-Daou Lee, Chia-Hua Ho, Chi-Kuen Lo, Tai-Yen Peng, and Yeong-Der Yao ”Effect of Oxygen Concentration on Characteristics of NiOx-Based Resistance Random Access Memory” IEEE TRANSACTIONS ON MAGNETICS, 43, 939-942 (2007)
[1.33]: S. Seo,a_ M. J. Lee, D. C. Kim, S. E. Ahn, B.-H Park, Y. S. Kim, and I. K. Yoo, Korea I. S. Byun, I. R. Hwang, S. H. Kim, J.-S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park ”Electrode dependence of resistance switching in polycrystalline NiO films” Appl. Phys. Lett. 87, 263507 (2005)
[1.34]: Carlo Cagli, Federico Nardi, and Daniele Ielmini, “Modeling of Set/Reset Operations in NiO-Based Resistive-Switching Memory Devices” IEEE TRANSACTIONS ON ELECTRON DEVICES, 56, 1712 - 1720 (2009)
[1.35]: Y. Liu • T.P. Chen • H.W. Lau • L. Ding • M. Yang • J.I. Wong • S. Zhang • Y.B. Li “Conduction switching in aluminum nitride thin films containing Al nanocrystals” Appl Phys A 93, 483-487 (2008)
[1.36]: Chih-Yang Lin a, Dai-Ying Lee a, Sheng-Yi Wang a, Chun-Chieh Lin a, Tseung-Yuen Tseng ”Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices” Surface &; Coatings Technology 203, 628-631 (2008)
[1.37]: H. B. Lv, M. Yin, P. Zhou, T. A. Tang, B.A.Chen, Y.Y. Lin “Improvement of Endurance and Switching Stability of Forming-free CuxO RRAM” Non-Volatile Semiconductor Memory Workshop, 2008 and 2008 International Conference on Memory Technology and Design. NVSMW/ICMTD 2008 Joint 52-53 (2008)
[1.38]: An Chen, Sameer Haddad, Yi-Ching (Jean) Wu, Tzu-Ning Fang, Zhida Lan, Steven Avanzino, Suzette Pangrle, Matthew Buynoski, Manuj Rathor, Wei (Daisy) Cai, Nick Tripsas, Colin Bill, Michael VanBuskirk, and Masao Taguchi “Non-Volatile Resistive Switching for Advanced Memory” Applications 2005 IEEE IEDM 746 - 749 (2005)
[1.39]: S. Muraoka, K. Osano, Y. Kanzawa, S. Mitani, S. Fujii, K.Katayama, Y. Katoh, Z. Wei, T. Mikawa, K. Arita, Y. Kawashima, R. Azuma, K. Kawai, K. Shimakawa, A. Odagawa, and T. Takagi “Fast switching and long retention Fe-O ReRAM and its switching mechanism” 2007 IEEE IEDM 779-782 (2007)
[1.40]: Li-Wei Feng, Chun-Yen Chang, Yao-Feng Chang, Wei-Ren Chen, Shin-Yuan Wang, Pei-Wei Chiang, and Ting-Chang Chang ”A study of resistive switching effects on a thin FeOx transition layer produced at the oxide/iron interface of TiN/SiO2 /Fe-contented electrode structures” Appl. Phys. Lett. 96, 052111 (2010)
[1.41]: Chia Hua Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, Rich Liu, and C. Y. Lu “A Highly Reliable Self-Aligned Graded Oxide WOx Resistance Memory: Conduction Mechanisms and Reliability 2007 Symposium on VLSI Technology Digest of Technical Papers 228-229 (2007)
