跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃偉程
研究生(外文):Wei-Cheng Huang
論文名稱:以超啟發式為基礎之工作流排程:以解雲端工作流為例
論文名稱(外文):Hyper-heuristic-based Workflow Scheduling: Using Cloud Workflow as a Case
指導教授:江明朝
指導教授(外文):Ming-Chao Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:76
中文關鍵詞:雲端計算雲端模擬器超啟發式演算法工作流啟發式演算法工作流排程
外文關鍵詞:workflowworkflow schedulinghyper-heuristiccloud computingmetaheuristiccloudsim
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
並不存在任何一個啟發式演算法或是傳統演算法能夠找出所有雲端排程問題的最佳解。為了充份利用這些啟發式演算法強處,超啟發式演算法被提出來分析每一個底層啟發式演算法的特性,並且決定底層全域 (或是區域) 搜尋啟發式演算法的使用時機點。這種高層策略所主導的互動機制能促使超啟發式演算法更容易解決不同種類的最佳化問題。本篇論文將提出「以超啟發式為基礎之工作流排程演算法」,它使用兩種偵測運算子 (分別是多樣性偵測運算子,以及解提升偵測運算子) 動態地決定切換底層啟發式演算法時間點。當在切換底層啟發式演算法時,也會將前一個底層演算法所獲得的解回傳至高層管理中心。接著,高層擾動策略將使用演化資訊來微調回傳解後,再將微調後的解傳給下一個新選定底層演算法。為了進一步衡量所提方法,本篇論文將使用 cloudsim 模擬軟體建置雲端模擬環境,來比較所提方法與其它六種排程演算法的效果。根據數據結果顯示與分析,本篇論文所提出演算法是非常有潛力。
None of the metaheuristics and the traditional algortihms ever proposed are perfect for all the cloud scheduling problems. In order to leverage the strengths of all the metaheuristics, the hyper-heuristic was proposed to analyze the features of the low-level metaheuristics
and to decide the timing of using a particular low-level metaheuristic to do the global or local search. The interaction mechanism of high level strategies makes it easier for applying the hyper-heuristic to optimization problems. In this thesis, we propose a “hyper-heuristic-based workflow scheduling algorithm,” which uses two detection operators—the diversity detection and improvement detection operators—to dynamically decide when to change the low-level
metaheuristic. At the time of the change, the solution obtained by the old low-level metaheuristic will be returned to the high level control center. Then, the high level perturbation method will use the evolution information to fine-tune the returned solution before passing it on to the new low-level metaheuristic. To evaluate the performance of the proposed method, we compare it with six state-of-the-art scheduling algorithms, by implementing all of them on cloudsim, a cloud simulator. The experimental results show that the proposed method is quite promising.
論文審定書 i
誌謝 iii
摘要 vi
Abstract vii
List of Figures x
List of Tables xi
Chapter 1 簡介 1
1.1 動機 3
1.2 論文貢獻 3
1.3 論文架構 4
Chapter 2 文獻探討 5
2.1 雲端排程特色與現況 5
2.2 工作流排程問題 6
2.3 工作流排程演算法 8
非啟發式排程演算法 9
2.3.1.1 Min-min 排程演算法 9
2.3.1.2 Max-min 排程演算法 10
2.3.1 啟發式排程演算法 11
2.3.2.1 基因演算法 13
2.3.2.2 螞蟻演算法 15
2.3.2.3 粒子群聚演算法 16
2.3.2.4 模擬退火演算法 19
2.4 超啟發式演算法 20
2.4.1 超啟發式選擇策略 21
2.4.2 超啟發式接受策略 22
2.4.3 超啟發式策略使用模擬退火演算法 23
2.4.4 超啟發式演算法擾動機制 25
2.4.5 超啟發式演算法架構 26
2.4.6 小結 26
2.5 總結 28
Chapter 3 研究方法 29
3.1 超啟發排程演算法 29
3.2 多樣性偵測運算子 32
3.3 解提昇偵測運算子 34
3.4 解擾動策略 35
Chapter 4 實驗結果 37
4.1 實驗架構與流程說明 37
4.1.1 執行環境 37
4.1.2 資料集介紹 37
4.1.3 參數設定 39
4.2 解品質與執行時間分析 41
4.3 收斂趨勢分析 45
4.4 總結 48
Chapter 5 結論與未來展望 49
5.1 結論 49
5.2 研究遭遇困難 49
5.3 未來展望 50
Bibliography 52
[1] B. Li, A. M. Song, and J. Song, “A distributed QoS—constraint task scheduling scheme in cloud computing environment: Model and algorithm,” Advances in Information Sciences and Service Sciences, vol. 4, no. 5, pp. 283–291, 2012.
