|
1. G.D. Birkhoff and G.C. Rota, Ordinary Differential Equations, John Wiley and Sons, New York, 1989. 2. O. Dosly and P. Rehak, Half-linear Differential Equations, Amsterdam; Boston: Elsevier, 2005. 3. W.B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), 341-352. 4. P. Hartman, Ordinary Differential Equations, S.M. Hartman, Baltimore, 1973. 5. E. Hille, Nonoscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234-252. 6. W.L. Hsiao, Comparison and Oscillation Theorems for Second Order Half-linear Differential Equations, National Sun Yat-sen University, Kaohsiung, 2012. 7. Q. Kong, Interval criteria for oscillation of second order linear ordinary differential equations, J. of Math. Anal. and Appl., 229 (1999), 258-270. 8. M.K. Kwong and A. Zettl, Integral inequalities and second order linear oscillation, Journal of Differential Equations, Vol. 45 (1982), 16-33. 9. M.K. Kwong and A. Zettl, A new approach to second order linear oscillation theory, Ordinary differential equations and R.T. operators : a tribute to F.V. Atkinson : Proceedings of a Symposium held at Dundee, Scotland, March-July, 1982 / edited by W.N. Everitt and Lewis, Springer, New York (1983), 328-345. 10. W. Leighton, On self-adjoint differential equations of second order, J. London Math. Soc. 27 (1952), 37-47. 11. Z. Opial, Sur les integrales oscillantes de l''equation differentielle u^''+f(t)u=0, Ann. Polon. Math. 4 (1958), 308-313. 12. C.A. Swanson, Comparison and Oscillation Theory of Linear Differential Equa- tions, Academic Press, New York, 1968. 13. W.R. Wade, An Introduction to Analysis, Pearson, Upper Saddle River, 2010. 14. A. Wintner, A criteria of oscillatory stability, Quant. Appl. Math. 7 (1949), 115- 117. 15. J.S.W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969), 197-215. 16. W.I. Yen, Comparison and Oscillation Theorems for Second Order Linear Differential Equations, National Sun Yat-sen University, Kaohsiung, 2011. 17. A. Zettl, Sturm-Liouville Theory, American Mathematical Society, Providence, 2005.
|