跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 13:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖建欽
研究生(外文):Chien-Chin Liao
論文名稱:閩江口海島及陸域大氣懸浮微粒濃度季節變化趨勢分析及污染源貢獻量探討
論文名稱(外文):Seasonal Variation and Source Apportionment of Atmospheric Aerosols at Inland and Offshore Islands of Minjiang Estuary
指導教授:袁中新袁中新引用關係
指導教授(外文):Chung-Shin Yuan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:177
中文關鍵詞:傳輸路徑分析受體模式主成份分析化學成份分析閩江口PM10懸浮微粒
外文關鍵詞:Minjiang EstuaryPM10chemical composition analysisPCACMBtransport route analysis
相關次數:
  • 被引用被引用:25
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
近年來,大陸地區經濟及工業快速發展,石化燃料消耗量及人為污染物的排放量均大幅增加,導致環境污染問題日益嚴重。馬祖地區緊鄰閩江口,與大陸福州僅一水之隔,島上並無大型經濟開發及人為污染,現今仍保有純淨的生態環境,然而其空氣品質卻不若台灣本島鄉村地區佳,甚至較部分都市空氣品質污染更為嚴重。基於此區域之獨特地理環境,本研究乃將閩江口週邊之馬祖地區及福州地區視為相同空品區,並針對該空品區之懸浮微粒污染來源加以探討。
本研究於2012年7月至2013年5月期間在閩江口海域(馬祖)及陸域(福州)地區設置6處採樣點,分別於不同季節進行PM10懸浮微粒採樣,並針對所採集之懸浮微粒進行化學成份分析,藉以瞭解閩江口海域及陸域之大氣懸浮微粒特性。此外,為釐清該區域之污染來源種類及貢獻率,本研究亦利用主成份分析、化學質量平衡受體模式配合逆軌跡模擬等不同方法,進行懸浮微粒污染來源種類及貢獻量之解析,並探討不同季節之差異性。
由PM10濃度季節變化得知,除夏季期間閩江口海陸域之PM10濃度較其他季節為低,而秋、冬、春等東北季風吹襲期間,PM10濃度亦普遍較高。就PM10濃度空間分佈而言,則主要呈現西邊(陸域)較高且東邊(海域)較低的情形,其中梅花中學於不同季節之PM10濃度均普遍高於其他測站,然而此濃度高低分佈情形與季風風向遞減效應並不一致,顯示閩江口海陸域除受到長程傳輸影響外,亦與福州地區背景濃度及大氣擴散條件有密切關係。
由化學成份分析結果顯示,各季節水溶性離子均以二次無機性氣膠(SIA)為主,約佔水溶性離子成份70%左右,其中又以SO42-及NO3-居多,導致閩江口海陸域懸浮微粒中和比值(NR)均小於1。此結果顯示境外傳輸將上風區酸性污染物吹送至閩江口,使得懸浮微粒呈現偏酸性。金屬元素則以Al、Ca、Fe、K、Mg為主要物種,而其他微量金屬元素(如:Cd、As、Ni及Cr)濃度在東北季風盛行期間均呈上升趨勢。不論在何種季節碳成份均以有機碳(OC)為主,OC/EC值普遍高於2.2,且金屬元素成份及碳成份濃度均呈現陸域高於海域之情形。
就懸浮微粒污染源種類及貢獻量而言,閩江口海陸域主要以逸散性揚塵、二次衍生性氣膠、交通污染源、海鹽飛沫、農廢燃燒為主;而秋季過後及空氣品質劣化期間,傳輸路徑以北方傳輸型及高壓迴流型為主,污染源種類較多且貢獻率較高,其中工業污染源貢獻量約成長8倍左右,與夏季背景貢獻量差異甚大,顯示受到境外長程傳輸污染物移入之影響嚴重。
In recent years, due to rapid economic and industrial development of mainland China, significant increases in fossil fuel consumption and anthropogenic emissions of air pollutants cause increasing environmental pollution problems. Matsu Islands located at the Minjiang Estuary faces Fuzhou in mainland. The islands have no large-scale industries and pollution sources, which conserve the islands as an ecological environment. However, the ambient air quality is worse than the rural areas of Taiwan, and even more serious than urban air quality. Due to the unique meteorological and geographical environment, Matsu and Fuzhou areas surrounding the Minjiang Estuary are treated at the same air quality zone for investigating their sources of suspended particles.
In this study, six sites were selected to collect PM10 samples from July 2012 to April 2013, respectively located at offshore (Matsu) and inland (Fuzhou) region for different seasons. The chemical composition of PM10 was then analyzed to characterize the PM10 sampled at inland and offshore regions. Additionally, in order to clarify the region''s pollution sources and their contributions, this study applied principal component analysis (PCA), chemical mass balance (CMB) receptor model, and backward trajectory simulation methods to understand the source apportionment of suspended particles, and to explore their variation for different seasons.
