跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張馨文
研究生(外文):Shing-wen Chang
論文名稱:南海時間序列測站1999~2012年間表水酸化之探討
論文名稱(外文):Seawater Acidification over the Past Decade (1999~2012) at the SEATS Site
指導教授:許德惇許德惇引用關係
指導教授(外文):David D. Sheu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋地質及化學研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:84
中文關鍵詞:pH值海洋酸化東南亞時間序列測站二氧化碳南海
外文關鍵詞:south china seaocean acidificationSEATS stationpHcarbon dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
「海洋酸化」是近年來相當受重視的議題之一,目前為止,以時間序列測站觀測海水酸化的區域大都位於開放性大洋,而在邊緣海地區尚未有深入的研究。因此本研究利用位於南海(邊緣海)的東南亞時間序列測站(SouthEast Asian Time-series Study, SEATS),於1999年9月至2012年9月間共43個航次所測得之水文及碳化學參數等時間序列變化趨勢,探討南海海水酸化之情況,並與HOT和BATS兩個時間序列測站之觀測結果進行比較。
結果顯示,SEATS測站與其他大洋之時間序列測站(如HOT、BATS測站)同樣有pH逐年下降(-0.0018 yr-1)、nDIC逐年升高(1.3~1.4 mol kg-1 yr-1)的現象,顯示SEATS測站海水與其他大洋相仿,亦同樣在逐漸酸化中。
將SEATS測站與HOT和BATS兩測站相比較,其酸化的速率為:BATS (-0.0036yr-1)、HOT (-0.0007 yr-1)、SEATS (-0.0018 yr-1)。筆者認為各測站酸化速率的不同應與緯度有關,高緯度地區由於受到較多人為二氧化碳影響,其酸化速率最快(BATS),而位於最低緯度的SEATS測站的酸化速率卻比HOT測站快,推測應為SEATS測站混合層深度逐年加深(約1.6m yr-1)所致。由於SEATS位於近熱帶地區,混合層都相當淺,因此混合層一旦加深,便帶更多下方較高DIC、TA及低pH的次表水至表層,造成觀測到的酸化速率加快。在2004~2008年間,其冬季混合層的深度,確實顯示較其他年份的混和層深度為深。在鹽度時間序列上也可觀測到類似的現象。因此造成SEATS測站的酸化速率較HOT為高,推測應是由於SEATS測站混合層深化的結果。
"Ocean acidification" is one of the most important and popular topics today. Our present knowledge from time-series studies has largely focused in the open ocean rather than in the marginal seas. In this study, a total of 43 cruises from September 1999 to September 2012 with measurements of the hydrological and carbon chemical parameters in surface seawater have been conducted to better understand the ocean acidification at SEATS (SouthEast Asian Time-series Study, SEATS) site in the northern South China Sea (SCS). A comparison of results from this station with those from the HOT (Hawaii Ocean Time-series) and BATS (Bermuda Atlantic Time-series Study) time series stations was thoroughly delineated.
Results shows that rate of the pH decrease between September 1999 to September 2012 was 0.0018 yr-1 at the SEATS site, and the normalized dissolved inorganic carbon concentration (nDIC) has increased at a rate of 1.3 ~ 1.4 mol kg-1 yr-1. Such results show that surface seawater at the SEATS station is acidifying in line with other oceanic region.
As compared to HOT (-0.0007 yr-1) and BATS (-0.0036 yr-1), surface seawater pH at SEATS station declines at a rate of -0.0018 yr-1. It has been suggested that the acidification rate of the surface seawater is latitudinally related, as seawater at the high latitude regions absorb more carbon dioxide than those of the lower latitudes. However, our observed results show that the acidification rate at the SEATS station is faster than the HOT station, presumably due to the increasing mixed layer depth at the SEATS became deeper (approximately 1.6m yr-1) during the study period. Comparing our results with those from the HOT and BATS stations, it appears that the SEATS station locates in a subtropical region where the mixed layer is relatively shallow. When the mixed layer becomes deeper, more higher DIC, TA but low pH sub-surface water reaches to the surface, causing surface seawater to be more acidic. From 2004 to 2008, the mixed layer depth was deeper than those of the other years and so is salinity. However, these were not observed at the other two stations. In other words, the deeper the mixed layer at the SEATS site, more acidic of seawater at the SEATS is.
