跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 03:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳明儀
研究生(外文):Chen, Mingyi
論文名稱:以電石渣及碳酸鈉作為大豆油轉酯化反應催化劑之研究
論文名稱(外文):Biodiesel Production From Soybean Oil Catalyzed By CCR and Na2CO3
指導教授:陳錦章陳錦章引用關係
指導教授(外文):Chen, Chiingchang
口試委員:張嘉麟盧長興
口試委員(外文):Zhang, JialinLu, Changxing
口試日期:2012-08-17
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學應用與推廣學系科學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:117
中文關鍵詞:生質柴油鹼觸媒轉酯化反應電石渣碳酸鈉微波
外文關鍵詞:Biodieselsolid base catalysttransesterificationcalcium carbide residuesodium carbonatemicrowave
相關次數:
  • 被引用被引用:1
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討電石渣與碳酸鈉作為固態鹼觸媒進行轉酯反應生產生質柴油的可行性,並比較傳統加熱法與微波加熱法的能量消耗。電石渣與碳酸鈉都是廉價的鹼性物質,分別利用這兩種物質進行轉酯催化,都能得到不錯的效果,而且價格低廉,能有效降低生質柴油的開發成本。傳統加熱法轉酯化反應部份結果為:電石渣以600℃煅燒4hr、用量1 wt %、油醇莫耳比1:12、加熱時間2hr、轉酯率97.2%;以碳酸鈉用量4 wt %、油醇莫耳比1:12、加熱時間2.5hr 轉酯率98.8%。微波加熱法轉酯化反應部份結果為:電石渣以600℃煅燒4hr微波功率300W、用量2 wt %、油醇莫耳比1:36、加熱時間30分鐘,轉酯率98.0%;以碳酸鈉用量4 wt %,微波功率200W、、油醇莫耳比1:24、加熱時間25分鐘,轉酯率97.3%。此外使用電石渣或碳酸鈉為催化劑,以不同的植物油(玉米油、橄欖油、椰子油、芥花油、蓖麻油)及廢棄食用油作為原料生產生質柴油大多有不錯的成效。具有催化劑性質的電石渣與碳酸鈉則是進行BET、XRD、SEM-EDS、TGA、酸鹼性的性質測定。
This study tends to discuss the feasibility of transesterification reaction producing Biodiesel with calcium carbide residue and sodium carbonate being the solid base catalysts, and to compare the energy consumption between conventional heating and microwave heating. Both calcium carbide residue and sodium carbonate are cheap solid base substances and could receive favorable transesterification catalyst effects. Such a low price could effectively reduce the development cost of Biodiesel. Transesterification with conventional heating shows the FAME conversion 97.2% with 1 wt % calcium carbide residue being calcined at 600℃ for four hours and with the oil/methanol molar ratio 1:12 for two hours; and, the FAME conversion 98.8% appears at 4 wt % sodium carbonate with the oil/methanol molar ratio 1:12 being heated for 2.5 hours. On the other hand, transesterification with microwave heating, power 300W, presents the FAME conversion 98.0% with 2 wt % calcium carbide residue being calcined at 600℃ for four hours and with the oil/methanol molar ratio 1:36 for 30 minutes; and, the FAME conversion 97.3% appears at 4 wt % sodium carbonate being heated for 25 minutes with the microwave power 200W and the oil/methanol molar ratio1:24. Moreover, having calcium carbide residue or sodium carbonate as the catalysts, different vegetable oil (corn oil, olive oil, coconut oil, canola oil, castor oil) and waste edible oil used as the materials for producing Biodiesel reveal favorable effects. Both calcium carbide residue and sodium carbonate are tested the characteristics with BET, XRD, SEM-EDS, TGA, and pH test.
摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 viii
第一章緒論 - 1 -
1-1前言 - 1 -
1-2研究動機 - 5 -
1-3研究目的 - 8 -
第二章文獻回顧 - 9 -
2-1生質柴油 - 9 -
2-1-1生質柴油的發展 - 10 -
2-1-2生質柴油的特性 - 11 -
2-1-3生質柴油的製備 - 17 -
2-2電石渣 - 31 -
2-3碳酸鈉 - 32 -
第三章實驗方法 - 34 -
3-1實驗器材藥品 - 34 -
3-1-1實驗藥品 - 34 -
3-1-2實驗器材 - 35 -
3-1-3分析儀器 - 36 -
3-1-4傳統加熱轉酯實驗裝置(圖3. 1) - 37 -
3-1-5微波加熱轉酯實驗裝置(圖3. 2) - 39 -
3-1-6轉酯率分析方法 - 40 -
3-2使用電石渣作為轉酯催化劑,並以傳統加熱法進行轉酯化反應 - 45 -
3-2-1電石渣製作 - 46 -
3-2-2電石渣以傳統加熱法進行轉酯化反應之研究架構 - 47 -
3-2-3測試重複使用次數以及在各種油品的應用 - 47 -
3-3使用碳酸鈉作為轉酯催化劑,並以傳統加熱法進行轉酯化反應 - 48 -
3-3-1碳酸鈉以傳統加熱法進行轉酯化反應之研究架構 - 48 -
3-3-2測試重複使用次數以及在各種油品的應用 - 49 -
3-4使用電石渣作為轉酯催化劑,並以微波加熱法進行轉酯化反應 - 49 -
3-4-1電石渣以微波加熱法進行轉酯化反應之研究架構 - 49 -
3-4-2測試在各種油品的應用 - 50 -
3-5使用碳酸鈉作為轉酯催化劑,並以微波加熱法進行轉酯化反應 - 50 -
3-5-1碳酸鈉以微波加熱法進行轉酯化反應之研究架構 - 50 -
3-5-2測試在各種油品的應用 - 51 -
3-6催化劑性質的分析 - 51 -
3-7消耗能量的比較 - 51 -
第四章 結果與討論 - 53 -
4-1利用電石渣當作催化劑進行傳統加熱法轉酯化反應 - 53 -
4-1-1以電石渣為催化劑進行煅燒溫度對轉酯率的影響 - 53 -
4-1-2以電石渣為催化劑進行煅燒時間對轉酯率的影響 - 54 -
4-1-3以電石渣為催化劑進行催化劑用量對轉酯率的影響 - 56 -
4-1-4以電石渣為催化劑進行油醇莫耳比對轉酯率的影響 - 57 -
4-1-5以電石渣為催化劑進行反應時間對轉酯率的影響 - 59 -
4-1-6以電石渣為催化劑進行重複使用次數對轉酯率的影響 - 61 -
4-2利用碳酸鈉當作催化劑進行傳統加熱法轉酯化反應 - 63 -
4-2-1以碳酸鈉為催化劑進行煅燒溫度對轉酯率的影響 - 63 -
4-2-2以碳酸鈉為催化劑進行催化劑用量對轉酯率的影響 - 64 -
4-2-3以碳酸鈉為催化劑進行油醇莫耳比對轉酯率的影響 - 66 -
4-2-4以碳酸鈉為催化劑進行反應時間對轉酯率的影響 - 67 -
4-2-5以碳酸鈉為催化劑進行重複使用次數對轉酯率的影響 - 69 -
4-3利用電石渣當作催化劑進行微波加熱法轉酯化反應 - 71 -
4-3-1以電石渣為催化劑進行微波功率對轉酯率的影響 - 71 -
4-3-2以電石渣為催化劑進行催化劑用量對轉酯率的影響 - 73 -
4-3-3以電石渣為催化劑進行油醇莫耳比對轉酯率的影響 - 74 -
4-3-4以電石渣為催化劑進行微波加熱時間對轉酯率的影響 - 76 -
4-3-5各種油品加電石渣以傳統加熱法與微波加熱法進行轉酯化反應的比較 - 78 -
4-4利用碳酸鈉當作催化劑進行微波加熱法轉酯化反應 - 80 -
4-4-1以碳酸鈉為催化劑進行微波功率對轉酯率的影響 - 80 -
4-4-2以碳酸鈉為催化劑進行催化劑用量對轉酯率的影響 - 81 -
4-4-3以碳酸鈉為催化劑進行微波加熱時間對轉酯率的影響 - 83 -
4-4-4各種油品加碳酸鈉以傳統加熱法與微波加熱法進行轉酯化反應的比較 - 84 -
4-5催化劑性質探討 - 86 -
4.5.1電石渣與碳酸鈉的比表面積測定 - 87 -
4-5-2-1 電石渣X-ray粉末繞射儀分析 - 87 -
4-5-2-2 碳酸鈉X-ray粉末繞射儀分析 - 89 -
4-5-3-1 電石渣以掃描式電子顯微鏡與能量散射光譜儀分析(SEM-EDS) - 90 -
4-5-3-2碳酸鈉以掃描式電子顯微鏡與能量散射光譜儀分析(SEM-EDS) - 96 -
4-5-4以電石渣進行熱重分析與熱差微熱分析(TGA&DTA) - 98 -
4-5-5電石渣與碳酸鈉的飽和水溶液pH值測定 - 100 -
4-6消耗能量的比較結果 - 101 -
第五章 結論與建議 - 102 -
5-1結論 - 102 -
5-2建議及未來展望 - 105 -
參考資料 - 107 -
附錄:Transesterification of Soybean Oil Catalyzed by Calcium Hydroxide which Obtained from Hydrolysis Reaction of Calcium Carbide - 112 -


1.聯合國, 京都議定書. (1998).