The results showed lower average PM10 concentration in summer, and higher concentration in the northeast monsoon period. From the perspective of spatial distribution, PM10 concentration increased from the west to the east. The PM10 concentrations observed at MH site were generally higher than other sites for all seasons. However, the spatial distribution of PM10 was inconsistent with the seasonal prevailing wind direction, showing that ambient PM10 at Minjiang Estuary was not only influenced by long-range transportation, but also by local emissions from Fuzhou.
Chemical composition analysis showed that most abundant water-soluble ionic species of PM10 were secondary inorganic aerosols (SO42-, NO3-, and NH4+) which accounted for 70% of total ions, resulting in NR of suspended particles less than unity at Minjiang Estuary. These results indicated that the upwind acidic pollutants transferred to the Minjiang Estuary, making rendered acidic aerosols. For all seasons, the major metallic elements of suspended particles were Al, Ca, Fe, K, Mg, other trace metals (eg: Cd, As, Ni and Cr) concentration increased during the northeast monsoon period. Organic carbons (OC) was the main species of carbon for all seasons, thus OC/EC ratio was generally higher than 2.2. The spatial distribution showed that metallic elements and carbon components had relatively higher concentrations at inland than those at offshore.
Results from PCA and CMB receptor model showed that major sources of ambient PM10 at Minjiang Estuary were soil dusts, secondary inorganic aerosols, transportation emissions, sea salts, and biomass burning. During the northeast monsoon and poor air quality periods, the contribution of industrial pollution grew eight times, and cross-boundary transportation accounted for 55~77% of total PM concentrations, showing that ambient air quality was significantly affected by cross-boundary transport at Minjiang Estuary.
中文摘要 I
英文摘要 III
目錄 V
表目錄 VIII
圖目錄 X
第一章 前言 1-1
1-1 研究緣起 1-1
1-2 研究目的 1-2
1-3 研究範圍與架構 1-2
第二章 文獻回顧 2-1
2-1 馬祖地區環境概況 2-1
2-1-1 地理位置及人口 2-1
2-1-2 氣候概況 2-2
2-1-3 馬祖地區空氣品質概況 2-4
2-2 懸浮微粒物化特性 2-6
2-3 懸浮微粒化學成份 2-8
2-3-1 水溶性離子成份 2-8
2-3-2 金屬元素成份 2-13
2-3-3 碳成份 2-15
2-4 海域氣膠特性 2-17
2-5 逆軌跡模式之應用 2-20
2-6 富集因子分析 2-22
2-7 主成份分析 2-23
2-8 CMB模式推估懸浮微粒來源 2-25
第三章 研究方法 3-1
