|
1.Z.L. Wang, “Nanogenerators for self-powered devices and systems,” Georgia Institute of Technology, Atlanta, USA, ISBN 978-1-4507-8016-2, 2011. 2.G.J. Wang, W.C. Yu, Y.H. Lin, H. Yang, “Modeling and fabrication of a piezoelectric vibration-induced micro power generator,” Journal of Chinese Institute of Engineers, Vol. 29, No. 4, pp. 697-706, 2006. 3.C.B. Williams, R.B. Yates, “Analysis of a micro-electric generator for microsystems,” Sensors and Actuators a Physical, Vol. 50, pp. 8-11, 1996. 4.S. Watanabe, T. Fujiu, “PZT thin film actuator/sensor for atomic force microscope,” Procedure of 10th IEEE International Symposium on Applications of Ferroelectrics, Vol. 1, pp. 199-204, 18–21 August, 1996. 5.P.G. Jones, S.P. Beeby, N.M. White, “Towards a piezoelectric vibration-powered microgenerator,” IEE Proceedings - Science Measurement and Technology, Vol. 148, No. 2, pp. 69-72, 2001. 6.S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, “Improving power output for vibration-based energy scavengers,” Energy Harvesting &; Conservation, Vol. 4, No. 1, pp. 28-36, 2005. 7.H.B. Fang, J.Q. Liu, Z.Y. Xu, L. Donga, L. Wang, D. Chen, B.C. Cai, Y. Liu, “Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,” Microelectronics Journal, Vol. 37, pp.1280-1284, 2006. 8.E. Minazara, D. Vasic, F. Costa, G. Poulin, “Piezoelectric diaphragm for vibration energy harvesting,” Ultrasonics, Vol. 44, No. 1, pp. e699-e703, 2006. 9.S. Kulkarni, E. Koukharenko, J. Tudor, S. Beeby, T. O’Donnell, S. Roy, “Fabrication and test of integrated micro-scale vibration based electromagnetic generator,” IEEE Solid-State Sensors, Actuators and Microsystems Conference, pp. 879-882, 2007. 10.T. O’Donnell, C. Saha, S. Beeby, J. Tudor, “Scaling effects for electromagnetic vibrational power generators,” microsystem technologies, Vol. 13, No. 11-12, pp. 1637-1645, 2007. 11.S. Kulkarni, E. Koukharenko, R. Torah, J. Tudor, S. Beeby, T. O’Donnell, S. Roy, “Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator,” Sensors and Actuators A: Physical, pp. 1-7, 2007. 12.S.I. Kim, D.H. Lee, Y.P. Lee, Y.S. Chang, M.C. Park, “Low frequency properties of micro power generator using a gold electroplated coil and magnet,” Current Applied Physics, Vol. 8, No. 2, pp. 138-141, 2008. 13.W. Ma, R. Zhu, L. Rufer, Y. Zohar, M. Wong, “An integrated floating-electrode electric microgenerator,” IEEE Journal of Microelectromechanical Systems, Vol. 16, No. 1, pp. 29-37, 2007. 14.C. Serre, A. Pe′rez-Rodrı′guez, N. Fondevilla, E. Martincic, S. Martı′nez, J.R. Morante, J. Montserrat, J. Esteve, “Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators,” Microsystem Technologies, Online First, pp. 653- 658, 2007. 15.C. Giordano, I. Ingrosso, M.T. Todaro, G. Maruccio, S. De Guido, R. Cingolani, A. Passaseo, M. De Vittorio, “AlN on polysilicon piezoelectric cantilevers for sensors/actuators,” Microelectronic Engineering, Vol. 86, No. 4, pp. 1204-1207, 2009. 16.P.H. Chen, S.C. Lin, “Wind-powered piezo generators,” The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON), Taipei, Taiwan, pp. 2163- 2168, 2007. 17.J.Q. Liu, H.B. Fang, Z.Y. Xu, X.H. Mao, X.C. Shen, D. Chen, H. Liao, B.C. Cai, “A MEMS-based piezoelectric power generator array for vibration energy harvesting,” Microelectronics Journal, Vol. 39, pp. 802-806, 2008. 