跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇柏榮
研究生(外文):Bo-Rung Su
論文名稱:矽鍺異質接面雙載子電晶體等效電路模型建立
論文名稱(外文):The equivalent circuit modeling for Silicon Germanium Heterojunction Bipolar Transistor
指導教授:李杰穎李杰穎引用關係
指導教授(外文):Chie-In Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:48
中文關鍵詞:電感性振盪崩潰區崩潰網路游離衝撞
外文關鍵詞:Breakdown regionInductiveImpact ionizationOscillationBreakdown network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本文修正了傳統的矽鍺異質接面雙載子電晶體的小訊號等效電路模型,於內質基極-集極(BC)接面加入了崩潰網路來模型化元件操作在崩潰區情況下的輸出特性,並準確的擬合到量測的散射參數。當基極-集極接面游離衝撞效應明顯時,產生的崩潰電洞流以及崩潰電子流會使得S11產生振盪特性以及S22產生電感性現象。本文藉由直流(DC)與射頻(RF)的量測來探討其崩潰機制以及如何影響到輸入端與輸出端的阻抗特性,使得修正後的小訊號模型能夠擬合到一般工作區以及崩潰區的散射參數。
This thesis proposes a modified small signal model for silicon germanium heterojunction bipolar transistor (SiGe HBT). The breakdown network in the intrinsic base-collector (BC) junction is used to model the output characteristics in the breakdown region, and it shows good agreement between the measured and simulated S-parameters. When the impact ionization in the BC junction becomes significant, the generated breakdown hole current and breakdown electron current will result in the oscillation in S11 and inductive S22, respectively. We investigate the breakdown mechanism and the affect on the input and output impedance from the direct current (DC) and radio frequency (RF) measurements, and the modified small signal model can accurately fit the measured S-parameters both in the active and breakdown regions.
目錄
頁次
目錄----------------------------------------------------------------------------------------I
圖目錄-----------------------------------------------------------------------------------III
表目錄-----------------------------------------------------------------------------------V
第一章 緒論-----------------------------------------------------------------------------1
1.1 研究背景與動機--------------------------------------------------------------1
1.2 章節規劃-----------------------------------------------------------------------1
第二章 垂直結構矽鍺異質接面雙載子電晶體的基本操作特性--------------3
2.1 異質接面雙載子電晶體直流操作特性-----------------------------------3
2.2 異質接面雙載子電晶體崩潰電壓特性-----------------------------------5
2.3 異質接面雙載子電晶體直流崩潰特性-----------------------------------6
2.4 異質接面雙載子電晶體的直流倍增因子M-1--------------------------9
2.4.1固定VBE量測直流倍增因子---------------------------------------9
2.4.2固定IE量測直流倍增因子---------------------------------------10
第三章 射頻操作下的崩潰特性--------------------------------------12
3.1 S11的振盪特性--------------------------------------------12
3.2 S22的電感現象-----------------------------------------15
3.3 傳統異質接面雙載子電晶體小訊號模型------------------------------17
第四章 異質接面雙載子電晶體崩潰模型建立----------------------------------20
4.1修正的異質接面雙載子電晶體小訊號模型----------------------------20
4.2小訊號模型參數萃取------------------------------------------------------22
4.3內質模型S11與S22推導------------------------------------------------25
4.4崩潰網路萃取與小訊號擬合結果----------------------------------------27
4.5不同摻雜濃度元件的崩潰效應探討-------------------------------------33
第五章 結論與未來展望-------------------------------------------------------------36
參考文獻--------------------------------------------------------------------------------37
[1]G. Niu, J. D. Cressler, S. Zhang, U. Gogineni, and D. C. Ahlgren, &;quot;Measurement of collector-base junction avalanche multiplication effects in advanced UHV/CVD SiGe HBT''s,&;quot; IEEE Trans. Electron Devices, vol. 46, no. 5, pp. 1007-1015, May. 1999.
[2]P. F. Lu and T. C. Chen, &;quot;Collector-base junction avalanche effects in advanced double-poly self-aligned bipolar transistors,&;quot; IEEE Trans. Electron Devices, vol. 36, no. 6, pp. 1182-1188, Jun. 1989.