3-1 懸浮微粒採樣規劃 3-1
3-1-1 採樣地點 3-1
3-1-2 採樣時間 3-2
3-2 懸浮微粒採樣方法與原理 3-2
3-3 懸浮微粒質量濃度與化學成份分析方法 3-3
3-3-1 質量濃度量測方法 3-4
3-3-2 水溶性離子成份分析方法 3-4
3-3-3 金屬元素成份分析方法 3-5
3-3-4 碳成份分析方法 3-6
3-4 品保與品管 3-7
3-4-1 採樣方法之品保品管 3-7
3-4-2 分析方法之品保品管 3-8
3-5 大氣懸浮微粒之污染源解析法 3-10
3-5-1 等濃度空間分佈 3-10
3-5-2 逆軌跡模式模擬 3-10
3-5-3 富集因子分析法 3-10
3-5-4 主成份分析法 3-11
3-5-5 化學質量平衡受體模式 3-12
第四章 結果與討論 4-1
4-1 例行性採樣期間馬祖地區氣象條件分析 4-1
4-1-1 風速及風向 4-1
4-1-2 相對溼度 4-3
4-2 懸浮微粒濃度季節變化趨勢分析 4-5
4-3 懸浮微粒化學成份分析 4-12
4-3-1 水溶性離子成份季節變化趨勢分析 4-12
4-3-2 金屬元素成份季節變化趨勢分析 4-25
4-3-3 碳成份季節變化趨勢分析 4-26
4-4 密集採樣期間懸浮微粒物化特性變化趨勢 4-36
4-5 懸浮微粒傳輸路徑分析 4-52
4-6 富集因子分析法 4-59
4-7 主成份分析 4-61
4-8 化學質量平衡受體模式解析 4-70
第五章 結論與建議 5-1
5-1 結論 5-1
5-2 建議 5-3
參考文獻…………………………………………………………………R-1
附錄A 分析儀器之品保品管…………………………………..……A-1
附錄B 分析儀器之檢量線……………………………..……………B-1

表目錄
頁次
表 2.1馬祖地區人口統計表 2-2
表 2.2馬祖地區現有車輛、船舶及航空運輸數量統計 2-2
表 2.3馬祖地區氣候資料彙整表 2-3
表 2.4連江縣歷年空氣品質彙整表 2-4
表 2.5大氣懸浮微粒粒徑分佈 2-7
表 2.6各污染源排放懸浮微粒主要成份一覽表 2-26
表 2.7 PM10及PM2.5污染源貢獻量分析 2-29
表 3.1採樣位置一覽表 3-2
表 3.2元素分析儀操作參數一覽表 3-7
表 4.1例行性採樣期間盛行風向一覽表 4-1
表 4.2例行性採樣期間相對濕度彙整表 4-4
表 4.3採樣期間海陸域懸浮微粒濃度之季節變化一覽表 4-5
表 4.4夏季採樣期間海陸域及各採樣點之水溶性離子濃度彙整表 ..4-13
表 4.5秋季採樣期間海陸域及各採樣點之水溶性離子濃度彙整表 ..4-14
表 4.6冬季採樣期間海陸域及各採樣點之水溶性離子濃度彙整表 ..4-15
表 4.7春季採樣期間海陸域及各採樣點之水溶性離子濃度彙整表 ..4-16
表 4.8採樣期間海陸域懸浮微粒之氯損失彙整表 4-18
表 4.9不同季節之二次無機性氣膠(SIA)彙整表 4-19
表 4.10採樣期間南竿鄉懸浮微粒硫氧化率及氮氧化率表 4-23
表 4.11夏季採樣期間海陸域金屬元素濃度彙整表 4-27
表 4.12秋季採樣期間海陸域金屬元素濃度彙整表 4-27
表 4.13冬季採樣期間海陸域金屬元素濃度彙整表 4-28
表 4.14春季採樣期間海陸域金屬元素濃度彙整表 4-28
表 4.15閩江口海陸域地殼元素濃度彙整表 4-30
表 4.16採樣期間海陸域碳成份濃度一覽表 4-32
表 4.17水溶性離子、金屬元素及碳成份百分比彙整表 4-34
表 4.18密集採樣期間SIA濃度及所佔離子百分比 4-44
表 4.19密集採樣期間海陸域氯損失及[Cl-]/[Na+]一覽表 4-44
表 4.20密集採樣期間海陸域碳成份濃度彙整表 4-50
表 4.21密集採樣期間懸浮微粒化學成份分佈百分比 4-51
表 4.22採樣期間懸浮微粒傳輸路徑彙整表 4-55
表 4.23夏季採樣期間主成份分析彙整表 4-63
表 4.24秋季採樣期間主成份分析彙整表 4-63
表 4.25冬季採樣期間主成份分析彙整表 4-67
表 4.26春季採樣期間主成份分析彙整表 4-67
表 4.27密集採樣期間主成份因子負荷矩陣表 4-68
表 4.28受體模式解析之指紋資料庫彙整表 4-71
表 4.29閩江口海陸域夏季期間CMB模擬結果 4-72
表 4.30閩江口海陸域秋季期間CMB模擬結果 4-72
表 4.31閩江口海陸域冬季期間CMB模擬結果 4-74
表 4.32閩江口海陸域春季期間CMB模擬結果 4-74

圖目錄
頁次
圖 1.1研究架構流程圖 1-4
圖 2.1馬祖列島地理位置圖 2-1
圖 2.2 2011年馬祖地區四季風玫圖 2-4
圖 2.3 2006~2011年馬祖地區PM10濃度逐月變化趨勢圖 2-5
圖 2.4東引測站與台灣本島各測站懸浮微粒濃度時序圖 2-5
圖 2.5懸浮微粒粒徑分佈圖 2-8
圖 2.6水溶性離子中不同無機化合物在不同污染程度之分佈 2-11
圖 2.7北京PM10及PM2.5日平均濃度與地面輻射相關圖 2-11
圖 2.8世界各測站之AMS監測結果 2-12
圖 2.9逆軌跡模式模擬氣團傳輸路徑與其污染源貢獻量分佈 2-22
圖 2.10天津市PM10之污染源種類及貢獻率 2-28
圖 3.1本研究PM10採樣站位置圖 3-1
