跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊慕理
研究生(外文):Mu-Li Yang
論文名稱:道路佔領賽局中納許均衡之分析
論文名稱(外文):The Analysis of the Nash Equilibria in the Route-Capturing Game
指導教授:王弘倫
指導教授(外文):Hung-Lung Wang
學位類別:碩士
校院名稱:國立臺北商業技術學院
系所名稱:資訊與決策科學研究所
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:32
中文關鍵詞:資源分配問題賽局理論圖形賽局完全圖資源分配賽局
外文關鍵詞:resource allocation problemgame theorygraphical gamecomplete graphresource allocation game
相關次數:
  • 被引用被引用:0
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們的研究是專注在一種叫道路佔領賽局(route-capturing game)的策略賽局(strategic game)上。
在這種賽局中,玩家們用有限的預算競爭一組給定的資源。
這種賽局可以用一個圖形(graph)來表示,圖中的端點(vertex)代表玩家,而邊(edge)代表可被佔領的資源。
每個玩家都被給予相同的預算,並且可以把這些預算分配在這些邊,以有限的資源,盡可能佔領較多相鄰的邊。
針對這樣賽局 我們已經研究了部分種類的納許均衡(nash equilibrium)的存在條件。實驗的結果也展示了這些納許均衡的構造。
In this thesis,
we are concerned with a strategic game called the route-capturing game,
in which the players compete for a set of given resources with finite budgets.
The game is modeled with a graph,
where the vertices stands for the players,
and edges stands for the resources to be captured.
Given that each player has the same budget and can spends a bounded amount of budget to capture each edge,
properties of the Nash equilibria of some classes of the game are investigated.
Experimental results are also shown to characterize the constitution of the Nash equilibria.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 vi
表目錄 viii
圖目錄 ix
一、緒論 1
1.1 研究背景與動機 1
1.2 符號與術語定義 4
1.3 文獻探討 7
二、道路佔領賽局 10
2.1 問題定義 10
2.2 性質 11
2.3 (Kn, C, kC)的納許均衡 14
三、實驗結果 20
四、結論與未來研究方向 27
4.1 結論 27
4.2 未來研究方向 27
參考文獻 29
[1] K. I. Aardal, S. P. Van Hoesel, A. M. Koster, C. Mannino, and A. Sassano, "Models and Solution Techniques for Frequency Assignment Problems," Annals of Operations Research, vol. 153, no. 1, pp. 79--129, 2007.

[2] M. Beckmann, C. McGuire, and C. B. Winsten, "Studies in the Economics of Transportation," RAND Corporation, Tech. Rep., 1956.

[3] O. Berman and M. Cutler, "Resource Allocation During Tests for Optimally Reliable Software," Computers & Operations Research, vol. 31, no. 11, pp. 1847--1865, 2004.

[4] Y.-H. Chang, "New Efficient Encoding Method of Genetic Algorithms for Resource/Production Allocation Problems," Ph.D. Dissertation, National Central University, 2003.

[5] Y. Dai, M. Xie, K. Poh, and B. Yang, "Optimal Testing Resource Allocation with Genetic Algorithm for Modular Software Systems," Journal of Systems and Software, vol. 66, no. 1, pp. 47--55, 2003.

[6] G. Dan, "Cache-to-Cache: Could ISPs Cooperate to Decrease Peer-to-Peer Content Distribution Costs?" IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 9, pp. 1469--1482, 2011.

[7] E. Gelenbe and H. Shachnai, "On g-Networks and Resource Allocation in Multimedia Systems," European Journal of Operational Research, vol. 126, no. 2, pp. 308--318, 2000.

[8] M. M. Halldorsson and G. Kortsarz, "Tools for Multicoloring with Applications to Planar Graphs and Partial k-trees," Journal of Algorithms, vol. 42, no. 2, pp. 334--366, 2002.

[9] H. Huang, B. Zhang, S.-H.G. Chan, G. Cheung, and P. Frossard, Coding and Replication Co-Design for Interactive Multiview Video Streaming. Proceedings IEEE INFOCOM, 2012.

[10] R. Johari and J. N. Tsitsiklis, "A Scalable Network Resource Allocation Mechanism with Bounded Efficiency Loss," IEEE Journal on Selected Areas in Communications, vol. 24, no. 5, pp. 992--999, 2006.

[11] F. P. Kelly, A. K. Maulloo, and D. K. Tan, "Rate Control for Communication Networks: Shadow Prices, Proportional Fairness and Stability," Journal of the Operational Research Society, vol. 49, no. 3, pp.
237--252, 1998.

[12] F. H. Knight, "Some Fallacies in the Interpretation of Social Cost," The Quarterly Journal of Economics, vol. 38, no. 4, pp. 582--606, 1924.

[13] A. Leff, J. L. Wolf, and P. S. Yu, "Replication Algorithms in a Remote Caching Architecture," IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 11, pp. 1185--1204, 1993.

[14] A. Lova, C. Maroto, and P. Tormos, "A Multicriteria Heuristic Method to Improve Resource Allocation in
Multiproject Scheduling," European Journal of Operational Research, vol. 127, no. 2, pp. 408--424, 2000.

[15] A. Mas-Collel, M. D. Whinston, and J. Green, Microeconomic Theory. Oxford University Press , 1995.

[16] H. Moulin, "The Price of Anarchy of Serial, Average and Incremental Cost Sharing," Economic Theory, vol. 36, no. 3, pp. 379--405, 2008.

[17] R.B. Myerson, Game Theory: Analysis of Conflict. Harvard University Press, 1997.

[18] L. Narayanan, "Channel Assignment and Graph Multicoloring," Handbook of Wireless Networks and Mobile Computing, pp. 71--94, 2002.

[19] J. F. Nash, "Equilibrium Points in n-Person Games," Proceedings of the National Academy of Sciences, vol. 36, no. 1, pp. 48--49, 1950.

[20] J. von Neumann, "Zur Theorie Der Gesellschaftsspiele," Mathematische Annalen, vol. 100, no. 1, pp. 295--320, 1928.

[21] W. Novshek, "On the Existence of Cournot Equilibrium," The Review of Economic Studies, vol. 52, no. 1, pp. 85--98, 1985.

[22] V. Pacifici and G. Dan, "Convergence in Player-Specific Graphical Resource Allocation Games," IEEE Journal on Selected Areas in Communications, vol. 30, no. 11, pp. 2190--2199, 2012.

[23] R. Ramanathan and L. Ganesh, "Using AHP for Resource Allocation Problems," European Journal of Operational Research, vol. 80, no. 2, pp. 410--417, 1995.

[24] R. W. Rosenthal, "A Class of Games Possessing Pure-Strategy Nash Equilibria," International Journal of Game Theory, vol. 2, no. 1, pp. 65--67, 1973.

[25] T. Roughgarden, Selfish Routing and the Price of Anarchy. The MIT Press, 2005.

[26] J. M. Smith and G. Price, "The Logic of Animal Conflict," Nature, vol. 246, p. 15, 1973.

[27] R. Srikant, The Mathematics of Internet Congestion Control. Birkhauser Boston, 2004.

[28] E. Zermelo, Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, Proceedings of the Fifth International Congress of Mathematicians. Cambridge University Press, 1913.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top