|
1. 李慶男(2006): 時間數列講義Chapter 21, 高雄市, 國立中山大學經濟學研究所。 2. 陳旭昇(2009): 時間序列分析: 總體經濟與財務金融之應用, 臺北市, 東華書局, 修 訂初版。 3. 賴景昌(2004): 總體經濟學, 臺北市, 雙葉書廊, 二版。 4. Bai, J. and Carrion-I-Silvestre, J.L. (2009). Structural changes, common stochastic trends, and unit roots in panel data. Review of Economic Stud- ies 76: 471-501. 5. Bai, J. and Ng, S. (2004). A PANIC attack on unit roots and cointegration. Econometrica 72: 1127-1177. 6. Becker, R., Enders, W. and Lee J. (2006). A Stationarity Test in the Presence of an Unknown Nnmber of Smooth Breaks. Journal of Time Series Analysis 27(3). 7. Breitung, J. and Das, S. (2003). Panel unit root tests under cross sectional dependence. manuscript, Institute of Econometrics, University of Bonn. 8. Cerrato, M., de Peretti, C., Larsson, R. and Sarantis, N. (2009). A Nonlinear Panel Unit Root Test under Cross-section Dependence. Discussion Paper 2009-28, Department of Economics, University of Glasgow. 9. Cerrato, M., de Peretti, C., and Sarantis, N. (2013). Is the Consumption- Income Ratio Stationary? Evidence from Linear and Non-Linear Panel Unit Root Tests for OECD and Non-OECD Countries. The Manchester School 81(1): 102-120. 10. Chang, Y. (2002). Nonlinear IV unit root tests in panels with cross-sectional dependence. Journal of Econometrics 110: 261-292. 11. Choi, I. and Chue, T. (2007). Subsampling hypothesis tests for nonstationary panels with applications to exchange rates and stock prices. Journal of Applied Econometrics 22: 233-264. 12. Clemente, J., Montanes, A. and Reyes, M. (1998) Testing for a unit root in variables with a double change in the mean. Economics Letters 59: 175-82. 13. Cook, S. (2003). The nonstationarity of the consumption-income ratio: Evidence from more powerful Dickey-Fuller tests. Applied Economics Letters 10(7): 393-395. 14. Cook, S. (2005). The Stationarity of Consumption-Income Ratios: Evidence from Minimum LM Unit Root Testing. Economics Letters 89: 55-60. 15. Davidson, J. E. H., Hendry, D. F., Sbra, F. and Yeo, S. (1978). Econometric Modelling of the Aggregate Time-series Relationship between Consumers’ Expenditure and Income in the United Kingdom. Economic Journal 80: 661- 692. 16. Dickey, D. and Fuller, W. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association 74: 427-431. 17. Drobny, A and Hall, S. (1989). An investigation of the long-run properties of aggregate nondurable consumers’ expenditure in the United Kingdom. Eco- nomic Journal 99: 454-460. 18. Enders, W. and Lee, J. (2009). The exible fourier form and testing for unit roots: an example of the term structure of interest rates, working paper, University of Albama. 19. Enders, W. and Lee, J. (2011). A unit root test using a Fourier series to approximate smooth breaks. Oxford Bulletin of Economics and Statistics, Forthcoming. 20. Friedman, M. (1957). A Theory of the Consumption Function, Princeton, NJ, Princeton University Press. 21. Gomes, S. and de S. Franchini, D. (2009). The Stationarity of Consumption- Income Ratios: Evidence From South American Countries. Economia Apli- cada 13(4): 463-479. 22. Hall, S. and Patterson, K. (1992). A systems approach to the relationship between consumption and wealth. Applied Economics 24: 1165-1171. 23. Harvey, D. and Mills, T. (2003). A note on Busetti-Harvey tests for stationarity in series with structural breaks. Journal of Time Series Analysis 24: 159-64. 24. Horioka, C. (1997). A cointegration analysis of the impact of the age structure of the population on the household saving rate in Japan. Review of Economics and Statistics 79: 511-515. 25. Im, K., Lee, J. and Tieslau, M. (2010). Stationarity of in ation: evidence from panel unit root tests with trend shifts, working paper. 26. Im, K., Pesaran, H., and Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics 115: 53-74. 27. Kapetanios, G., Shin, Y., and Snell, A. (2003). Testing for a unit root in the nonlinear STAR framework. Journal of Econometrics 112: 359-79. 28. Keynes, J. M. (1936). The General Theory of Employment, Interest and Money, London, MacMillan. 