圖 3.2 PM10高量採樣器 3-3
圖 4.1夏季例行性採樣期間風玫圖 4-2
圖 4.2秋季例行性採樣期間風玫圖 4-2
圖 4.3冬季例行性採樣期間風玫圖 4-2
圖 4.4春季例行性採樣期間風玫圖 4-2
圖 4.5採樣期間風速逐時變化趨勢圖 4-3
圖 4.6採樣期間相對濕度逐時變化趨勢圖 4-4
圖 4.7夏季例行性採樣懸浮微粒濃度分佈圖 4-6
圖 4.8秋季例行性採樣懸浮微粒濃度分佈圖 4-7
圖 4.9冬季例行性採樣懸浮微粒濃度分佈圖 4-8
圖 4.10春季例行性採樣懸浮微粒濃度分佈圖 4-9
圖 4.11本研究採樣結果與環保署監測站PM10濃度測值比較圖 4-9
圖 4.12夏季採樣期間懸浮微粒等濃度分佈圖 4-10
圖 4.13秋季採樣期間懸浮微粒等濃度分佈圖 4-10
圖 4.14冬季採樣期間懸浮微粒等濃度分佈圖 4-11
圖 4.15春季採樣期間懸浮微粒等濃度分佈圖 4-11
圖 4.16例行性採樣期間不同季節水溶性離子濃度分佈圖 4-17
圖 4.17閩江口海陸域懸浮微粒氯損失及濾鈉比值分析圖 4-19
圖 4.18懸浮微粒中[NH4+]及[nss-SO42-]+[NO3-]關係圖 4-21
圖 4.19懸浮微粒中[NH4+]+[Na+]及[nss-SO42-]+[NO3-]關係圖 4-22
圖 4.20例行採樣期間不同季節硫氧化率 4-23
圖 4.21例行採樣期間不同季節氮氧化率 4-24
圖 4.22採樣期間陸域及鄰近海域之[NO3-]/[SO42-]比值 4-24
圖 4.23例行性採樣期間金屬元素濃度分佈圖 4-29
圖 4.24採樣期間海陸域懸浮微粒碳成份季節變化圖 4-30
圖 4.25海陸域懸浮微粒OC與EC相關趨勢及(OC/EC)min圖 4-33
圖 4.26懸浮微粒之水溶性離子、金屬元素及碳成份百分比圖 4-35
圖 4.27第一次密集採樣期間PM10懸浮微粒濃度分佈圖 4-37
圖 4.28第二次密集採樣期間PM10懸浮微粒濃度分佈圖 4-37
圖 4.29第一次密集採樣期間PM10等濃度圖(11月6日) 4-38
圖 4.30第一次密集採樣期間PM10等濃度圖(11月7日) 4-38
圖 4.31第一次密集採樣期間PM10等濃度圖(11月8日) 4-38
圖 4.32第一次密集採樣期間PM10等濃度圖(11月9日) 4-38
圖 4.33第一次密集採樣期間PM10等濃度圖(11月10日) 4-38
圖 4.34第二次密集採樣期間PM10等濃度圖(12月3日) 4-39
圖 4.35第二次密集採樣期間PM10等濃度圖(12月4日) 4-39
圖 4.36第二次密集採樣期間PM10等濃度圖(12月5日) 4-39
圖 4.37第二次密集採樣期間PM10等濃度圖(12月6日) 4-39
圖 4.38第二次密集採樣期間PM10等濃度圖(12月7日) 4-39
圖 4.39密集採樣期間[NO3-]/[SO42-]相關圖 4-42
圖 4.40密集採樣期間[NO3-]/[SO42-]比值分佈圖 4-42
圖 4.41密集採樣期間[NH4+]及[nss-SO42-]+[NO3-]關係圖 4-43
圖 4.42密集採樣期間[NH4+]+[Na+]及[nss-SO42-]+[NO3-]關係圖 4-43
圖 4.43第一次密集性採樣期間水溶性離子濃度分佈圖 4-45
圖 4.44第二次密集性採樣期間水溶性離子濃度分佈圖 4-46
圖 4.45第一次密集性採樣期間金屬元素濃度分佈圖 4-47
圖 4.46第二次密集性採樣期間金屬元素濃度分佈圖 4-48
圖 4.47密集採樣期間碳成份濃度比較圖(上:第一次密集採樣;
下:第二次密集採樣) 4-49
圖 4.48本研究污染氣團傳輸路徑類型彙整圖 4-54
圖 4.49不同傳輸路徑與PM10濃度相關圖 4-56
圖 4.50不同傳輸路徑與海域水溶性離子濃度相關圖 4-57
圖 4.51不同傳輸路徑與陸域水溶性離子濃度相關圖 4-57
圖 4.52不同傳輸路徑與海域金屬元素濃度相關圖 4-58
圖 4.53不同傳輸路徑與陸域金屬元素濃度相關圖 4-58
圖 4.54不同傳輸路徑與海陸域碳成份濃度相關圖 4-58
圖 4.55夏季期間閩江口海陸域以Al為參考元素之富集因子分析
圖 4-59
圖 4.56秋季期間閩江口海陸域以Al為參考元素之富集因子分析
圖 4-60
圖 4.57冬季期間閩江口海陸域以Al為參考元素之富集因子分析
圖 4-60
圖 4.58春季期間閩江口海陸域以Al為參考元素之富集因子分析
圖 4-60
圖 4.59第一次密集性採樣主成份分析因子負荷圖 4-69
圖 4.60第二次密集性採樣主成份分析因子負荷圖 4-69
圖 4.61閩江口海陸域例行性採樣懸浮微粒污染源種類及貢獻率 4-75
圖 4.62閩江口海陸域不同季節污染源貢獻量差異圖 4-76
Ackermann-Librich, U., Leuenberger, P., Schwartz, J., Schindler, C., SAPALDIA-term., “Lung function and long term exposure to air pollutants in Switzerland,” Journal of Respiratory and Critical Care Medicine, 155, 122-129, 1997.