18.Noël E. Dutoit, Brian L. Wardle, and S.G. Kim, “Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters,” Integrated Ferroelectrics, Taylor &; Francis, Vol. 71, pp. 121-160, 2005. 19.D. Shen, J.H. Park, J. Ajitsaria, S.Y. Choe, H. C Wikle III and D.J. Kim, “The design, fabrication and evaluation of a mems pzt cantilever with an integrated Si proof mass for vibration energy harvesting,” Journal of Micromechanics and Microengineering, Vol. 18, pp. 1–7, 2008. 20.S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P.K. Wright, “Improving power output for vibration-based energy scavengers,” IEEE Pervasive Computing, Vol. 4, No. 1, pp. 28–36, 2005. 21.J.Q. Liu, H.B. Fang, Z.Y. Xu, X.H. Mao, X.C. Shen, D. Chen, H. Lia and B.C. Cai, “A MEMS-based piezoelectric power generator array for vibration energy harvesting,” Microelectronics Journal, Vol. 39, pp. 802–806, 2008. 22.G.H. Feng, J.C. Hung, “Optimal FOM designed piezoelectric microgenerator with energy harvesting in a wide vibration bandwidth,” Proc. of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 511–514, 2007. 23.J.Y. Chang and M. Gutierrez, “Self-powered kinetic energy harvesters for seek-induced vibrations in hard disk drives,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 4, No. 1, pp. 96–106, 2010. 24.B.S. Lee, S.C. Lin, W.J. Wu, X.Y. Wang, P.Z. Chang and C.K. Lee, “Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film,” Journal of Micromechanics and Microengineering, Vol. 19, 065014, 2009. 25.S.C. Lin, B.S. Lee, W.J. Wu, C.K. Lee, “Multi-cantilever piezoelectric MEMS generator in energy harvesting,” Ultrasonics Symposium (IUS), 2009 IEEE International, pp. 755–758, 2009. 26.Daisuke. Koyamau and Kentaro. Nakamura, “Electric power generation using vibration of a polyurea piezoelectric thin film,” Applied Acoustics, Vol. 71, pp. 439–445, 2010. 27.I. Patel, E. Siores, and T. Shah, “Utilisation of smart polymers and ceramic based piezoelectric materials for scavenging wasted energy,” Sensors and Actuators A: Physical, Vol. 159, pp. 213–218, 2010. 28.Y.B. Jeong, R. Sood, J.H. Jeong and S.G. Kim, “MEMS power generator with transverse mode thin film PZT,” Sensors and Actuators A-Physcial, Vol. 122, pp. 16–22, 2005. 29.C.T. Pan, Z.H. Liu, Y.C. Chen, W.T. Chang, Y.J. Chen, “Study of vibration-induced broadband flexible piezoelectric ZnO micro-harvester with storage system,” 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Beijing, pp. 1669-1672, 2011. 30.A.E. Rakhshani, J. Kokaj, J. Mathew, B. Peradeep, “Successive chemical solution deposition of ZnO films on flexible steel substrate: structure, photoluminescence and optical transitions,” Applied Physics A, Vol. 86, pp. 377-383, 2007. 31.C.T. Pan, Z.H. Liu, Y.C. Chen, C.F. Liu, “Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates,” Sensors and Actuators A-Physcial, Vol. 159, No. 1, pp. 96-104, 2010. 32.B. Mayer, “Highly conductive and transparent films of tin and fluorine doped indium oxide produced by APCVD,” Thin Solid Films, Vol. 221, pp. 166-182, 1992. 33.F. Zhu, C.H.A. Huan, K. Zhang, A.T.S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films, Vol. 359, No. 2, pp. 244-250, 2000. 34.R.B.H. Tahar, T. Ban, Y. Ohya and Y. Takahashi, “Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique,” Journal of Applied Physics, Vol. 83, No. 4, pp. 2139-2141, 1998. 