[2] F. Glover, “Future paths for integer programming and links to artificial intelligence,” Computers &; Operations Research, vol. 13, no. 5, pp. 533–549, 1986.
[3] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and conceptual comparison,” ACM Computing Surveys, vol. 35, no. 3, pp. 268–308, 2003.
[4] J. Welch, “Algorithmic complexity: Three NP-hard problems in computational statistics,” Journal of Statistical Computation and Simulation, vol. 15, no. 1, pp. 17–25, 1982.
[5] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness. WH Freeman and Company, 1990.
[6] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.
[7] M. Millonas, “Swarms, phase transitions, and collective intelligence,” in Artificial Life III, pp. 417–445, 1994.
[8] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison among five evolutionary-based optimization algorithms,” Advanced Engineering Informatics, vol. 19, no. 1, pp. 43–53, 2005.
[9] R. S. Parpinelli and H. S. Lopes, “New inspirations in swarm intelligence: a survey,” International Journal of Bio-Inspired Computation, vol. 3, no. 1, pp. 1–16, 2011.
[10] D. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, Apr.
[11] E. Burke, E. Hart, G. Kendall, JimNewall, P. Ross, and S. Schulenburg, Hyper-Heuristics: An Emerging Direction In Modern Search Technology. Kluwer Academic Publishers, 2003.
[12] P. Ross, “Hyper-heuristics,” in Search Methodologies, pp. 529–556, Springer US, 2005.
[13] E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Woodward, “A classification of hyper-heuristic approaches,” in Handbook of Metaheuristics, vol. 146, pp. 449–468, Springer US, 2010.
[14] M. R. Garey and D. S. Johnson, Computer and Intractability: A Guide to the Theory of NP-Completeness. New York: W.H. Freeman and Company, 1979.
[15] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian, “Ant System for Job-shop Scheduling,” JORBEL - Belgian Journal of Operations Research, Statistics and Computer Science, vol. 34, no. 1, pp. 39–53, 1994.
[16] P. J. M. van Laarhoven, E. H. L. Aarts, and J. K. Lenstra, “Job shop scheduling by simulated annealing,” Operations Research, vol. 40, no. 1, pp. 113–125, 1992.
[17] D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony optimization for resource constrained project scheduling,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 4, pp. 333–346, 2002.
[18] P. C. Chang, J. C. Hsieh, and C. Y. Wang, “Adaptive multi-objective genetic algorithms for scheduling of drilling operation in printed circuit board industry,” Applied Soft Computing, vol. 7, no. 3, pp. 800–806, 2007.
[19] A. Allahverdi, C. Ng, T. Cheng, and M. Y. Kovalyov, “A survey of scheduling problems with setup times or costs,” European Journal of Operational Research, vol. 187, no. 3, pp. 985–1032, 2008.
[20] E. Taillard, “Some efficient heuristic methods for the flow shop sequencing problem,” European Journal of Operational Research, vol. 47, no. 1, pp. 65–74, 1990.
[21] P. P. Wang, “Static and dynamic scheduling of customer arrivals to a single-server system,” Naval Research Logistics, vol. 40, no. 3, pp. 345–360, 1993.
[22] Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang, “A market-oriented hierarchical scheduling strategy in cloud workflow systems,” The Journal of Supercomputing, vol. 63, pp. 1–38, 2011.
[23] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and Z. Gu, “Online optimization for scheduling preemptable tasks on IaaS cloud systems,” Journal of Parallel and Distributed Computing, vol. 72, no. 5, pp. 666–677, 2012.
[24] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou, “Profit-driven scheduling for cloud services with data access awareness,” Journal of Parallel and Distributed Computing, vol. 72, no. 4, pp. 591–602, 2012.
[25] M. Rahman, X. Li, and H. Palit, “Hybrid heuristic for scheduling data analytics workflow applications in hybrid cloud environment,” in Proceedings of IEEE International Symposium on Parallel and Distributed Processing Workshops, pp. 966–974, 2011.
[26] M. R. Garey and D. S. Johnson, Computer and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.
[27] F. Xhafa and A. Abraham, “Computational models and heuristic methods for grid scheduling problems,” Future Generation Computer Systems, vol. 26, no. 4, pp. 608–621, 2010.