2.經濟部能源局, 國際油品價格日比較趨勢圖(美金/桶)(2012.07.18).http://www.moeaboe.gov.tw/oil102/.
3.E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, J. J. G. Goodwin, Synthesis of Biodiesel via Acid Catalysis. Industrial and Engineering Chemistry Research 44 (2005) 5353-5363.
4.B. Freedman, E. H. Pryde, T. L. Mounts, Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists' Society 61 (1984) 1638-1642.
5.B. Freedman, R. O. Buttererfield, E. H. Pryde, Transesterification Kinetics of Soybean Oil. Journal of the American Oil Chemists' Society 63 (1986) 1375-1380.
6.G. Arzamendi, E. Arguin˜arena, I. Campo, S. Zabala, L. M. Gandı´a, Alkaline and alkaline-earth metals compounds as catalysts for the methanolysis of sunflower oil. Catalysis Today 133-135 (2008) 305-313.
7.陳和, 王金福, 棉籽油酯交換製備生物柴油固體鹼催化過程研究. 高校化學工程學報 20 (2006) 593-597.
8.S. Gryglewicz, Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour Technol 70 (1999) 249-253.
9.M. Y. Chen, J. X. Wang, K. T. Chen, B. Z. Wen, W. C. Lin, C. C. Chen, L.M. Gandı´a *, Transesterification of Soybean Oil Catalyzed by Calcium Hydroxide which Obtained from Hydrolysis Reaction of Calcium Carbide. Journal of the Chinese Chemical Society 58 (2011) 1-6.
10.J. X. Wang, K. T. Chen, J. S. Wu, P. H. Wang, S. T. Huang, C. C. Chen, Production of biodiesel through transesterification of soybeanoil using lithiumorthosilicatesolidcatalyst. Fuel Processing Technology (Available online 25 May 2012) 10.1016/j.fuproc.2012.05.009.
11.J. X. Wang, K. T. Chen, S. T. Huang, K. T. Chen, C. C. Chen, Biodiesel Production from Soybean Oil Catalyzed by Li2CO3. Journal of the American Oil Chemists' Society (2012) 10.1007/s11746-012-2074-2.
12.任鐵強, 李鵬飛, 孫悅, 喬慶東, 固體催化劑製備生物柴油研究進展. 工業催化 18 (2010) 19-24.
13.J. X. Wang, K. T. Chen, C. C. Chen, Biodiesel Production from Soybean Oil Catalyzed by K2SiO3/C. Chinese Journal of Catalysis 32 (2011) 1592-1596.
14.許波, 微波技術應用於酯化反應的研究進展. 北京石油化工學院學報 13 (2005) 35-39.
15.駱健美, 盧學英, 張敏卿, 微波萃取技術及其應用. 化工發展 12 (2001) 46-49.
16.X. J. Liu, H. Y. He, Y. J. Wang, S. L. Zhu, X. L. Piao, Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Science Direct Fuel 87 (2008) 216-221.
17.經濟部標準檢驗局, CNS 15051油脂衍生物(脂肪酸甲酯)-總脂肪酸甲酯及次亞麻油酸甲酯含量測定法, 2007).
18.N. Arun, M. Sampath, S. Siddharth, R. A. Prasaanth, Studies of base catalyzed transesterification of karanja oil. International Journal of Energy and Environment 2 (2011) 351-356.
19.謝志誠, 生質柴油之技術與文獻探討(2011.04.09).http://www.taiwan921.lib.ntu.edu.tw/bioethanol.htm.
20.經濟部, 石油煉製業與輸入業銷售國內車用柴油摻配酯類之比率實施期程範圍及方式, 經能字第09904603550號,R.O.C.(2010).
21.經濟部標準檢驗局, CNS14759食用油酯檢驗法-脂肪酸甲酯之測定, 2007).
22.楊世傑, 大豆油轉酯化反應研究, 國立嘉義大學應用化學研究所 (2007).
23.J. Zubik, S. C. Sorenson, C. E. Goering, Diesel engine combustion of sunflower oil fuels. Transactions of the American Society of Agricultural Engineers 27 (1984) 1252-1256.
24.M. N. Pestes, J. Stanislao, Piston ring deposits when using vegetable oils as a fuel. Journal of Testing & Evaluation 12 (1984) 61-68.
25.M. Ziejewski, K. R. Kaufmann, A. W. Schwab, E. H. Pryde, Diesel engine evaluation of a nonionic sunflower oil-queous ethanol microemulsion. . JAOCS, Journal of the American Oil Chemists' Society 61 (1983.) 1620-1626.
26.D. W. Naegeli, C. A. Moses, Fuel microemulsios for jet engine smoke reduction. . Journal of Engineering for Power, Transactions ASME 105 (1983. ) 18-23.