[1.42]: W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh, R. Liu, Senior Member, IEEE, and Chih-Yuan Lu, Fellow, IEEE ”Unipolar Switching Behaviors of RTO WOx RRAM” Electron Device Letters, IEEE , 31, 126-128 (2010)
[1.43]: Xu, N., et al., “Bipolar switching behavior in TiN/ZnO/Pt resistivenonvolatile memory with fast switching and long retention. “ Semiconductor Science and Technology 23, 075019 (2008)
[1.44]: N. Xu, B. Gao, L.F. Liu, Bing Sun, X.Y. Liu, R.Q. Han, J.F. Kang, and B. Yu “A Unified Physical Model of Switching Behavior in Oxide-Based RRAM” 2008 Symposium on VLSI Technology Digest of Technical Papers. 100 (2008)
[1.45]: Heng Yuan Lee, Pang Shiu Chen, Tai Yuan Wu, Ching Chiun Wang, Pei Jer Tzeng, Cha Hsin Lin, Frederick Chen, Ming-Jinn Tsai, and Chenhsin Lien “Electrical evidence of unstable anodic interface in Ru/HfOx /TiN unipolar resistive memory” Appl. Phys. Lett. 92, 142911 (2008)
[1.46]: Shyh-Shyuan Sheu, Pei-Chia Chiang, Wen-Pin Lin, Heng-Yuan Lee, Pang-Shiu Chen, Yu-Sheng Chen, Tai-Yuan Wu , Frederick T. Chen, Keng-Li Su, Ming-Jer Kao, Kuo-Hsing Cheng, Ming-Jinn “A 5ns Fast Write Multi-Level Non-Volatile 1 K bits RRAM Memory with Advance Write Scheme” 2009 Symposium on VLSI Circuits Digest of Technical Papers 82- 83 (2009)
[1.47]: Heng-Yuan Lee, Pang-Shiu Chen, Tai-Yuan Wu, Ching-Chiun Wang, Pei-Jer Tzeng, Cha-Hsin Lin, Frederick Chen, Chen-Hsin Lien, and Ming-Jinn Tsai “HfO2 Bipolar Resistive Memory Device with Robust Endurance using AlCu as Electrode” Electron Device Letters, IEEE 30, 703-705 (2009)
[1.48]: H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai “Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM” 2008 IEDM 1-4 (2008)
References:
[2.1]: Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, IEEE, 2004
[2.2]: 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,“先進
記憶體簡介,國研科技創刊號,2004 年
[2.3]: http://karachissuet.blogspot.com/2009/07/ferroelectric-rand om-acc
ess-memory-fram.html
[2.4]: I. G Baek, M.S.L., S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C.
Park, IEDM Tech. Dig., 2005: p. 587-590
[2.5]: 葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展—現在與未來”,物理雙月刊 廿六期四卷,2004年[2.6]: 劉志益、曾俊元,“電阻式非揮發性記憶體之近期發展”,電子月刊 第十一卷第四期,2005年[2.7]: A Sawa, “Resistive switching in transition metal oxides, ”Materialtoday., vol.11,p6, Jun. 2008.
[2.8]: http://theeestory.com/topics/4141
[2.9]: Chih-Yi Liu, Pei-Hsun Wu, Arthur Wang et al. “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film”, IEEE, VOL. 26, NO. 6, JUNE 2005
[2.10]: Yin-Pin Yang, and Tseung-Yuen Tseng, “Electronic defect and trap-related current of (Ba0.4Sr0.6)TiO3 thin films,” J. Appl. Phys., vol. 81, pp. 6762-6766, May. 1997.