Andreani-Aksoyoglu, S., Keller, J., Prevot, A.S.H., Baltensperger, U., and Flemming, J., “Secondary aerosols in Switzerland and northern Italy: Modeling and sensitivity studies for summer 2003,” Developments in Environmental Sciences, 6, 75-84, 2007.
Cao, J.J., Shen, Z., Chow, J.C., Qi, G., and Watson, J.G., “Seasonal variations and sources of mass and chemical composition for PM10 aerosols in Hangzhou, China,” Particuology, 7, 161-168, 2009.
Chang, S.G., Brodzinsky, R., Gundel, L.A., Novakov, T., “Chemical and catalytic properties of elemental carbon,Wolff, G.T., Klimisch, R.L. (Eds.), Particulate carbon: atmospheric life cycle,” Plenum Press, New York, 158-181, 1982.
Cheng, Y.H. and Tsai, C.J., “Evaporation loss of ammonium nitrate particles during filter sampling,“ Aerosol Science, 28(8), 1553-1567, 1997.
Cheng, Z.L., Lam, K.S., Chan, L.Y., Wang, T., and Cheng, K.K., “Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996” Atmospheric Environment, 34, 2771-2783, 2000.
Contini, D., Genga. A., Cesari, D., Siciliano, M., Donateo, A., Bove, M.C., and Guascito, M.R., “Characterisation and source apportionment of PM10 in an urban background site in Lecce,” Atmospheric Research, 95, 40-54, 2010.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., Richards, L.W., “PM10 and PM2.5 compositions in California''s San Joaquin Valley,” Aerosol Science and Technology. 18, 105-128, 1993.
Chow, J.C., Watson, J.G., Fujita, E.M., Lu, Z., and Lawson, D.R., “Temporal and spatial variation of PM2.5 and PM10 aerosols in the Southern California Air Quality Study,” Atmospheric Environment, 28, 2061-2080, 1994.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., and Green, M.C., “Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational Study,” Chemosphere, 54, 185-208, 2004.
Colbeck, I. and Harrison, R.M., “Ozone-secondary aerosol-visibility relationships in northwest England,” Science of the Total Environment, 34, 87-100, 1984.
Diana, G.T., Arantza, E.F., Pablo, C.F., Marisela, M.F., Armando R.H., Rafael R.V., and Antonio, H.M., “Effects of meteorology on diurnal and nocturnal levels of priority polycyclic aromatic hydrocarbons and elemental and organic carbon in PM10 at a source and a receptor area in Mexico City,” Atmospheric Environment, 43, 2693-2699, 2009.
Dongarrà, G., Manno, E., Varrica, D., and Vultaggio, M., “Mass levels, crustal component and trace elements in PM10 in Palermo, Italy,” Atmospheric Environment, 41, 7977-7986, 2007.
Fang, G.C., Lee, S.C., Lee, W.J., Cheng, Y., and Lin, I.C., “Characteristics of carbonaceous aerosol at Taichung Harbor, Taiwan during summer and autumn period of 2005,” Environmental Monitoring &; Assessment, 131, 501-508, 2007.
Feeley, J.A. and Liljestrand, H.M., “Source contributions to acid precipitation in Texas,“ Atmospheric Environment, 31, 295-300, 1983.
Fitzgerald, J.W., “Marine aerosols: A review,” Atmospheric Environment, 25A, 533-545, 1991.
Gao, X., Yang, L., Cheng, S., Gao, R., Zhou, Y., and Xue, L., “Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: temporal variations and source apportionments.” Atmospheric Environment, 45, 6048-6056, 2011.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., “Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles,” Environmental Science and Technology 20, 580-589, 1986.
He, Z., Kim, Y.J., Ogunjobi, K.O., and Hong, C.S., “Characteristics of PM2.5 species and long-range transport of air masses at Taean background station, South Korea,” Atmospheric Environment, 37, 219-230, 2003.
Hinds, W.C., “Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles,” John Willey &; Sons: New York, 1999.