29. King, R., Plosser, C., Stock, J. and Watson, M. (1991). Stochastic trends and economic fluctuations. American Economic Review 81: 819-840. 30. Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y. (1992). Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root. Journal of Econometrics 54: 159-178. 31. Lee, J. and Strazicich, M. (2003). Minimum LM Unit Root Test with Two Structural Breaks. Review of Economics and Statistics 85: 1082-1089. 32. Lee, C.N. and Wu, J.L. (2012). A Panel Unit-Root Test with Smooth Breaks and Cross-Sectional Dependence, working paper, National Sun Yat-sen University. 33. Levin, A., Lin, F. and Chu, C. (2002). Unit root tests in panel data: asymptotic and finite sample properties. Journal of Econometrics 108: 1-24. 34. Leybourne, S., Newbold, P. and Vougas, D. (1998). Unit roots and smooth transitions. Journal of Time Series Analysis 19: 83-97. 35. Luukkonen, R., Saikkonen, P. and Teresvirta, T. (1988). Testing linearity against smooth transition autoregressive models. Biometrika 75: 491-499. 36. Maddala, G.S. and Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics 61: 631-652. 37. Modigliani, F. (1986). Life Cycle, Individual Thrift, and the Wealth of Nations. American Economic Review 76: 1-19. 38. Molana, H. (1991). The time series consumption function: error correction, random walkand the steady state. Economic Journal 101: 382-403. 39. Moon, H.R. and Perron, B. (2004). Testing for a unit root in panels with dynamic factors. Journal of Econometrics 122: 81-126. 40. Nelson, C. and Plosser, C. (1982). Trends and Random Walks in Macroeconomics Time Series: Some Evidence and Implications. Journal of Monetary Economics 10: 139-162. 41. Park, H. and Fuller, W. (1995) Alternative estimators and unit root tests for the autoregressive process. Journal of Time Series Analysis 16: 415-429. 42. Perron, P. (1989) The great crash, the oil price shock, and the unit root hypothesis. Econometrica 57: 1361-401. 43. Pesaran, M. H. (2004). General Diagnostic Tests for Cross-section Dependence in Panels. Centre for Economic Studies and Ifo Institute for Economic Research CESifo Working Paper 1229. 44. Pesaran, M. H. (2007). A Simple Panel Unit Root Test in the Presence of Crosssection Dependence. Journal of Applied Econometrics 22: 265-312. 45. Pesaran M.H., Smith, L. V. and Yamagata, T. (2009). A panel unit root test in the presence of a multifactor error structure. Working paper, University of Cambridge. 46. Phillips, P.C.B and Perron, P. (1988). Testing for a Unit Root in Time Series Regression. Biometrika 75: 335-346. 47. Phillips, P.C.B. and Sul, D. (2003). Dynamic panel estimation and homogeneity testing under cross section dependence. Econometrics Journal 6: 217-259. 48. Said, S.E. and Dickey, D.A. (1984). Testing for unit roots in autoregressivemoving average models of unknown order. Biometrika 71: 599-608. 49. Sarantis, N. and Stewart, C. (1999). Is the Consumption-Income Ratio Stationary? Evidence from Panel Unit Root Tests. Economics Letters 64: 309- 314. 50. Sen, A. (2003). On unit-root tests when the alternative is a trend-break stationary process. Journal of Business and Economic Statistics 21: 174-84. 51. Shin, D. and So, B. (2001). Recursive mean adjustment for unit root tests. Journal of Time Series Analysis 22: 595-612. 52. Smith, L.V., Leybourne, S., Kim, T-H and Newbold, P. (2004). More powerful panel data unit root tests with an application to mean reversion in real exchange rates. Journal of Applied Econometrics 19: 147-170. 53. Taylor, M.P. and Sarno, L. (1998). The behaviour of real exchange rates during the post-Bretton Woods period. Journal of International Economics 46: 281-312. 54. Ungern-Sternberg, T. (1986). Inflation and the consumption function. Weltwirtschaftliches Archiv 122: 741-744. 55. Vogelsang, T. and Perron, P. (1998) Additional tests for a unit root allowing for a break in the trend function at an unknown time. International Economic Review 39: 1073-1100.
|