[2.11]: A. Asamitsu, Y. Tomioka et al. “Current switching of resistive states in magnetoresistive manganites”, Nature 338 (3), 1997
[2.12]: Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites, Mater, 200, 1, 1999
[2.13]: A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Applied Physics Letters, 85(18), 2000
[2.14]: S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films”, Applied Physics Letters, 76(19), 2000
[2.15]: B. Gao, S. Yu, N. Xu, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, Y.Y. Wang “Oxide-Based RRAM Switching Mechanism: A New Ion-Transport-Recombination Model”,(2008 IEDM)
[2.16]: S. Seo, M. J. Lee et al.,”Reproducible resistance switching in polycrystalline NiO films”, Applied Physics Letters, 85(23), 2004
[2.17]: L. P. Ma, J. Liu et al.,” Organic electrical bistable devices and rewritable memory cells”, Applied Physics Letters, 80(16), 2002
[2.18]: Akihito Sawa, “Resistive switching in transition metal oxide”, materials today, 11(6), 2008, p.28~36
[2.19]: B. Sun, L. F. Liu, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, 1. F. Kang, “Bipolar Resistive Switching Behaviors of Ag/SiN/Pt Memory Device”, IEEE, 2008
[2.20]: Y. Sato, K. Kinoshita, M. Aoki, "Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model," Applied Physics Letters 90, 033503, 2007
[2.21]: R. Waser, M. Aono, “Nanoionics-based resistive switching memories”, Nature materials, Vol. 6, 2007
[2.22]: M. Fujimoto, H. Koyama et al., “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching ” , Applied Physics Letters, 89, 223509, 2006
[2.23]: C. Yoshida, K. Tsunoda et al., “High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application”, Applied Physics Letters, 91, 2235110, 2007
[2.24]: M. J. Rozenberg, I. H. Inoue et al., “Nonvolatile memory with Multilevel Switching: A Basic Model”, Physical Review Letter, 2004
[2.25]: 施敏、伍國珏,“半導體元件物理學”,2008年
References:
[3.1]: D. Jiang, M. Zhang, Z. Huo, Q. Wang, J. Liu, Z. Yu, X. Yang, Y. Wang, B. Zhang, J. Chen, and M. Liu, “A study of cycling induced degradation mechanisms in Si nanocrystal memory devices,” Nanotechnology, vol. 22, no. 25, pp. 254 009-1–254 009-5, Jun. 2011.
[3.2]: C. Chang, T. Yan, T. Liu,W. Chen, H. Lin, and M. Sze, “A novel approach of fabricating germanium nanocrystals for nonvolatile memory application,” Electrochem. Solid State Lett., vol. 7, no. 1, pp. G17–G19, 2004.
[3.3]: W. R. Chen, T. C. Chang, P. T. Liu, P. S. Lin, C. H. Tu, and C. Y Chang, “Formation of stacked Ni silicide nanocrystals for nonvolatile memory application,” Appl. Phys. Lett., vol. 90, no. 11, pp. 112 108-1–112 108-3, Mar. 2007.
[3.4]: T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, “Developments in nanocrystal memory,” Mater. Today 14, vol. 12, pp. 608–615, 2011.
[3.5]: G. Asano, H. Morioka, and H. Funakubo, “Fatigue-free RuO2/Pb(Zr,Ti)O3/RuO2 capacitor prepared by metalorganic chemical vapor deposition at 395 ◦C,” Appl. Phys. Lett., vol. 83, no. 26, pp. 5506–5508, Dec. 2003.
[3.6]: A. Ney and J. S. Harris, Jr., “Reconfigurable magnetologic computing using the spin flop switching of a magnetic random access memory cell,” Appl. Phy. Lett., vol. 86, no. 1, pp. 013502-1–013502-3, Jan. 2004.
[3.7]: T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. N. Li, H. K. Lee, X. S Miao, A. Y. Du, and C. H Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett., vol. 88, no. 12, pp. 122 114-1–122 114-3, Mar. 2006.
[3.8]: C. Y. Lin, C. Y. Wu, C. Y.Wu, C. Hu, and T. Y. Tseng, “Bistable resistive switching in Al2O3 memory thin films,” J. Electrochem. Soc., vol. 154, no. 9, pp. G189–G192, Jul. 2007.
[3.9]: C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, and T. Y. Tseng, “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 351–353, Jun. 2005.
[3.10]: Y. T. Tsai, T. C. Chang, C. C. Lin, S. C. Chen, C. W. Chen, S. M. Sze, F. S. Yeh (Hung), and T. Y. Tseng, “Influence of nanocrystals on resistive switching characteristic in binary metal oxides memory devices,” Electrochem. Solid State Lett., vol. 14, no. 3, pp. H135–H138, 2011.