[28] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing 360-Degree compared,” IEEE Grid Computing Environments Workshop, no. 5, pp. 1–10, 2008.
[29] Y. Fang, F. Wang, and J. Ge, “A task scheduling algorithm based on load balancing in cloud computing,” in Web Information Systems and Mining, vol. 6318, pp. 271–277, Springer Berlin Heidelberg, 2010.
[30] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics for scheduling parameter sweep applications in grid environments,” in Heterogeneous Computing Workshop, pp. 349–363, 2000.
[31] J. K. Kim, S. Shivle, H. Siegel, A. Maciejewski, T. Braun, M. Schneider, S. Tideman, R. Chitta, R. Dilmaghani, R. Joshi, A. Kaul, A. Sharma, S. Sripada, P. Vangari, and S. Yellampalli, “Dynamic mapping in a heterogeneous environment with tasks having priorities and multiple deadlines,” in Proceedings of Parallel and Distributed Processing Symposium, 2003.
[32] M. Y. Wu, W. Shu, and H. Zhang, “Segmented min-min: a static mapping algorithm for meta-tasks on heterogeneous computing systems,” in Proceedings of Heterogeneous Computing Workshop, pp. 375–385, 2000.
[33] J. Blythe, S. Jain, E. Deelman, Y. Gil, and K. Vahi, “Task scheduling strategies for workflow-based applications in grids,” in IEEE International Symposium on Cluster Computing and Grid, pp. 759–767, 2005.
[34] X. He, X. Sun, and G. Laszewski, “Qos guided min-min heuristic for grid task scheduling,” Journal of Computer Science and Technology, vol. 18, pp. 442–451, 2003.
[35] K. Etminani and M. Naghibzadeh, “A min-min max-min selective algorihtm for grid task scheduling,” in Proceedings of IEEE/IFIP International Conference, pp. 1–7, 2007.
[36] S. Chauhan and R. Joshi, “A weighted mean time min-min max-min selective scheduling strategy for independent tasks on grid,” in Proceedings of Advance Computing Conference, pp. 4–9, 2010.
[37] A. G. Delavar and Y. Aryan, “A synthetic heuristic algorithm for independent task scheduling in cloud systems,” International Journal of Computer Science Issues, vol. 8, no. 6, pp. 289–295, 2011.
[38] W. N. Chen and J. Zhang, “An ant colony optimization approach to a grid workflow scheduling problem with various qos requirements,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 39, no. 1, pp. 29–43, 2009.
[39] L. Ai, M. Tang, and C. J. Fidge, “QoS-oriented resource allocation and scheduling of multiple composite web services in a hybrid cloud using a random-key genetic algorithm,” Australian Journal of Intelligent Information Processing Systems, vol. 12, no. 1, pp. 29–34, 2010.
[40] T. Chen, B. Zhang, X. Hao, and Y. Dai, “Task scheduling in grid based on particle swarm optimization,” in Proceedings of Proceedings of International Symposium on Parallel and Distributed Computing, pp. 238–245, 2006.
[41] J. Yu and R. Buyya, “A budget constrained scheduling of workflow applications on utility grids using genetic algorithms,” in Workflows in Support of Large-Scale Science, pp. 1–10, 2006.
[42] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, 1989.
[43] M. S. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E. G. Talbi, A. Y. Zomaya, and D. Tuyttens, “A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems,” Journal of Parallel and Distributed Computing, vol. 71, no. 11, pp. 1497–1508, 2011.
[44] E. M. Mocanu, M. Florea, M. I. Andreica, and N. Tuapus, “Cloud computing—task scheduling based on genetic algorithms,” in Proceedings of IEEE International on Systems Conference, pp. 1–6, 2012.
[45] D. Dutta and R. C. Joshi, “A genetic: algorithm approach to cost-based multi-QoS job scheduling in cloud computing environment,” in Proceedings of International Conference &; Workshop on Emerging Trends in Technology, pp. 422–427, 2011.
[46] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.
[47] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 26, no. 1, pp. 29–41, 1996.
[48] S. Fidanova and M. K. Durchova, “Ant algorithm for grid scheduling problem,” in Proceedings of International Conference on Large-Scale Scientific Computing, pp. 405–412, 2005.
[49] D. Maruthanayagam and R. UmaRani, “Enhanced ant colony algorithm for grid scheduling,” International Journal of Computer Technology and Applications, vol. 1, no. 1,pp. 43–53, 2010.