誌謝...............................................................................................................i
摘要............................................................................................................ii
Abstract......................................................................................................iv
目錄..............................................................................................................vi
圖目錄....................................................................................................viii
表目錄........................................................................................................xi
壹、緒論.......................................................................................................1
1.1 前言................................................................................................1
1.2 東南亞時間序列測站緣起及文獻回顧.......................................9
1.3 研究區域之背景介紹..................................................................11
1.3.1 南海簡介...............................................................................11
1.3.2 南海水文特性.......................................................................14
1.3.3 南海的氣候型態……………………………….………..…16
1.4 研究目的......................................................................................19
貳、研究材料與方法................................................................................20
2.1 採樣方法………………………………..…………….………..20
2.2 研究方法………………………………..…………….………..23
2.2.1 酸鹼值( pH )之測定.…………..…………………………..23
2.2.2溶解態無機碳(DIC)之測定………………………………...23
2.2.3 海水滴定總鹼度(TA)之測定……………………………...25
2.2.4 海水中二氧化碳分壓(fCO2)之計算………………………26
2.2.5 海氣交換通量(CO2 flux)之計算…………………………..27
2.2.6 海水總溶解態無機碳碳同位素組成(13CDIC)之測定…….28
參、結果與討論.....................................................................................32
3.1 SEATS測站各化學水文參數之時間序列分布...........................32
3.1.1 溫鹽資料………...................................................................32
3.1.2 5m TA、DIC及13CDIC之時間序列變化...............................34
3.1.3 5m pHmeas.及pHcal.之時間序列變化…..................................39
3.1.4 a和c之時間序列變化......................................................42
3.1.5 二氧化碳海氣交換(CO2 flux)通量之時間序列變化…......43
3.2 SEATS測站與HOT及BATS測站之比較..................................48
3.2.1溫鹽時間序列變化比較........................................................49
3.2.2 碳化學參數時間序列變化比較...........................................52
肆、結論......................................................................................................61
伍、參考文獻..............................................................................................63
中文部分
陳鎮東,1994。海洋化學。國立編譯館,272頁。
陳鎮東,2001。南海海洋學。國立編譯館,506頁。
周文臣,2004。南海時間序列測站海水之碳化學參數與碳-13之垂直分佈及其在混合層中的季節變化。國立中山大學海洋地質及化學研究所博士論文,211頁。
劉青琳,2001。南海與台灣海峽溶解態與顆粒態有機碳、氮、磷之分佈。國立中山大學海洋地質及化學研究所碩士論文,128頁。
林信吉,2003。澎湖水道南端化學水文之季節變化。國立中山大學海洋地質及化學研究所博士論文,95頁。
彭宗仁,劉滄棽,林幸助,2006。穩定同位素在農業及生態環境上之應用。台灣農業研究, 12頁。
孫湘平,1995。中國的海洋,商務印書館,209頁。


Bates, N. R. (2001), Interannual changes of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre, Deep Sea Res., Part II, 48(8-9), 1507–1528.
Bates, N. R. (2002), Interannual variability in the global ocean uptake of CO2, Geophys. Res. Lett., 29(5), 1059–1063.
Bates, N. R. (2007), Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades, J. Geophys. Res., 112, C09013, doi:10.1029/2006JC003759.
Bates, N. R., A. F. Michaels, and A. H. Knap (1996), Alkalinity changes in the Sargasso Sea: geochemical evidence of calcification?, Mar. Chem., 51, 347–358.
Bates, N. R., A. F. Michaels, and A. H. Knap (1996), Seasonal and interannual variability of the oceanic carbon dioxide system at the U.S. JGOFS Bermuda Atlantic Time-series Site, Deep Sea Res., Part II, 43, 347–383.
Bates, N. R., and A. J. Peters (2007), The contribution of atmospheric acid deposition to ocean acidification in the subtropical North Atlantic Ocean, Mar. Chem., 107(4), 547–558.
Chao, S. Y., P. T. Shaw, and S. Y. Wu (1996), El Nino modulation of the South China Sea circulation, Prog. Oceanog., 38, 51–93.
Chen, C. T. A., and M. H. Huang (1996), A Mid-Depth Front Separating the South China Sea Waterand the Philippine Sea Water, J. Oceanogr., 52, 17–25.
Chen, C. T. A., W. P. Hou, T. Gamo, and S. L. Wang (2006), Carbonate- related parameters of subsurface waters in the West Philippine, South China and Sulu Seas, Mar. Chem., 99, 151–161.
Chou, W. C., D. D. D. Sheu, C. T. A. Chen, S. L. Wang, and C. M. Tseng (2005), Seasonal variability of carbon chemistry at the SEATS timeseries site, northern South China Sea between 2002 and 2003, Terr. Atmos. Oceanic Sci., 16, 445–465.
Diskson, A. G. (1993), pH buffers for sea water media based on the total hydrogen ion concentration scale, Deep Sea Res., Part I, 40(1), 107–118.