Hopke, P.K., Casuccio, G.S., “Scanning Electron Microscopy”, Hopke, P.K., editor, “Receptor Modeling for Air Quality Management”, Elsevier Science Publishing Company Inc., New York, 149-212, 1991.
Huang, L.K., Yuan, C.S., Wang, G.Z., and Wang, K., “Chemical characteristics and source apportionment of PM10 during a brown haze episode in Harbin, China,” Particuology, 9(1), 32-38, 2011.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel M., Monn,C., and Vonmont, H. “Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland,” Atmospheric Environment, 39, 637-651, 2005.
Kaneyasu, N., Ohta, S., and Murao, N., “Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan,” Atmospheric Environment, 29, 1559-1568, 1995.
Kerminen, V.M., Teinilä, K., Hillamo, R., and Pakkanen, T., “Substitution of chloride in sea-salt particles by inorganic and organic anions,” Journal of Aerosol Science, 29, 929-942, 1998.
Kong, S.F., Han, B., Bai, Z.P., Chen, L., Shi, J.W., and Xu, Z., “Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China,” Science of the Total Environment, 408, 4681-4694, 2010.
Kim, B, G. and Park, S, U., “Transport and evolution of a winter-time Yellow sand observed in Korea.” Atmospheric Environment, 35, 3191-3201, 2001.
Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T. and Korhonen, P. “The effect of hygroscopicity on cloud droplet formation,” Journal of Aerosol Science, 26, 413-414, 1995.
Lee, C.G., Yuan, C.S., Chang, J.C., and Yuan, C., “Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan,” Journal of the Air &; Waste Management Association, 55, 1031-1041, 2005.
Li, T.C., Chen, W.H., Yuan, C.S., Wu, S.P., and Wang, X.H., “Physicochemical Characteristics and Source Apportionment of Atmospheric Aerosol Particles in Kinmen-Xiamen Airshed,” Aerosol and Air Quality Research, 13, 308-323, 2013.
Li, T.C., Wu, C.Y., Chen, W.H., Yuan, C.S., Wu, S.P., Wang, X.H., and Du, Ke., “Diurnal Variation and Chemical Characteristics of Atmospheric Aerosol Particles and their Source Fingerprints at Xiamen Bay,” Aerosol and Air Quality Research, 13: 596-607, 2013.
Li, Zhu., Ying, C., Lin, G., and Fujiang, W., “Estimate of dry deposition fluxes of nutrients over the East China Sea: The implication of aerosol ammonium to non-sea-salt sulfate ratio to nutrient deposition of coastal oceans,” Atmospheric Environment, 69, 131-138, 2013.
Lin, J.J., “Characterization of water-soluble ion species in urban particles,” Environment International, 28, 55-61, 2002.
Man, C.K. and Shih, M.Y., “Identification of sources of PM10 aerosols in Hong Kong by wind trajectory analysis,” Journal of Aerosol Science, 32, 1213-1223, 2001.
Manahan, S.E., “Environmental Chemistry,” 5th Edition, Lewis Publishers, Inc., Chelsea, 1991.
Mangelson, N.F., Lewis, L., Joseph, J.M., Cui, W., Machir, J., Williams, N.W., Eatough, D.J., Rees, L.B., Wilkerson, T., and Jensen, D.T., “The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley,” Journal of Air &; Waste Management Association, 47, 167-175,1997.
Marcazzan, G.M., Vaccaro, S., Valli, G., and Vecchi, R., “Characterization of PM10 and PM2.5 particulate matter in the ambient air of Milan, Italy,” Atmospheric Environment, 35, 4639-4650, 2001.
Masiol, M., Squizzato, S., Ceccato, D., Rampazzo, G., and Pavoni, B., “Determining the influence of different atmospheric circulation patterns on PM10 chemical composition in a source apportionment study,” Atmospheric Environment, 63, 117-124, 2012.
Mori, I., Nishikawa, M., Tanimura, T., and Quan, H., “Change in size distribution and chemical compostition of Kosa (Asian Dust) aerosol during long-range transporet,” Atmospheric Environment, 37, 4253-4263, 2003.
Na, K., Sawant, A.A., Song, C., and Cocker, III, D.R., “Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California,” Atmospheric Environment, 38, 1345-1355, 2004.
Pakkanen, T.A., “Study of formation of coarse particle nitrate aerosol,” Atmospheric Environment, 30, 2475-2482, 1996.
Park, S.S., Kim, Y.J., and Fung, K., “Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, South Korea, ” Atmospheric Environment, 35, 657-665, 2001.
Puxbaum, H. and Wopenka, B., “Chemical composition of nucleation and accumulation mode particles collected in Vienna, Austria,” Atmospheric Environment, 18, 573-580, 1984.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R. and Simoneit, B.R.T., “Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation,” Atmospheric Environment, 27A, 1309-1330, 1993.