[50] K. Kousalya and P. Balasubramanie, “To improve ant algorithm’s grid scheduling using local search,” International Journal of Computational Cognition, vol. 2, no. 2, pp. 71–79, 2009.
[51] C. Lin and S. Lu, “Scheduling scientific workflows elastically for cloud computing,” in Proceedings of IEEE International Conference on Cloud Computing, pp. 746–747, 2011.
[52] A. Kant, A. Sharma, S. Agarwal, and S. Chandra, “An ACO approach to job scheduling in grid environment,” in Proceedings of Swarm, Evolutionary, and Memetic Computing, vol. 6466, pp. 286–295, 2010.
[53] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of International Conference on Neural Networks, vol. 4, pp. 1942–1948, 1995.
[54] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments,” in Proceeding of IEEE International Conference on Advanced Information Networking and Applications, pp. 400–407, 2010.
[55] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu, “Independent tasks scheduling based on genetic algorithm in cloud computing,” in Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, pp. 5548–5551, 2009.
[56] Z. Wu, Z. Ni, L. Gu, and X. Liu, “A revised discrete particle swarm optimization for cloud workflow scheduling,” in Proceedings of International Conference on Computational Intelligence and Security, pp. 184–188, 2010.
[57] B. Zarei, R. Ghanbarzadeh, P. Khodabande, and H. Toofani, “MHPSO: A new method to enhance the particle swarm optimizer,” in Proceedings of International Conference on Digital Information Management, pp. 305–309, 2011.
[58] L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task scheduling optimization in cloud computing based on heuristic algorithm,” Journal of Networks, vol. 7, no. 3, pp. 547–553,2012.
[59] E. Aarts and J. Korst, Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing. New York, NY, USA: John Wiley &; Sons, Inc., 1989.
[60] S. Benedict and V.Vasudevan, “Scheduling of scientific workflows using simulated annealing algorithm for computational grids,” in International Journal of Soft Computing,vol. 2, pp. 606–611, 2007.
[61] J. K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. D. Braun, M. Schneider, S. Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi, A. Kaul, A. Sharma, S. Sripada, P. Vangari, and S. S. Yellampalli, “Dynamically mapping tasks with priorities and multiple deadlines in a heterogeneous environment,” Journal of Parallel and Distributed Computing, vol. 67, no. 2, pp. 154–169, 2007.
[62] J. Denzinger, M. Fuchs, and M. Fuchs, “High performance atp systems by combining several ai methods,” in Proceedings of International Joint Conference on Artificial Intelligence, pp. 102–107, 1997.
[63] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach to scheduling a sales summit,” in Practice and Theory of Automated Timetabling III, vol. 2079, pp. 176–190, Springer Berlin Heidelberg, 2001.
[64] R. D. Fisher and G. L. Thompson, “Probabilistic learning combinations of local job-shop scheduling rules,” in Factory Scheduling Conference Carnegie Institue of Technology, pp. 225–251, 1961.
[65] P. I. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach to scheduling a sales summit,” in Proceedings of Practice and Theory of Automated Timetabling,pp. 176–190, 2000.
[66] R. Malek, “An agent-based hyper-heuristic approach to combinatorial optimization problems,” in Intelligent Computing and Intelligent Systems, vol. 3, pp. 428–434, 2010.
[67] J. Grobler, A. Engelbrecht, G. Kendall, and V. S. S. Yadavalli, “Alternative hyper-heuristic strategies for multi-method global optimization,” in Evolutionary Computation,pp. 1–8, 2010.
[68] R. Bai, J. Blazewicz, E. Burke, G. Kendall, and B. McCollum, “A simulated annealing hyper-heuristic methodology for flexible decision support,” A Quarterly Journal of Operations Research, vol. 10, no. 1, pp. 43–66, 2012.
[69] P. Rattadilok, “An investigation and extension of a hyper-heuristic framework,” in Infor- matica, vol. 34, pp. 523–534, 2010.
[70] E. Burke, G. Kendall, M. Mısır, and E. Ozcan, “Monte carlo hyper-heuristics for examination timetabling,” Annals of Operations Research, vol. 196, pp. 73–90, 2012.
[71] M. Ayob and G. Kendall, “A monte carlo hyper-heuristic to optimise component placement sequencing for multi head placement machine,” in PLACEMENT MACHINE, pp. 132–141, 2003.