35.K. Zhang, F. Zhu, C.H.A. Huan, A.T.S. Wee, “Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method,” Journal of Applied Physics, Vol. 86, No. 2, pp. 974-980, 1999. 36.L.J. Meng, M.P. dos Santos, “Properties of indium tin oxide (ITO) films prepared by R.F. reactive magnetron sputtering at different pressures,” Thin Solid Films, Vol. 303, pp. 151-155, 1997. 37.H.Y. Young, N. Popovich, E. Chason, D. C Paine, “A study of the effect of process oxygen on stress evolution in D.C. magnetron-deposited tin-doped indium oxide,” Thin Solid Films, Vol. 411, No. 1, pp. 17-22, 2002. 38.C.C. White, M.R. Vanlandingham, P.L. Drzal, N.K. Chang, S.H. Chang, “Viscoelastic characterization of polymers using instrumented indentation. I. quasi-static testing,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 43, No. 14, pp. 1794-1811, 2005. 39.C.C. White, M.R. Vanlandingham, P.L. Drzal, N.K. Chang, S.H. Chang, “Viscoelastic characterization of polymers using instrumented indentation. II. dynamic testing,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 43, No. 14, pp. 1812-1824, 2005. 40.P.K. Mehrotra, D.T. Qunito, “Techniques for evaluating mechanical-properties of hard coatings,” Journal of Vacuum Science &; Technology, Vol. 3, No. 6, pp. 2401-2405, 1985. 41.T.W. Wu, J. Frommer, “Micro-indentation and scanning probe microscopy to assess multilayer magnetic film damage,” Journal of Magnetism and Magnetic Materials, Vol. 219, No. 1, pp. 142-152, 2000. 42.J. Valli, “A review of adhesion test method of thin hard coatings,” Journal of Vacuum Science &; Technology A: Vacuum, Surfaces, and Films, Vol. 4, No. 6, pp. 3007-3014, 1986. 43.K.L. Mittal, “Adhesion Measurement of thin films,” Electrocomponent Science and Technology, Vol. 3, pp. 21-42, 1976. 44.A.C.M. Yang, T.W. Wu, “Wear and friction in glassy polymers: microscratch on blends of polystyrene and poly,” Journal of Polymer Science Part B: Polymer Physics, Vol. 35, No. 9, pp. 1295-1309, 1997. 45.J.E. Greene, J. Woodhouse, M. Pestes, “A technique for detecting critical loads in the scratch test for thin-film adhesion,” Review of Scientific Instruments, Vol. 45, No. 6, pp. 747-749, 1974. 46.B. Bhushan, B.K. Gupta, M.H. Azarian, “Nanoindentation, microscratch, friction and wear studies of coating for contact recording applications,” Wear, Vol. 181, pp. 743-758, 1995. 47.F.P. Bowden, A.J.W. Moore, D. Tabor, “The ploughing and adhesion of sliding metals,” Journal of Applied Physics, Vol. 14, pp. 80-91, 1943. 48.D. Beegan, S. Chowdhury, M.T. Laugier, “Comparison between- nanoindentation and scratch test hardness (scratch hardness) values of copperthin films on oxidised silicon substrates,” Surface &; Coatings Technology, Vol. 201, No. 12, pp. 5804-5808, 2007. 49.A. Amaral, C. Nunes de Carvalho, P. Brogueria, G. Lavareda, L.V. Melo, M.H. Godinho, “ITO properties on anisotropic flexible transparent cellulosic substrates under different stress conditions,” Material Science and Engineering: B, Vol. 118, pp. 183-186, 2005. 50.D.A. Wang and H.H. Ko, “Piezoelectric energy harvesting from flow-induced vibration,” Journal of Micromechanics and Microengineering, Vol. 20, No. 2, 025019, pp. 1-9, 2010. 