Dickson, A. G., and F. J. Millero (1987), A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep Sea Res., Part I, 34, 1733–1743.
DOE (1994), Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water. In Dickson A. G., Goyet C. (Eds), U.S. Department of Energy CO2 science Team Report, version 2, unpublished manuscript.
Doney, S. C. (2006), The Dangers of Ocean Acidification, Scientific American, 294, 58–65, doi:10.1038/scientificamerican0306-58.
Doney, S. C., V. J. Fabry, R. A. Feely, and J. A. Kleypas (2009), Ocean acidification:The other CO2 problem, Annu. Rev. Mar. Sci., 1, 169–192, doi:10.1146/annurev.marine.010908.163834.
Dore, J. E., R. Lukas, D. W. Sadler, M. J. Church, and D. M. Karl (2009), Physical and biogeochemical modulation of ocean acidification in the central North Pacific, Tellus, 106(30) , 12235–12240.
Feely, R. A., T. Takahashi, R. Wanninkhof, M. J. McPhaden, C. E. Cosca, S. C. Sutherland, and M. E. Carr (2006), Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean, J. Geophys. Res., 111, C08S90, doi:10.1029/2005JC003129.
Feely, R. A., S. C. Doney, and S. R. Cooley (2009), Ocean acidification: Present conditions and future changes in a high-CO2 world, Oceanogr., 22(4), 36–47, doi:10.5670/oceanog.2009.95.
Gong, G. C., K. K. Liu, C. T. Liu, and S. C. Pai (1992), The chemical hydrography of the south china sea west of luzon and a comparison, Terr. Atmos. Oceanic Sci., 3, 587–602.
Gran, G. (1952), Determination of the equivalence point in potentiometric titrations, Analyst, 77pp.
Gruber, N., and J. L. Sarmiento (2002), Biogeochemical/physical interactions in elemental cycles, in The Sea: Biological‐Physical Interactions in the Oceans, edited by A. R. Robinson et al., pp. 337–399, John Wiley, Hoboken, N. J.
Guggenheim, E. A. (1967), An advanced treatment for chemists and physicists, Thermodynamics 5th ed., 390, North-Holland.
Hu, J., H. Kawamura, H. Hong, and Y. Qi (2000), A Review on the Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion, J. Oceanogr., 56, 607–624.
Intergovernmental Panel on Climate Change (IPCC) (1995), Climate Change 1995: Second Assessment, edited by O. Mundial et al., 572 pp., Cambridge Univ. Press, New York.
Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: The Scientific Basis is the most comprehensive and up-to-date scientific assessment of past, present and future climate change, edited by J. T. Houghton et al.., 881pp., Cambridge Univ. Press, New York.
Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., 996 pp., Cambridge Univ. Press, New York.
Keeling, C. D., and T. P. Whorf (2004), Atmospheric CO2 records from sites at the SIO air sampling network, in Trends Online: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, Tenn., doi:10.3334/CDIAC/atg.012.
Ken, C., and E. W. Michael (2003), Anthropogenic carbon and ocean pH, Nature, 425, 365.
Kӧrtzinger, A., P. D. Quay, and R. E. Sonnerup (2003), Relationship between anthropogenic CO2 and the 13C Suess effect in the North Atlantic Ocean, Global Biogeochem. Cycles, 17(1), 1005, doi:10. 1029/2001GB001427.
Lee, K., F. J. Millero, R. H. Byrne, R. A. Feely, and R. Wanninkhof (2000), The recommended dissociation constants for carbonic acid in Seawater, Geophys. Res. Lett., 27, 229–232.
Levitus, S. (1982), Climatological atlas of the world ocean, National Oceanic and Atmospheric Administration, Rockville, Maryland, 173 pp.
Lueker, T. J., A. G. Dickson, C. D. Keeling (2000), Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium, Mar. Chem., 70, 105–119.
Levelt-Sengers, J. M., and H. M. Klein (1971), Pressure-Volume- Temperature Relationships of Gases: Virial Coefficients. Heat Division, U. S. National Bureau of Standards. AEDC TR-71-39.
Lewis, E., and D. W. R. Wallace (1998), Program developed for CO2 system calculations, Carbon Dioxide Inf. Anal. Cent. Rep. ORNL/CDIAC, 105, Oak Ridge Natl. Lab., Oak Ridge, TN, USA.
Liang. W. D., J. C. Jan, and T. Y. Tang (2000), Climatological wind and upper ocean heat content in the South China Sea, Acta Oceanogr. Taiwanica, 38(2), 91–114.
