跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:唐淑靜
研究生(外文):Shu-jing Tang
論文名稱:線性微分方程振盪性的專題研究
論文名稱(外文):Topics on Oscillations of Linear Differential Equations
指導教授:羅春光羅春光引用關係
指導教授(外文):Chun-Kong Law
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:56
中文關鍵詞:套疊原理振盪性Hartman 判別法半線性微分方程
外文關鍵詞:oscillationtelescoping principlehalf-linear differential equationsHartman&apos&aposs test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:1
這篇論文是延續之前顏玟檍和蕭婉玲的碩士論文。我們首先研究 Kwong 和 Zettl [8]提出的線性方程的套疊原理。此原理指出,我們可以藉由移除原勢能函數 a(x) 在定義域上的某些區間之後所形成的新勢能函數 a_1 (x) 的研究來確定原線性微分方程是否具有振盪性。此原理有一些應用。特別的是,它能助於確定附有振盪性勢能函數,甚至是週期性勢能函數的微分方程的振盪性。我們更仔細的去研究對於任何的實數 γ, y''+x^γ ϕ(x)y=0 此方程的振盪性。在這裡 ϕ(x) 是一個片段連續、具有 T 週期性並且 ∫_0^T ϕ(x)dx=0 的函數。而這個結果似乎是新的。
另外,套疊原理與其部分應用也可以延伸至半線性微分方程。
This thesis is a follow-up of the studies carried out in two previous theses by W.I. Yen and W.L. Hsiao. We first investigate the telescoping principle introduced by Kwong and Zettl [8]. By the principle, one can determine whether a linear differential equation is oscillatory or not by trimming off some intervals in the domain of the potential function a(x) and studying the new function a_1 (x) .
The principle has a number of implications. In particular, it helps to determine the oscillation of a differential equation with oscillatory potentials, and even periodic potentials. We shall study in detail the oscillation of the equation y''+x^γ ϕ(x)y=0, for any γ∈R . Here ϕ(x) is a piecewise continuous T-periodic function such that ∫_0^T ϕ(x)dx=0. This result seems to be new.
The telescoping principle and some of its implications can also be extended to half-linear equations.
1 Introduction........................1
2 Integral inequalities and linear oscillation....................8
2.1 Integral inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Telescoping principle and oscillation theorem . . . . . . . . . . . . . . . 10
3 Differential Equations with Oscillatory Potentials...................19
3.1 Willett''s test for class O and class NO . . . . . . . . . . . . . . . . . . . . . .19
3.2 Oscillatory potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
3.3 Periodic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Converse of telescoping principle . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Half-Linear Equations........................................40
4.1 Integral inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Telescoping principle and oscillation theorem . . . . . . . . . . . . . . . 41
1. G.D. Birkhoff and G.C. Rota, Ordinary Differential Equations, John Wiley and
Sons, New York, 1989.
2. O. Dosly and P. Rehak, Half-linear Differential Equations, Amsterdam; Boston:
Elsevier, 2005.
3. W.B. Fite, Concerning the zeros of the solutions of certain differential equations,
Trans. Amer. Math. Soc. 19 (1918), 341-352.
4. P. Hartman, Ordinary Differential Equations, S.M. Hartman, Baltimore, 1973.
5. E. Hille, Nonoscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234-252.
6. W.L. Hsiao, Comparison and Oscillation Theorems for Second Order Half-linear
Differential Equations, National Sun Yat-sen University, Kaohsiung, 2012.
7. Q. Kong, Interval criteria for oscillation of second order linear ordinary differential equations, J. of Math.
Anal. and Appl., 229 (1999), 258-270.
8. M.K. Kwong and A. Zettl, Integral inequalities and second order linear oscillation,
Journal of Differential Equations, Vol. 45 (1982), 16-33.
9. M.K. Kwong and A. Zettl, A new approach to second order linear oscillation
theory, Ordinary differential equations and R.T. operators : a tribute to F.V.
Atkinson : Proceedings of a Symposium held at Dundee, Scotland, March-July,
1982 / edited by W.N. Everitt and Lewis, Springer, New York (1983), 328-345.
10. W. Leighton, On self-adjoint differential equations of second order, J. London
Math. Soc. 27 (1952), 37-47.
11. Z. Opial, Sur les integrales oscillantes de l''equation differentielle u^''+f(t)u=0,
Ann. Polon. Math. 4 (1958), 308-313.
12. C.A. Swanson, Comparison and Oscillation Theory of Linear Differential Equa-
tions, Academic Press, New York, 1968.
13. W.R. Wade, An Introduction to Analysis, Pearson, Upper Saddle River, 2010.
14. A. Wintner, A criteria of oscillatory stability, Quant. Appl. Math. 7 (1949), 115-
117.
15. J.S.W. Wong, Oscillation and nonoscillation of solutions of second order linear
differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144
(1969), 197-215.
16. W.I. Yen, Comparison and Oscillation Theorems for Second Order Linear Differential Equations, National
Sun Yat-sen University, Kaohsiung, 2011.
17. A. Zettl, Sturm-Liouville Theory, American Mathematical Society, Providence,
2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top