[3.11]: H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M. J. Tsai, and C. Lien, “Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory,” Appl. Phys. Lett., vol. 92, no. 14, pp. 142 911-1–142 911-3, Apr. 2008.
[3.12]: Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, “Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using metal nanocrystal cover bottom electrode,” Appl. Phys. Lett., vol. 4, no. 10, pp. 6162–6168, Oct. 2010.
[3.13]: N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories,” Appl. Phys. Lett., vol. 92, no. 23, pp. 232 112-1–232 112-3, Jun. 2008.
[3.14]: M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films,” Appl. Phys. Lett., vol. 96, no. 26, pp. 262 110-1–262 110-3, Jun. 2010.
[3.15]: M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, and S. M. Sze, “Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory,” Electrochem. Solid State Lett., vol. 13, no. 6, pp. H191–H193, 2010.
[3.16]: M. Ogita, Y. Higo, Y. Nakanishi, and Y. Hatanaka, “Ga2O3 thin film for oxygen sensor at high temperature,” Appl. Surf. Sci., vol. 175/176, pp. 721–725, May 2001.
[3.17]: M. C. Quinlan, M. J. O’Donnell, L. Binet, and D. Gourier, “Origin of the blue luminescence of b-Ga2O3,” J. Phys. Chem. Solids, vol. 59, pp. 1241– 1249, 1998.
[3.18]: P. C. Yang, T. C. Chang, S. C. Chen, Y. S. Lin, H. C. Huang, and D. S. Gan, “Influence of bias-induced copper diffusion on the resistive switching characteristics of SiON thin film,” Electrochem. Solid State Lett., vol. 14, no. 2, pp. H93–H95, 2011.
[3.19]: X. Gao, Y. Xai, J. Ji, H. Xu, Y. Su, H. Li, C. Yang, H. Guo, J. Yin, and Z. Liu, “Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films,” Appl. Phys. Lett., vol. 97, no. 19, pp. 193 501-1–193 501-3, Nov. 2010.
References:
[4.1]: C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M.C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, ” Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” Appl. Phys. Lett. 96, 242105 (2010)
[4.2]: T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, ” Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress,” Appl. Phys. Lett. 97, 112104 (2010)
[4.3]: T. C. Chang, F. Y. Jian, S. C. Chen, Y. T. Tsai, ” Developments in nanocrystal memory,” Mater. Today 14(12), 608 (2011)
[4.4]: S. S. Sheu, P. C. Chiang, W. P. Lin, H. Y. Lee, P. S. Chen, Y. S. Chen, T. Y. Wu, Frederick T. Chen, K. L. Su, M. J. Kao, K. H. Cheng, M. J. Tsai, ” A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme,” VLSI Circuits Dig. pp. 82–83 (2009)
[4.5]: W.C. Chien, F.M. Lee, Y.Y. Lin, M.H. Lee, S.H. Chen, C.C. Hsieh, E.K. Lai, H.H. Hui, Y.K. Huang, C.C. Yu, C.F. Chen, H.L. Lung, K.Y. Hsieh, and Chih-Yuan Lu, ” Multi-layer sidewall WOX resistive memory suitable for 3D ReRAM,” VLSI Tech. Symp. pp. 153-154 (2012)
[4.6]: S. Kim, H. Moon, D. Gupta, S. Yoo, and Y. K. Choi, “Resistive Switching Characteristics of Sol–Gel Zinc Oxide Films for Flexible Memory Applications,” TRANSACTIONS ON ELECTRON DEVICES, 56, 696(2009)
[4.7]H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, ” Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” IEDM tech. dig., 1 (2008)
[4.8]M. Terai, Y. Sakotsubo, S. Kotsuji, and H. Hada, “Resistance Controllability of Ta2O5/TiO2 Stack ReRAM for Low-Voltage and Multilevel Operation,” IEEE ELECTRON DEVICE LETTERS, 31, 204 (2010)
[4.9]: Y. W. Chiang and J. M. Wu, Appl. Phys. Lett. “Characterization of metal-ferroelectric (BiFeO3)-insulator (ZrO2)-silicon capacitors for nonvolatile memory applications,” 91, 142103(2007)