Schwartz, J., “Particulate air pollution and chronnic respiratory disease.” Environmental Research, 62, 7-13, 1994.
Seaton, A., MacNee, W., Donaldson, K. and Godden, D., “Particulate air pollution and acute health effects,” Lancet, 345, 176-178, 1995.
Seinfeld, J.H. and Pandis, S.N., “Atmospheric Chemistry and Physics : from Air Pollution to Climate Change,” Wiley-Interscience, New York , 1998.
Srimuruganandam, B., Nagendra Shiva, S.M., “Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at urban roadside,” Science of the Total Environment, 433, 8-19, 2012.
Solomon, P.A. and Moyers, J.L., “Use of a high volume dichotomous virtual impactor to estimate light extinction due to carbon and related species in the Phoenix haze,” Science of the Total Environment, 36, 169-175, 1984.
Pillai, S.P., Babu, S.S. and Moorthy, K.K., “A study of PM, PM10 and PM2.5 concentration at a tropical coastal station,” Atmospheric Research, 61, pp146-167, 2002
Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., and Samara, C., “Chemical composition and mass closure of ambient PM10 at urban sites,” Atmospheric Environment, 44, 2231-2239, 2010.
Tsai, H.H., Yuan, C.S., Hung, C.H., and Lin, Y.C., “Comparing physicochemical properties of ambient particulate matter of hot spots in a highly polluted air quality zone,” Aerosol and Air Quality Research, 10, 331-344, 2010.
Tsai, Y.I. and Chen, C.L., “Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan,” Atmospheric Environment, 40, 4751-4763, 2006.
Turpin, B.J., Huntzicker, J.J., Larson, S.M., and Cass, G.R., “Los Angeles summer midday particulate organic carbon: primary and secondary aerosol,” Environmental Science &; Technology, 25, 1788-1793, 1991.
Turpin, B.J. and Huntzicker, J.J., “Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQR,” Atmospheric Environment, 29, 3527-3544, 1995.
Turias, I.J., González, F.J., Martín, M.L., and Galindo, P.L., “A competitive neural network approach form meteorological situation clustering,” Atmospheric Environment, 40, 532-541, 2006.
Wolf, G.T., Groblicki ,P.S., Cadle, S.H. and Countess, R., “Particulate Carbon at Various Location in the United States,” In Pariculate Carbon Atmospheric Life Cycle New York, NY : Plenum, 297-315, 1982.
Wall, S.M., John, W., and Ondo, J.L., “Measurement of aerosol size distributions for nitrate and major ionic species,” Atmospheric Environment, 22, 1649-1656 ,1988.
Wang, X., Bi, X., Sheng, G., and Fu, J., “Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China,” Environmental Monitoring and Assessment, 119, 425-439, 2006.
Watson, J.G., “Chemical element balance receptor model methodology for assessing the source of fine and total suspended partical matter in Portland, Oregon, ” PhD. Thesis of Oregon Graduate Center, 1979.
Watson, J.G., “The science of fine particulate matter,” Workshop on Sampling, Regulation, and Light Scattering Effects of PM2.5, 1-14, 1998.
Wedepohl, K.H., “The composition of the continental-crust,” Geochimica et Cosmochimica Acta, 59, 1217-1232, 1995
Whitby, K.T. and Sverdrup, G.M. “California aerosols: their physical and chamical characteristics,“ Environmental Science &; Technology, 9, 477-517, 1980.
Wu, L., Feng, Y., Wu, J., Zhu, T., Bi, X., Han, B., Yang, W., and Yang, Z., “Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China,” Journal of Environmental Sciences, 21, 1353-1362, 2009.
Yttri, K.E., Aas, W., Bjerke, A., Cape, J.N., Cavalli, F., Ceburnis, D., Dye, C., Emblico, L., Facchini, M.C., Forster, C., Hanssen, J.E., Hansson, H.C., Jennings, S.G., Maenhaut, W., Putaud, J.P., Tørseth K., “Elemental and organic carbon in PM10: a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP” Atmospheric Chemistry and Physics, 7, 5711-5725, 2007
Zhang, Q., Jimenez, J.L., Canagaratna, M.R., Allan, J.D., Coe, H., Ulbrich, I., Alfarra, M.R., Takami, A., Middlebrook, A.M., Sun, Y.L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P.F., Salcedo, D., Onasch, T., Jayne, J.T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin , R.J., Rautiainen, J., Sun, J.Y., Zhang, Y.M. and Worsnop, D.R. “Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes,” Geophysical Research Letters, 34, L13801, 2007.
Zhang, H., “An assessment of heavy metals contributed by industry in urban atmosphere from Nanjing, China,” Environmental Monitoring Assessment, 154, 451-458, 2009.