51.Z.H. Liu, C.T. Pan, Y.C. Chen, “Zinc oxide/aluminum-based selfpowering storage system fabricated using selectively direct-write ultraviolet-curable resin method,” Journal of Intelligent Material Systems and Structures, Vol. 0, pp. 1-14, 2012. 52.A.V Quintero, D. Briand, P. Janphuang, J.J. Ruan, R. Lockhart, N.F.D. Rooij “Vibration energy harvesters on plastic foil by lamination of PZT thick sheets,” IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), January 29-February 2, Paris, France, pp. 1289-1292, 2012. 53.W.T. Chang, Y.C. Chen, K.S. Kao, Y.H. Chu, C.C. Cheng, “Design and fabrication of a double-sided piezoelectric transducer for harvesting vibration power,” Thin Solid Films, Vol. 0, pp. 1-6, 2012. 54.D.A. Wang, N.Z. Liu, “A shear mode piezoelectric energy harvester based on a pressurized water flow,” Sensors and Actuators A: Physical, Vol. 167, No. 2, pp. 449-458, 2011. 55.X. Chen, S.Y. Xu, and N. Yao, “1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers,” Nano Letters, Vol. 10, pp. 2133-2137, 2010. 56.G. Zhu, R.S. Yang, S.H. Wang and Z.L. Wang, “Flexible high-output nanogenerator based on lateral ZnO nanowire array,” Nano Letters, Vol. 10, pp. 3151-3155, 2010. 57.D. Sun, C. Chang, S. Li, L.W. Lin, “Near-field electrospinning,” Nano Letters, Vol. 6, No. 4, pp. 839-842, 2006. 58.C. Chang, K. Limkrailassiri, L.W. Lin, “Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns,” Applied Physics Letters, Vol. 93, No. 12, 123111, 2008. 59.Y.K. Fuh, S. Chen, and J.S.C. Jang, “Direct-write, well-aligned chitosan-poly (ethylene oxide) nanofibers deposited via near-field electrospinning,” Journal of Macromolecular Science, Part A : Pure and Applied Chemistry, Vol. 49, pp. 845-850, 2012. 60.Z.L. Wang, “Energy harvesting for self-powered nanosystems”, Nano Research, Vol. 1, No.1, pp. 1-8, 2008. 61.Z.L. Wang, J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays”, Science Magazine, Vol. 312, No. 5771, pp. 242-246, 2006. 62.Y.F. Lin, J. Song, Y. Ding, S.Y. Lu, Z.L. Wang, “Piezoelectric nanogenerator using CdS nanowires”, Applied Physics Letters, Vol. 92, No. 2, pp. 1-3, 2008. 63.Z. Wang, J. Hu, A.P. Suryavanshi, K.Yum, M.F. Yu, “Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load”, Nano Letters, Vol. 7, No. 10, pp. 2966-2969, 2007. 64.C.T. Huang, J. Song, W.F. Lee, Y. Ding , Z. Gao, Y. Hao, L.J. Chen, Z.L. Wang, “GaN nanowire arrays for high-output nanogenerators”, Journal of the American Chemical Society, Vol. 132, No. 13, pp. 4766-4771, 2010. 65.T.H. Fang, P.H. Hsieh, J.H. Tsai, “Fabrication and dynamic characteristics of piezoelectric nanogenerator system with ZnO nanorods”, Journal of the Vacuum Society, Vol. 22, No. 3, pp. 17-22, 2009. 66.Z.H. Liu, C.T. Pan, W.C. Wang, and Y.C. Chen, “Flexible high-output piezoelectric energy-harvesting system based on a serial bi-morph of (002) c-axis-preferred orientation zno thin film,” 15th International Conference on Advances in Materials &; Processing Technologies (AMPT 2012), September 23-26, University of Wollongong, Australia, 2012. 67.R.C. Lin, K.S. Kao, C.C. Cheng, Y.C. Chen, “Deposition and structural properties of R.F. magnetron sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device,” Thin Solid Films, Vol. 516, pp. 5262-5265, 2008. 