[3]E. Zanoni, E. F. Crabbe, J. M. C. Stork, P. Pavan, G. Verzellesi, L. Vendrame, and C. Canali, &;quot;Extension of impact-ionization multiplication coefficient measurements to high electric fields in advanced Si BJT''s,&;quot; IEEE Electron Device Lett., vol. 14, no. 2, pp. 69-71, Feb. 1993.
[4]G. Niu, J. D. Cressler, U. Gogineni, and D. L. Harame, &;quot;Collector-base junction avalanche multiplication effects in advanced UHV/CVD SiGe HBTs,&;quot; IEEE Electron Device Lett., vol. 19, no. 8, pp. 288-290, Aug. 1998.
[5]K. Sakui, T. Hasegawa, T. Fuse, S. Watanabe, K. Ohuchi, and F. Masuoka, &;quot;A new static memory cell based on the reverse base current effect of bipolar transistors,&;quot; IEEE Trans. Electron Devices, vol. 36, no. 6, pp. 1215-1217, Jun 1989.
[6]SiGe Heterojunction Bipolar Transistors: Wiley, 2003.
[7]M. E. Elta and G. I. Haddad, &;quot;Mixed tunneling and avalanche mechanisms in p-n junctions and their effects on microwave transit-time devices,&;quot; IEEE Trans. Electron Devices, vol. 25, no. 6, pp. 694-702, Jun. 1978.
[8]M. Isler and K. Schunemann, &;quot;Impact-ionization effects on the high-frequency behavior of HFETs,&;quot; IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 858-863, Mar. 2004.
[9]C. I. Lee, W. C. Lin, and Y. T. Lin, &;quot;Modeling Inductive Behavior of MOSFET Scattering Parameter S22 in the Breakdown Regime &;quot; IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 502-508, Mar. 2012.
[10]S. Bousnina, P. Mandeville, A. B. Kouki, R. Surridge, and F. M. Ghannouchi, &;quot;Direct parameter-extraction method for HBT small-signal model,&;quot; IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 529-536, Feb. 2002.
[11]H. Y. Chen, K. M. Chen, G. W. Huang, and C. Y. Chang, &;quot;Small-signal modeling of SiGe HBTs using direct parameter-extraction method,&;quot; IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2287-2295, Sep. 2006.
[12]H. Y. Chen, K. M. Chen, G. W. Huang, and C. Y. Chang, &;quot;An improved parameter extraction method of SiGe HBTs'' substrate network,&;quot; IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 321-323, Jun. 2006.
[13]T. Wen-Bin, W. Che-Ming, and H. Yue-Ming, &;quot;A New Extraction Technique for the Complete Small-Signal Equivalent-Circuit Model of InGaP/GaAs HBT Including Base Contact Impedance and AC Current Crowding Effect,&;quot; Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 10, pp. 3641-3647, Oct. 2006.
[14]T. R. Yang, J. M. L. Tsai, C. L. Ho, and R. Hu., &;quot;SiGe HBT''s Small-Signal Pi Modeling,&;quot; IEEE Trans. Microw. Theory Tech., vol. 55, no. 7, pp. 1417-1424, Jul. 2007.
[15]J. L. Olvera-Cervantes, J. D. Cressler, J. L. Medina-Monroy, T. Thrivikraman, B. Banerjee, and J. Laskar, &;quot;A New Analytical Method for Robust Extraction of the Small-Signal Equivalent Circuit for SiGe HBTs Operating at Cryogenic Temperatures,&;quot; IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 568-574, Mar. 2008.
[16]C. I. Lee, W. C. Lin, C. C. Chen, Y. T. Lin, and Y. T. Lee, &;quot;A novel four-port de-embedding method and the parametric extraction of MOSFETs,&;quot; in Proc. PIERS, Cambridge, MA, Jul. 2010, pp. 377-380.
[17]C. I. Lee, V. H. Ngo, and D. S. Pan, &;quot;Inductance probing into the semiconductor breakdown,&;quot; Applied Physics Letters, vol. 89, no. 17, pp. 172112-172112-3, Oct. 2006.
[18]W. N. Grant, &;quot;Electron and hole ionization rates in epitaxial silicon at high electric fields,&;quot; Solid-State Electronics, vol. 16, no. 10, pp. 1189-1203, Oct. 1973.
[19]S. M. Sze, Physics of Semiconductor Device, 2nd ed. New Jersey: John Wiley &; Sons, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top