Zhang, K., Wang, Y., Wen, T., Meslmani, Y. and Murray, F., “Properties of nitrate, sulfate and ammonium in typical polluted atmospheric aerosols (PM10) in Beijing,”` Atmospheric Research, 84, 66-77, 2007.
Zhang, X. and McMurry, P.H., “Theoretical analysis of evaporative losses from impactor and filter deposits,“ Atmospheric Environment, 21, 1779-1789, 1987.
Zhao, J.P., Zhang, F.W., Xu,Y., and Chen, J.S., “Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen,” Atmospheric Research, 99, 546-562, 2011.
Zhuang H., Chen, C.K., Fang, M., and Wexler, A.S., “Formation of nitrate and non-sea-salt sulfate on coarse particles,” Atmospheric Environment, 33, 4223-4233, 1999.
黃宗正、李正綱、曾錦富,“台中發電廠南方空氣中懸浮微粒特性研究”,第九屆空氣污染控制技術研討會論文集,1992。
鄭淳志,“北桃地區懸浮微粒特性分析”,國立台灣大學環境工程研究所碩士論文,1992。
袁中新、袁景嵩、張瑞正、袁菁、張章堂,“台灣南部地區PM2.5及PM10之時空分佈趨勢探討”,第十五屆空氣汙染控制技術研討會論文集,1998。
楊靖民,“營建工地懸浮微粒重金屬元素之特徵”,國立成功大學環境工程學系碩士論文,1998。
賴順安,“鋼鐵廠煙道排放多環芳香烴化合物及金屬元素之特徵”,國立成功大學環境工程學系碩士論文,1999。
鄭曼婷,“台中沿海及都會區氣膠特性及來源分析”,國科會/環保署科技合作研究計劃期末報告,1999。
徐玉眉,“海鹽氣膠氯損失之研究”,國立台灣大學環境工程研究所碩士論文,2000。
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
王政權,“亞洲氣膠特性實驗-台灣北海岸春季氣膠化學特性”,國立中央大學環境工程研究所碩士論文,2001。
蔡瀛逸,“懸浮微粒之成份來源解析及管制策略探討”,高雄縣環境保護局研究計畫,2003。
邱嘉斌,“台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究”,國立中興大學環境工程學系碩士論文,2005。
黃元勳,“屏東郊區大氣微粒化學組成特性探討”,國立屏東科技大學環境工程與科學研究所碩士論文,2006。
袁中新、蔡協宏、林勳佑、黃明合、林志逢,“高污染空品區室外空氣污染熱區解析與暴露特性分析”,行政院國家科學委員會研究計劃報告,2006。
劉乙琦、蔡協宏、覃偉民、袁中新,“2002~2005年台灣地區沙塵暴長程傳輸路徑及沙塵物化特徵比較分析”,第二十五空氣污染控制技術研討會論文集,2007。
底宗鴻,“高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討”,國立中山大學環境工程研究所碩士論文,2008。
劉育甫、蔡協宏、袁中新、洪崇軒、林啟燦、錢立行,“海島地區懸浮微粒物化特性分析-以琉球嶼為例”,第六屆海峽兩岸氣膠技術研討會論文,2009。
鄭曼婷,“台中及南海地區大氣懸浮微粒的化學組成及其污染源貢獻量解析”,中華民國環境工程學會空氣污染控制技術研討會,2010。
李宗璋,“金廈地區懸浮微粒物化特性分析及污染源解析探討”,國立中山大學環境工程研究所碩士論文,2009。
蔡協宏,“南台灣陸域及鄰近海域受海陸風及東北季風影響之空氣污染物傳輸及擴散研究”,國立中山大學環境工程研究所博士論文,2010。
蕭雅文,“台中地區大氣懸浮微粒的金屬元素特性及其可能來源分析”,國立中興大學環境工程研究所碩士論文,2010。
林聖達,“台西地區大氣懸浮微粒化學組成分析及特性之研究”,環球科技大學環境資源管理研究所碩士論文,2011。
吳仲翼,“廈門灣大氣懸浮微粒濃度日夜變化趨勢分析及污染源指紋特徵探討”,國立中山大學環境工程研究所碩士論文,2011。
林育群,“以主成分分析探討大氣懸浮微粒中水溶性有機氮之研究”,國立臺灣海洋大學海洋環境資訊研究所碩士論文,2012。
温樵誼,“以逐時監測資料與最小有機碳/元素碳比值法推估二次有機碳含量之研究”,國立高雄第一科技大學環境與安全衛生工程研究所碩士論文,2012。
丁育頡,“台中都會區大氣懸浮微粒與氣象因子對盛行能見度之影響”,國立中興大學環境工程研究所碩士論文,2012。
謝政廷,“雲林地區河川揚塵及沙塵暴事件懸浮微粒之化學組成特性”,環球科技大學環境資源管理研究所碩士論文,2013。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