[4.10]: J. Allibe, I. C. Infante, S. Fusil, K. Bouzehouane, E. Jacquet, C. Deranlot, M. Bibes, and A. Barthélémy, Appl. Phys. Lett. “Coengineering of ferroelectric and exchange bias properties in BiFeO3 based heterostructures,” 95, 182503(2009)
[4.11]: Y. E. Syu, T. C. Chang, T. M. Tsai, Y. C. Hung, K. C. Chang, M. J. Tsai, M. J. Kao, and S. M. Sze, “Redox Reaction Switching Mechanism in RRAM device with Pt/CoSiOX/TiN structure,” IEEE Electron Device Lett. 32(4), 545-547 (2011)
[4.12]: Y. T. Chen, T. C. Chang, P. C. Yang, J. J. Huang, H. C. Tseng, H. C. Huang, J. B. Yang, A. K. Chu, D. S. Gan, M. J. Tsai, and Simon M. Sze, “Improvement of Resistive Switching Characteristics by Thermally Assisted Forming Process for SiO2 -Based Structure,” IEEE Electron Device Lett., 34, 226(2013)
[4.13]: J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, Simon M. Sze, A. K. Chu, and M. J. Tsai, “Influence of oxygen concentration on resistance switching characteristics of gallium oxide,” IEEE Electron Device Lett., 33 , 1387, (2012)
References:
[5.1]: Y. T. Chen, T. C. Chang, P. C. Yang, J. J. Huang, H. C. Tseng, H. C. Huang ,J. B. Yang, A. K. Chu, D. S. Gan, M. J. Tsai, and Simon M. Sze, “Improvement of Resistive Switching Characteristics by Thermally Assisted Forming Process for SiO2-Based Structure,” IEEE Electron Device Lett., 34 (2), 226, (2013)
[5.2]: J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, Simon M. Sze, A. K. Chu, and M. J. Tsai, “Influence of oxygen concentration on resistance switching characteristics of gallium oxide,” IEEE Electron Device Lett., 33 , 1387, (2012)
[5.3]: Y. T. Chen, T. C. Chang, J. J. Huang, H. C. Tseng, P. C. Yang, A. K. Chu, J. B. Yang, H. C. Huang, D. S. Gan, M. J. Tsai, and Simon M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett., 102, 043508 (2013)
[5.4]: C. Y. Lin, C. Y. Wu, C. Y. Wu, C. Hu, and T. Y. Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” Journal of The Electrochemical Society, 154, G189 (2007)
[5.5]: Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, “Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using metal nanocrystal cover bottom electrode,” ACS Nano, 4 (10), pp.6162 (2010).
[5.6]: Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, “Real-Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide-Electrolyte-Based ReRAM,” Adv. Mater.24, 1844(2012)
[5.7]: Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation of conducting filament growth in nanoscale resistive memories,” Nature Communications, 3, 732(2010).
[5.8]: T. C. Chen, T. C. Chang, T. Y. Hsieh, C. T. Tsai, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, “Light-induced instability of an InGaZnO thin film transistor with and without SiOx passivation layer formed by plasma-enhanced-chemical-vapor-deposition,” Appl. Phys. Lett. 97, 192103 (2010)
[5.9]: T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen “Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress,” Appl. Phys. Lett. 97, 112104 (2010)
[5.10]: F. De Stefano, M. Houssa, J. A. Kittl, M. Jurczak, V. V. Afanas’ev, and A. Stesmans, “Semiconducting-like filament formation in TiN/HfO2/TiN resistive switching random access memories,” Appl. Phys. Lett., 100, p. 142102 (200612)
[5.11]: Simon M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, third ed., Wiley-Interscience, 2006.