68.C. Giordano, I. Ingrosso, M.T. Todaro, G.. Maruccio, S. De Guido, R. Cingolani, A. Passaseo and M. De Vittorio, “AlN on polysilicon piezoelectric cantilevers for sensors/actuators,” Microelectronic Engineering, Vol. 86, No. 4, pp. 1204-1207, 2009. 69.J. Chang, M. Dommer, C. Chang, L.W. Lin, “Piezoelectric nanofibers for energy scavenging applications,” Nano Energy, Vol. 1, No. 3, pp. 356-371, 2012. 70.R.L. Johnson, “Characterization of piezoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers,” Master’s Thesis, Iowa State University, 2005. 71.T. Shibata, K. Unno, E. Makino, Y. Ito, S. Shimada “Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe,” Sensors and Actuators A, Vol. 102, pp. 106-113, 2002. 72.M.N. Kamalasanan, S. Chandra, “Sol-gel synthesis of ZnO thin films,” Thin Solid Films, Vol. 288, No. 112, 1996. 73.F.D. Paraguay, W.L. Estrada, D.R.N. Acosta, E. Andrade, M. Miki-Yoshida, “Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis,” Thin Solid Films, Vol. 350, No. 1-2, pp.192-202, 1999. 74.H. Funakubo, N. Mizutani, M. Yonetsu, A. Saiki, K. Shinozaki, “Orientation control of ZnO think film prepared by CVD”, Journal of Electroceramics, Vol. 4:S1, pp. 25-32, 1999. 75.K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe, S. Fujita, S. Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO,” Journal of Crystal Growth, Vol. 209, No.2-3, pp. 522-525, 2000. 76.T. Yamamoto, T. Shiosaki, A. Kawabata, “Characterization of ZnO piezoelectric films prepared by R.F. planar-magnetron sputtering,” Journal of Applied Physics, Vol. 51, No.6, pp. 3113-3120, 1980. 77.J. Molarius, J. Kaitila, T. Pensala, M. Ylimlammi, “Piezoelectric ZnO films by R.F. sputtering,” Journal of Material Science: Materials in Electronics, Vol. 14, No. 5-7, pp. 431-435, 2003. 78.R. Ondo-Ndong, G. Ferblantier, F. Pascal-Delannoy, A. Boyer, A. Foucaran, “Electrical properties of zinc oxide sputtered thin films, Microelectronics Journal,” Vol. 34, No. 11, pp. 1087-1092, 2003. 79.J.G.E. Gardeniers, Z.M. Rittersma, G.J. Burger, “Preferred orientation and piezoelectricity in sputtered ZnO films, Journal of Applied Physics,” Vol. 83, No. 12, pp. 7844-7854, 1998. 80.W.T. Chang, Y.C. Chen, R.C. Lin, C.C. Cheng, K.S. Kao, Y.C. Huang, B.R. Wu, “Design and fabrication of a piezoelectric transducer for wind-power generator,” Thin Solid Films, Vol. 519, No. 15, pp. 4687-4693, 2011. 81.P.T. Hsieh, Y.C. Chen,, K.S. Kao, C.M. Wang, “Structural effect on UV emission properties of high-quality ZnO thin films deposited by R.F. magnetron sputtering,” Physica B, Vol. 392, No. 1-2, pp. 332–336, 2007 82.D.H. Cho, D.Y. Kim, B.H. Kim, J.P. Jun, J.S. Park, J.B. Lee, “Properties of AlN films grown by two-step deposition and characteristics of AlN-FBAR devices,” Ultrasonics Symposium IEEE, Vol. 3, pp. 1702-1705, 2004. 83.E.M. Bachari, G. Baud, S.B. Amor, M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films, Vol. 348, pp. 165-168, 1999. 84.R.C. Lin, Y.C. Chen, K.S. Kao, “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators,” Applied Physics A: Materials Science &; Processing ,Vol. 89, No. 2, pp. 475-479, 2007. 85.W.A. Yee, M. Kotaki, Y. Liu, X. Lu, “Morphology, polymorphism behavior and molecular orientation of electrospun poly (vinylidene fluoride) fibers”, Polymer, Vol. 48, No. 2, pp. 512-521. 2007. 