[72] F. Rodríguez-Díaz, C. Garcia-Martinez, and M. Lozano, “A ga-based multiple simulated annealing,” in IEEE Congress on Evolutionary Computation, pp. 1–7, 2010.
[73] F. Rodriguez, C. Garcia Martinez, and M. Lozano, “Hybrid metaheuristics based on evolutionary algorithms and simulated annealing: Taxonomy, comparison, and synergy test,” IEEE Transactions on Evolutionary Computation, vol. 16, pp. 787–800, dec. 2012.
[74] E. Burke, G. Kendall, M. Mısır, and E. Ozcan, “Monte carlo hyper-heuristics for examination timetabling,” Annals of Operations Research, vol. 196, no. 1, pp. 73–90, 2012.
[75] K. A. Dowsland, E. Soubeiga, and E. Burke, “A simulated annealing based hyperheuristic for determining shipper sizes for storage and transportation,” European Journal of Operational Research, vol. 179, no. 3, pp. 759–774, 2007.
[76] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach to scheduling a sales summit,” in Practice and Theory of Automated Timetabling III, vol. 2079, pp. 176–190, Springer Berlin Heidelberg, 2001.
[77] E. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuristic for timetabling and rostering,” Journal of Heuristics, vol. 9, no. 6, pp. 451–470, 2003.
[78] R. Bai, E. K. Burke, and G. Kendall, “Heuristic, meta-heuristic and hyper-heuristic approaches for fresh produce inventory control and shelf space allocation,” Journal of Operational Research Society, vol. 59, pp. 1387–1397, 2008.
[79] D. Pisinger and S. Ropke, “A general heuristic for vehicle routing problems,” Computers &; Operations Research, vol. 34, pp. 2403–2435, 2007.
[80] G. Kendall and M. Mohamad, “Channel assignment in cellular communication using a great deluge hyper-heuristic,” in Proceedings of IEEE International Conference on Network, pp. 769–773, 2004.
[81] J. Kubal ́k, “Hyper-heuristic based on iterated local search driven by evolutionary algorithm,” in Proceedings of European Conference on Evolutionary Computation in Combinatorial Optimization, pp. 148–159, 2012.
[82] E. Ozcan, B. Bilgin, and E. E. Korkmaz, “A comprehensive analysis of hyper-heuristics,” Intelligent Data Analysis, vol. 12, pp. 3–23, Jan. 2008.
[83] E. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S. Petrovic, J. Vázquez-Rodríguez, and M. Gendreau, “Iterated local search vs. hyper-heuristics: Towards general-purpose search algorithms,” in Evolutionary Computation, pp. 1–8, 2010.
[84] M. Misir, T. Wauters, K. Verbeeck, and G. V. Berghe, “A new learning hyper-heuristic for the traveling tournament problem,” in Proceedings of Metaheuristic International Conference, 2009.
[85] E. Ozcan, Y. Bykov, M. Birben, and E. Burke, “Examination timetabling using late acceptance hyper-heuristics,” in Evolutionary Computation, pp. 997–1004, 2009.
[86] C. W. Tsai, H. J. Song, and M. C. Chiang, “A hyper-heuristic clustering algorithm,” in IEEE International Conference on Systems, Man and Cybernetics, pp. 2839–2844, 2012.
[87] N. Pillay and W. Banzhaf, “A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem,” European Journal of Operational Research, vol. 197, no. 2, pp. 482– 491, 2009.
[88] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu, “A graph-based hyper-heuristic for educational timetabling problems,” European Journal of Operational Research, vol. 176, no. 1, pp. 177–192, 2007.
[89] J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptive algorithms,” SIGART bulletin, no. 63, pp. 49–49, 1977.
[90] G. Ochoa, J. Walker, M. Hyde, and T. Curtois, “Adaptive evolutionary algorithms and extensions to the hyflex hyper-heuristic framework,” in Parallel Problem Solving from Nature - PPSN XII, vol. 7492, pp. 418–427, Springer Berlin Heidelberg, 2012.
[91] E. K. Burke, T. Curtois, G. Kendall, M. Hyde, G. Ochoa, and J. A. Vazquez Rodriguez, “Towards the decathlon challenge of search heuristics,” in Proceedings of Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pp. 2205–2208, 2009.
[92] E. Ozcan and A. Kheiri, “A hyper-heuristic based on random gradient, greedy and dominance,” in Computer and Information Sciences II, pp. 557–563, Springer London, 2012.