27.R. A. Niehaus, C. E. Goering, L. D. Jr. Savage, S. C. Sorenson, Cracked sybean oil as a fuel for a diesel engine. . Transactions of the American Society of Agricultural Engineers 29 (1986. ) 683-689.
28.T. T. Le, O. Kenji, S. Yasuhiro, T. Norimichi, M. Yasuaki, B. Hiroshi, Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour Technol 101 (2010) 639-645.
29.A. S. Ramadhas, S. Jayaraj, C. Muraleedharan, Biodiesel production from high FFA rubber seed oil. Fuel 84 ( 2005) 335-340.
30.S. Sinha, A. K. Agarwal, S. Garg, Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conversion and Management 49 (2008) 1248-1257.
31.P. Felizardo, M. Joana Neiva Correia, I. Raposo, J. F. Mendes, R. Berkemeier, J. M. Bordado, Production of biodiesel from waste frying oils. Waste Management 26 (2006) 487-494.
32.U. Rashid, F. Anwar, B. R. Moser, S. Ashraf, Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and Bioenergy 32 (2008) 1202-1205.
33.A. IŞi Gigür, F. Karaosmanoglu, H. A. Aksoy, Methyl ester from safflower seed oil of Turkish origin as a biofuel for diesel engines Applied Biochemistry and Biotechnology 45-46 (1994) 103-112.
34.A. A. Refaat, N. K. Attia, H. A. Sibak, S. T. E. Sheltawy, G. I. ElDiwani, Production optimization and quality assessment of biodiesel from waste vegetable oil. International journal of Environmental Science and Technology 5 (2008) 75-82.
35.Y. C. Sharma, B.Singh, Development of biodiesel from karanja, a tree found in rural India. Fuel 87 (2008) 1740-1742.
36.A. Casas, C. M. Fernández, M. J. Ramos, A. Pérez, J. F.Rodríguez, Optimization of the reaction parameters for fast pseudo single-phase transesterification of sunflower oil. Fuel 89 (2010) 650-658.
37.A. S. Ramadhas, S. Jayaraj, C. Muraleedharan, Biodiesel production from high FFA rubber seed oil. Fuel 84 (2005) 335-340.
38.W. L. Xie, X. M. Huang, H. T. Li, Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresour Technol 98 (2007) 936-939.
39.P. Li, P. An Philippaertsa, K.Xiaoxing, V. N. Jasper, D. C. Filip, V. T.Gustaaf, P. A. Jacobsa, B. F. Selsa, Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today 150 (2010) 140-146.
40.K. Noiroja, P. Intaraponga, A. Luengnaruemitchaia, S. Jai-Inb, A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy 34 (2009) 1145-1150.
41.S.P. Chavan, P.K. Zubaidha, S.W. Dantale, A. Keshavaraja, A.V. Ramaswamy, T. Ravindranathan, Use of solid superacid (sulphated SnO2) as efficient catalyst in tacile transesterification of ketoesters. Tetrahedron Letters 37 (1996) 233-236.
42.J. B. Ji, J. L. Wang, Y. C. Li, Y. L. Yu, Z. C. Xu, Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 44 (2006) e411-e414.
43.S. Saka, D. Kusdiana, Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80 (2001) 225-231.
44.D. Kusdiana, S. Saka, Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol 91 (2004) 289-295.
45.W. L. Cao, H. W. Han, J. C. Zhang, Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel 84 (2005) 347-351
46.維基百科, 電磁波譜(2011.09.08).http://zh.wikipedia.org/wiki/電磁波譜.
47.微波(2011.10.12).http://zh.wikipedia.org/wiki/微波.
48.V. Gemma, M. Mercedes, A. José, Integrated biodiesel termprevious termproduction : a comparison of different homogeneous catalysts systems. Bioresour Technol 92 (2004) 297-305.
49.張友坤, 康朝暉, 李曉, 葉釗, 電石渣的處理及回收利用. 聚氯乙烯Polyvinyl Chloride 1 (2004) 52-54.
50.王欣榮, 淺談電石渣的綜合利用. 中國氯鹼 8 (2003) 36-39.
51.林敬二, 楊美惠, 楊寶旺, 廖德章, 薛敬和, in 英‧中‧日化學大辭典(修訂版)(1994), 高立圖書有限公司.
52.D. M. Kiefer, Chemistry Chronicles-Soda ash, Solvay style. Today's Chemist at work 11 (2002) 87-88.90.
53.維基百科, 碳酸鈉(2011.11.29).http://zh.wikipedia.org/wiki/碳酸钠.
54.余慶聰, 邱耀平, 氧化鈣系奈米材料於中高溫二氧化碳捕捉技術之研究. 化學 67 (2009) 189-197.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top