86.A. Theron, E. Zussman, A.L. Yarin, “Electrostatic field-assisted alignment of electrospun nanofibers”, Nanotechnology, Vol. 12, No. 3, pp. 384-390, 2001. 87.D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of Applied Physics, Vol. 87, No. 9, pp. 4531-4547, 2000. 88.S.F. Fennessey, R.J. Farris, “Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns”, Polymer, Vol. 45, No. 12, pp. 4217-4225, 2004. 89.K.W. Kim, K.H. Lee, M.S. Khil, Y.S. Ho, H.Y. Kim, “The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly (ethylene terephthalate) nonwovens”, Fibers and Polymers, Vol. 5, No. 2, pp. 122-127, 2004. 90.D. Li, Y. Wang, Y. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays”, Nano Letters, Vol. 3, No. 8, pp. 1167-1171, 2003. 91.S.A. Theron, E. Zussman, A.L. Yarin, “Experimental investigation of the governing parameters in the electrospinning of polymer solutions”, Polymer, Vol. 45, No. 6, pp. 2017-2030, 2004. 92.J. Pu, X. Yan, Y. Jiang, C. Chang, L.W. Lin, “Piezoelectric actuation of a direct write electrospun PVDF fiber”, IEEE 23th International Conference on Micro Electro Mechanical Systems (MEMS), January 24-28, Hong Kong, pp. 1163-1166, 2010. 93.Y. Qi, N.T. Jafferis, K. Lyons, C.M. Lee, H. Ahmad, M.C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion”, Nano Letters, Vol. 10, No. 2, pp. 524-528, 2010. 94.F. Li, W. Liu, C. Stefanini, X. Fu, P. Dario, “A novel bioinspired PVDF micro/nano hair receptor for a robot sensing system”, Sensor, Vol. 10, No. 1, pp. 994-1011, 2010. 95.D. Farrar, K. Ren, D. Cheng, S. Kim, W. Moon, W.L. Wilson, J.E. West, S.M. Yu, “Permanent polarity and piezoelectricity of electrospun α-helical poly(α-amino acid) fibers”, Advanced Materials, pp. 1-5, 2011. 96.Y.K. Fuh, L.C. Lien, S.Y. Chen, “High-throughput production of nanofibrous mats via a porous materials electrospinning process”, Journal of Macromolecular Science, Part B: Physics, Vol. 51, pp. 1742-1749, 2012. 97.C. Chang, K. Limkrailassiri, L.W. Lin, “Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns,” Applied Physics Letters, Vol. 93, No, 12, 123111, 2008. 98.C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L.W. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano Letters, Vol. 10, pp. 726-731, 2010. 99.Z. Zhao, J. Li, X. Yuan, X. Li, Y. Zhang, J. Sheng, “ Preparation and properties of electrospun poly(vinylidene fluoride) membranes,” Journal of Applied Polymer Science, Vol. 97, pp. 466-474, 2005. 100.Y.J. Zhang, Z.D. Zhao, W.X. Yu, “Preparation and characterizations of PVDF/MWCNT nanocomposites,” Polymer Materials Science and Engineering, Vol. 26, No. 6, pp. 141-144, 2010. 101.J. Pu, X. Yan, Y. Jiang, C. Chang, L. Lin “Piezoelectric actuation of direct-write electrospun fibers,” Sensors and Actuators A: Physical, Vol. 164, No.1, pp.131-136, 2010. 102.Z.L. Wang, J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, Vol. 312, pp. 242-246, 2006. 103.Y. Qin, X. Wang, Z.L. Wang, “Microfibre-nanowire hybrid structure for energy scavenging,” Nature, Vol. 451, pp. 809-813, 2008. 104.R. Yang, Y. Qin, L. Dai and Z.L. Wang, “Power generation with laterally packaged piezoelectric fine wires,” Nature Nanotechnology, Vol. 4, pp. 34-39, 2008. 105.G. Zhu, R. Yang, S. Wang, Z.L. Wan, “ Flexible high-output nanogenerator based on lateral ZnO nanowire array,” Nano Letters, Vol. 10, pp. 3151-3155, 2010. 