[93] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, B. McCollum, G. Ochoa, A. J. Parkes, and S. Petrovic, “The cross-domain heuristic search challenge; an international research competition,” in Proceedings of International Conference on Learning and Intelligent Optimization, pp. 631–634, 2011.
[94] T. Cichowicz, M. Drozdowski, M. Frankiewicz, G. Pawlak, F. Rytwi ́ ski, and J. Wasilewski, “Five phase and genetic hive hyper-heuristics for the cross-domain search,” in Proceedings of International Conference on Learning and Intelligent Optimization, pp. 354–359, 2012.
[95] J. Swan, E. Ozcan, and G. Kendall, “Hyperion –a recursive hyper-heuristic framework,” in Learning and Intelligent Optimization, vol. 6683, pp. 616–630, Springer Berlin Heidelberg, 2011.
[96] M. Maashi, K. Graham, and O. Ender, “A choice function based hyper-heuristic for multi-objective optimization.” Technical Report, 2013.
[97] J. Gomez and H. Terashima Mar ́n, “Approximating multi-objective hyper-heuristics forsolving 2d irregular cutting stock problems,” in Advances in Soft Computing, vol. 6438, pp. 349–360, Springer Berlin Heidelberg, 2010.
[98] M. Mısır, K. Verbeeck, P. D. Causmaecker, and G. V. Berghe, “An investigation on the generality level of selection hyper-heuristics under different empirical conditions,” Applied Soft Computing, vol. 13, no. 7, pp. 3335–3353, 2013.
[99] Z. Ren, H. Jiang, J. Xuan, and Z. Luo, “Ant based hyper heuristics with space reduction: a case study of the p-median problem,” in Proceedings of International Conference on Parallel Problem Solving from Nature, pp. 546–555, 2010.
[100] B. Kiraz, A. c. Uyar, and E. Ozcan, “An investigation of selection hyper-heuristics in dynamic environments,” in Proceedings of International Conference on Applications of Evolutionary Computation, pp. 314–323, 2011.
[101] J. Villela Tinoco and C. Coello Coello, “hypDE: A Hyper-Heuristic Based on Differential Evolution for Solving Constrained Optimization Problems,” in EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, vol. 175 of Advances in Intelligent Systems and Computing, pp. 267–282, Springer Berlin Heidelberg, 2013.
[102] S. Abdullah, N. Sabar, M. Nazri, H. Turabieh, and B. McCollum, “A constructive hyper-heuristics for rough set attribute reduction,” in Intelligent Systems Design and Applications, pp. 1032–1035, 2010.
[103] E. Krempser, A. Fialho, and H. Barbosa, “Adaptive operator selection at the hyper-level,” in Parallel Problem Solving from Nature - PPSN XII, vol. 7492, pp. 378–387, Springer Berlin Heidelberg, 2012.
[104] G. Uluda ̆ , B. Kiraz, A. Etaner-Uyar, and E. Ozcan, “A Framework to Hybridize PBILB and a Hyper-heuristic for Dynamic Environments,” in Parallel Problem Solving from Nature - PPSN XII, vol. 7492, pp. 358–367, Springer Berlin Heidelberg, 2012.
[105] C. W. Pickardt, T. Hildebrandt, J. Branke, J. Heger, and B. Scholz-Reiter, “Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems,” International Journal of Production Economics, no. 0, 2012.
[106] R. N. Calheiros, R. Ranjan, C. A. F. De Rose, and R. Buyya, “Cloudsim: A novel framework for modeling and simulation of cloud computing infrastructures and services,” Computing Research Repository, vol. abs/0903.2525, 2009.
[107] G. Ochoa, J. Walker, M. Hyde, and T. Curtois, “Adaptive evolutionary algorithms and extensions to the hyflex hyper-heuristic framework,” in Parallel Problem Solving from Nature, 2012.
[108] Y. Zhao, M. Wilde, I. Foster, J. Voeckler, T. Jordan, E. Quigg, and J. Dobson, “Grid middleware services for virtual data discovery, composition, and integration,” in Proceedings of workshop on Middleware for grid computing, pp. 57–62, 2004.
[109] A. O’Brien, S. Newhouse, and J. Darlington, “Mapping of scientific workflow within the e-protein project to distributed resources,” in In UK e-Science All Hands Meeting, pp. 404–409, 2004.
[110] R. Kolisch and A. Sprecher, “PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program,” European Journal of Operational Research, vol. 96, no. 1, pp. 205–216, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