[5.12]: Y. T. Tsai, T. C. Chang, W. L. Huang, C. W. Huang, Y. E. Syu, S. C. Chen, S. M. Sze, M. J. Tsai, and T. Y. Tseng, “Investigation for coexistence of dual resistive switching characteristics in DyMn2O5 memory devices,” Appl. Phys. Lett. 99, p.092106 (2011)
[5.13]: D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, I. K. Yoo, I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” Appl. Phys. Lett., 88, p.202102 (2006)
[5.14]: P. C. Yang, T. C. Chang, S. C. Chen, Y. S. Lin, H. C. Huang, and D. S. Gan, “Influence of bias-induced copper diffusion on the resistive switching characteristics of SiON thin film,” Electrochem. Solid State Lett., 14(2), H93-H95 (2011)
References:
[6.1]: W. F. Chung , T. C. Chang, H. W. Li , C. W. Chen , Y. C. Chen , S. C. Chen , T. Y. Tseng , and Y. H Tai, “Influence of H2O dipole on subthreshold swing of amorphous indium-gallium-zinc-oxide thin film transistors,” Electrochem. Solid State Lett., 14, H114-H116 (2011)
[6.2]: T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, “Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress,” Appl. Phys. Lett. 97, 112104 (2010)
[6.3]: W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng, and Y. H. Tai, “Environment-Dependent Thermal Instability of Sol-gel derived Amorphous Indium-Gallium-Zinc-Oxide Thin Film Transistors,” Appl. Phys. Lett. 98, 152109 (2011)
[6.4]: Y. C. Chen, T. C. Chang, H. W. Li, W. F. Chung, C. P. Wu, S. C. Chen, J. Lu, Y. H. Chen, Y. H. Tai, “High-stability oxygen sensor based on amorphous zinc tin oxide thin film transistor,” Appl. Phys. Lett. 100, 262908(2012)
[6.5]: S. S. Sheu, P. C. Chiang, W. P. Lin, H. Y. Lee, P. S. Chen, Y. S. Chen, T. Y. Wu, Frederick T. Chen, K. L. Su, M. J. Kao, K. H. Cheng, M. J. Tsai, ” A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme,” VLSI Circuits Dig. pp. 82–83 (2009)
[6.6]: W.C. Chien, F.M. Lee, Y.Y. Lin, M.H. Lee, S.H. Chen, C.C. Hsieh, E.K. Lai, H.H. Hui, Y.K. Huang, C.C. Yu, C.F. Chen, H.L. Lung, K.Y. Hsieh, and Chih-Yuan Lu, ” Multi-layer sidewall WOX resistive memory suitable for 3D ReRAM,” VLSI Tech. Symp. pp. 153-154 (2012)
[6.7]: Y. T. Chen, T. C. Chang, P. C. Yang, J. J. Huang, H. C. Tseng, H. C. Huang ,J. B. Yang, A. K. Chu, D. S. Gan, M. J. Tsai, and Simon M. Sze, “Improvement of Resistive Switching Characteristics by Thermally Assisted Forming Process for SiO2-Based Structure,” IEEE Electron Device Lett., 34 (2), 226, (2013)
[6.8]: J. J. Huang, T. C. Chang, J. B. Yang, S. C. Chen, P. C. Yang, Y. T. Chen, H. C. Tseng, Simon M. Sze, A. K. Chu, and M. J. Tsai, “Influence of oxygen concentration on resistance switching characteristics of gallium oxide,” IEEE Electron Device Lett., 33 , 1387, (2012)
[6.9]: C. Y. Lin, C. Y. Wu, C. Y. Wu, C. Hu, and T. Y. Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” Journal of The Electrochemical Society, 154, G189 (2007)
[6.10]: Y. T. Tsai, T. C. Chang, W. L. Huang, C. W. Huang, Y. E. Syu, S. C. Chen, S. M. Sze, M. J. Tsai, and T. Y. Tseng, “Investigation for coexistence of dual resistive switching characteristics in DyMn2O5 memory devices,” Appl. Phys. Lett. 99, 092106 (2011).