106.S.N. Cha, J.S. Seo, S.M. Kim, H.J. Kim, Y.J. Park, S.W. Kim, “Sound-driven piezoelectric nanowire-based nanogenerators,” Advanced Materials, Vol. 22, pp. 4726-4730, 2010. 107.J. Chang, M. Dommer, C. Chang, L.W. Lin, “Piezoelectric nanofibers for energy scavenging applications,” Nano Energy, Vol. 1, pp. 356-371, 2012. 108.X. Chen, S. Xu, N. Yao, W. Xu, Y. Shi, “Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator,” Applied Physics Letters, Vol. 94, pp. 253113-253113-3, 2009. 109.G. Zhang, S. Xu, Y. Shi, “Electromechanical coupling of lead zirconate titanate nanofibres,” Micro &; Nano Letters, Vol. 6, pp. 59-61, 2011. 110.R. Yang, Y. Qin, L. Dai, Z.L. Wang, “Power generation with laterally packaged piezoelectric fine wires,” Nature Nanotechnology, Vol. 4, pp. 34-39, 2008. 111.Daniel C.S. Bien, Neil S.J. Mitchell, Harold S. Gamble, “Micro-machined passive valves: Fabrication techniques, characterisation and their application,” Springer US, pp. 741-800, 2006. 112.F. Lu, H.P. Lee, S.P. Lim, “Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications,” Smart Materials and Structures, Vol. 13, No. 1, pp. 57-63, 2004. 113.A.C. Ugural, “Stresses in plates and shells,” 2nd Ed., New York: McGraw-Hill, 1999. 114.D.T. Detwiler, M.-H.H. Shen, V.B. Venkayya, “Finite element analysis of laminated composite structures containing distributed piezoelectric actuators and sensors,” Finite Elements in Analysis and Design, Vol. 20, No. 2, pp. 87-100, 1995. 115.W.S. Hwang, H.C. Park, “Finite element modeling of piezoelectric sensors and actuators,” American Institute of Aeronautics and Astronautics, Vol. 31, No. 5, pp. 930-937, 1993. 116.J.W. Sohn, S.B. Choi, D.Y. Lee, “An investigation on piezoelectric energy harvesting for MEMS power sources,” J. Mechanical Engineering Science, Vol. 219, No. C4, pp. 429-36, 2005. 117.S.N. Chen, G.J. Wang, M.C. Chien, “Analytical modeling of piezoelectric vibration-induced micro power generator,” Mechatronics, Vol. 16, No. 7, pp. 379-387, 2006. 118.J. Pu, R. Sochol, Y. Jiang, L.W. Lin, “Microfluidic channels fabricated using a lithography-free method,” 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), June 5-9, Beijing, China, 2011. 119.S. Maruo, K. Ikuta, “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization,” Sensors and Actuators A-Physcial, Vol. 100, No. 1, pp. 70-76, 2002. 120.M.Y. Chang, J.J. Kuo, “The study of deposited ITO films on flexible substrates by R.F. sputtering technology at room temperature,” Taiwan Photonics Society, 2004. 121.R.Y. Yang, M.H. Weng, C.T. Pan, C.M. Hsiung, C.C. Huang, “Low-temperature deposited ZnO thin films on the flexible substrate by cathodic vacuum arc technology,” Applied Surface Science, Vol. 257, No. 16, pp. 7119-7122, 2011. 122.P.T. Hsieh, H.S. Chin, P.K. Chang, C.M. Wang, Y.C. Chen, M.P. Houng, “Effects of the annealing environment on green luminescence of ZnO thin films,” Physica B, Vol. 405, pp. 2526- 2529, 2010. 123.C.T. Pan, Z.H. Liu, Y.C. Chen, “Study of broad bandwidth vibrational energy harvesting system with optimum thickness of PET substrate,” Current Applied Physics, Vol. 12, No. 3, 2011. 