Lomas, M. W., and N. R. Bates (2004), Potential controls on interannual partitioning of organic carbon during the winter/spring phytoplankton bloom at the Bermuda Atlantic time-series study (BATS) site, Deep Sea Res., Part I, 51, 1619–1636.
Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz (1973), Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, doi:10.4319/lo.1973.18.6.0897.
Millero, F. J., K. Lee, and M. Roche (1998), Distribution of alkalinity in the surface waters of the major oceans. Mar. Chem., 60, 111–130.
Nitani, H. (1972), Beginning of the Kuroshio. p. 129–163. In Kuroshio—Its Physical Aspects, ed. by H. Stommel and K.Yoshida, University of Washington Press, Seattle.
Olafsson, J., S. R. Olafsdottir, A. Benoit-Cattin, M. Danielsen, T. S. Arnarson, and T. Takahashi (2009), Rate of Iceland Sea acidification from time series measurements, Biogeosciences, 6, 2661–2668.
Sabine, C. L., et al. (2004), The oceanic sink for anthropogenic CO2, Science, 305, 367– 371.
Santana-Casiano, J. M., G. D. Melchor and E. F. Gonzàlez-Dàvila (2007), Interannual variability of the upper ocean carbon cycle in the northeast Atlantic Ocean, Geophys. Res. Lett., 34, L07608, doi:10.1029/ 2006GL028145.
Sheu, D. D., W. C. Chou, C. L. Wei, W. P. Hou, G. T. F. Wong, and C. W. Hsu (2010), Influence of El Niño on the sea‐to‐air CO2 flux at the SEATS time‐series site, northern South China Sea, J. Geophys. Res., 115, C10021, doi:10.1029/2009JC006013.
Siegenthaler, U., and J. L. Sarmiento (1993), Atmospheric carbon dioxide and the ocean, Nature, 365, 119–125, doi:10.1038/365119a0.
Takahashi, T., J. Olafsson, J. G. Goddard, D. W. Chipman, and S. G. Sutherland (1993), Seasonal variation of CO2 and nutrients in the highlatitude surface oceans: A comparative study, Global Biogeochem. Cycles, 7, 843– 878.
Tseng, C. M., G. T. F. Wong, W. C. Chou, B. S. Lee, D. D. Sheu, and K. K. Liu (2007), Temporal variations in the carbonate system in the upper layer at the SEATS station, Deep Sea Res., Part II, 54, 1448–1468, doi:10.1016/j.dsr2.2007.05.003.
Turley, C., J. C. Blackford, S. Widdicombe, D. Lowe, P. D. Nightingale and A. P. Rees (2006), Reviewing the Impact of Increased Atmospheric CO2 on Oceanic pH and the Marine Ecosystem, Avoiding Dangerous Climate Change, 65–70, Cambridge University Press.
Walsh, J. J. (1989), Total dissolved nitrogen in the seawater: a new-high-temperature combustion method and a comparison with photo-oxidation, Mar. Chem., 26(4), 295–311.
Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97(C5), 7373–7382, doi:10.1029/92JC00188.
Wanninkhof, R., and W. R. McGillis (1999), A cubic relationship air-sea CO2 exchange and wind speed, Geophys. Res. Lett., 26, 1889–1892.
Weiss, R. F. (1974), Carbon dioxide in water and seawater: The solubility of a non‐ideal gas, Mar. Chem., 2, 203–215.
Winn, C. D., F. T. Mackenzie, C. J. Carrillo, C. L. Sabine, and D. M. Karl (1994), Air-sea exchange of carbon dioxide in the North Pacific Subtropical Gyre: Implications for the global carbon budget, Global Biogeochem. Cycles, 8(2), 157–163.
Wong, G. T. F., T. L. Ku, M. Mulholland, C. M. Tseng, and D. P. Wang (2007), The SouthEast Asian Time‐series Study (SEATS) and the biogeochemistry of the South China Sea‐An overview, Deep Sea Res., Part II, 54, 1434–1447, doi:10.1016/j.dsr2.
Yutaka W. W., T. Chiba, and T. Tanaka (2011), Recent change in the oceanic uptake rate of anthropogenic carbon in the North Pacific subpolar region determined by using a carbon‐13 time series, J. Geophys. Res., 116, C02006, doi:10.1029/ 2010J C006199.
Zeebe R. E. and Wolf-Gladrow (2001), CO2 in seawater: Equilibrium, Kinetics, Isotopes, 1st Edition.

網站資料
Mauna Loa Record (http://esrl.noaa.gov/gmd/ccgg/trends/)
HOT station data (http://hahana.soest.hawaii.edu/hot/hot_jgofs.html )
BATS station data (http://bats.bios.edu/index.html)
NASA (http://aquarius.nasa.gov/education-salinity.php)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top