124.P.T. Hsieh, Y.C. Chen, K.S. Kao, C.M. Wang, “Structural effect on UV emission properties of high-quality ZnO thin films deposited R.F. magnetron sputtering,” Physica B: Condensed Matter, Vol. 392, No. 1-2, pp. 332-336, 2007. 125.B. Lin, Z. Fu, Y. Jia, G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions”, Journal of the Electrochemical Society, Vol. 148, No. 3, G110–G113, 2001. 126.C.T. Pan, S.C. Shen, C.Y. Lin, “Study of interface mechanical properties between thin-film Au and polymethyl methacrylate,” Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 7, No. 4, 043013, pp. 1-8, 2008. 127.Y.K. Fuh, L.C. Lien, J.S.C. Jang, “Comparative study of polyvinylidene fluoride nanofibrous membranes prepared by continuous near-field and conventional electrospinning processes,” Micro &; Nano Letters, Vol. 7, No. 4, pp. 376-379, 2012. 128.S.Y. Gu, Q.L. Wu, J. Ren, G. Julius Vancso, “Mechanical properties of a single electrospun fiber and its structures,” Macromolecular Rapid Communications, Vol. 26, No. 9, pp. 716-720, 2005. 129.W.A. Yee, M. Kotaki, Y. Liu, X. Lu, “Morphology polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers,” Polymer, Vol. 48, No. 2, pp. 512–521, 2007. 130.C. Chang, Y.K. Fuh, L.W. Lin, “A Direct-write piezoelectric PVDF nanogenerator,” 15th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Jun, American, 2009. 131.S. Huang, W.A. Yee, W.C. Tjiu, Y.Liu, M. Kotaki, Y.C.F. Boey, J. Ma, T. Liu, X. Lu, “Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures,” Langmuir, Vol. 24, No.23, pp. 13621-13626, 2008. 132.W.T. Chang, Y.C. Chen, R.C. Lin, C.C. Cheng, K.S. Kao, Y.C. Huang, “Wind-power generators based on ZnO piezoelectric thin films on stainless steel substrates,” Current Applied Physics, Vol. 11, No. 1, pp. S333-S338, 2011. 133.A. Amaral, C. Nunes de Carvalho, P. Brogueria, G. Lavareda, L.V. Melo, M.H. Godinho, “ITO properties on anisotropic flexible transparent cellulosic substrates under different stress conditions,” Material Science and Engineering: B, Vol. 118, No. 1-3, pp. 183-186, 2005. 134.A. Amaral, C. Nunes de Carvalho, P. Brogueria, L. V. Melo, G. Lavareda, M. H. Godinho, “Transport properties of indium tin oxide on anisotropic flexible transparent cellulosic substrates,” Materials Research Society Symposium Proceedings, Vol. 725, pp. 4.1.1, 2002. 135.C.T. Pan, T.T. Wu, C.F. Liu, C.Y. Su, W.J. Wang, J.C. Huang, “Study of scratching Mg-based BMG using nanoindenter with Berkovich probe,” Material Science and Engineering: A, Vol. 527, No. 9, pp. 2342-2349, 2010. 136.T. Kayaba, K. Hokkirigawa, K. Kato, “Analysis of abrasive wear mechanism by successive observation of wear process in SEM,” Wear, Vol. 110, No. 3-4, pp. 419-430, 1986. 137.M. Neidhöfer, F. Beaume, L. Ibos, A. Bernès, C. Lacabanne, “Structural evolution of PVDF during storage or annealing ,” Polymer, Vol. 45, No. 5, pp. 1679-1688, 2004. 138.R. He, X.L. Feng, M.L. Roukes, P. Yang, “Self-transducing silicon nanowire electromechanical systems at room temperature,” Nano Letters, Vol. 8, No. 6, pp. 1756–1761, 2008. 139.Z.L. Wang, “Towards self-powered nanosystems: From nanogenerators to nanopiezotronics,” Advanced Functional Materials, Vol. 18, No. 22, pp. 3553-3567, 2008. 140.J. Sirohi, I. Chopra, “Fundamental understanding of piezoelectric strain sensors,” Journal of Intelligent Material Systems and Structures, Vol. 11, No. 4, pp. 246-275, 2000.
|