跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/11 23:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡鉅洋
研究生(外文):Chien, Chu-Yang
論文名稱:白色念珠菌高絲胺酸脫氫酵素Hom6及轉錄因子Zcf29之功能研究
論文名稱(外文):Functional analysis of homoserine dehydrogenase Hom6p and transcription factor Zcf29p in Candida albicans
指導教授:藍忠昱
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:101
中文關鍵詞:白色念珠菌高絲胺酸脫氫酵素轉錄因子
外文關鍵詞:Candida albicanshomoserine dehydrogenaseHom6transcription factorZcf29
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
白色念珠菌是人類主要的伺機性真菌病原菌,它會共生在健康人類的體內,一旦免疫力降低時,它就有機會侵入人體,可能造成嚴重感染,甚至會造成死亡。白色念珠菌常貼附在人類皮膚、口腔黏膜、胃腸道甚至是醫療器材的表面。貼附是白色念珠菌侵入表皮細胞時最重要的第一步驟。在本研究中,白色念珠菌的Hom6蛋白被證實可能是一個多絲胺酸去氫酵素,參與 threonine 和 methionine 的合成。在缺乏胺基酸的環境中,將HOM6基因剔除會影響蛋白質的轉譯過程。另外在研究Hom6蛋白與白色念珠菌毒性之關係,我們發現Hom6會影響細胞的貼附能力。於已知會影響細胞貼附的因子中,細胞壁蛋白扮演著極重要的角色。而本研究中,我們也發現Hom6蛋白可能會存在於細胞壁中,並影響細胞貼附。Xog1是一種存在於細胞壁的exoglucanase,並且被發現會影響細胞貼附。我們也進而發現Hom6蛋白會影響Xog1蛋白在細胞壁的表現。使用西方墨點轉漬分析,於HOM6基因剔除菌株中,Xog1蛋白的表現量在細胞壁上是增加的,但是細胞的exoglucanase活性卻是下降的。推測HOM6的剔除會造成其他exoglucanase或是製造glucan的蛋白質表現量降低,而促使Xog1蛋白被釋放到細胞壁上,來補足細胞壁的缺陷。這個研究證實了Hom6蛋白對白色念珠菌毒性的重要性,也顯示了Hom6蛋白將會是一個很好的標定蛋白,用來發展新的抗真菌藥物。除了細胞貼附,細胞的抗壓能力也很重要。在感染的過程中,白色念珠菌除了自身的氧化壓力外,也必須對抗吞噬細胞製造的ROS。Zcf29蛋白被發現與抗壓調節和藥物耐受性有關。ZCF29剔除的菌株對menadione和caffeine較敏感但是卻對抑制ergosterol合成的藥物fenpropimorph較有抵抗性。而且在one-hybrid的實驗中,Zcf29的轉錄活性在menadione作用下會上升。然而一些主要抗氧化壓力蛋白質的基因表現以及酵素活性在ZCF29剔除後卻沒看到差異。另外在ergostrol合成相關的基因表現量及細胞內ergosterol含量也都沒有差異。因此Zcf29蛋白可能會透過其他方式來調節外界壓力,而這方式並未在我們實驗中發現,還需要更多研究來發掘。
Candida albicans is the most important opportunistic fungal pathogen of humans. It is a harmless commensal in a healthy person, but can cause life-threatening invasive infections particularly in immunocompromised patients. C. albicans can adhere to the mucosal surfaces and even to the surfaces of medical devices. Cell adhesion is the first step in C. albicans infection of epithelia. In this study, we found that C. albicans Hom6p has a homoserine dehydrogenase activity and is probably involved in the pathway for threonine and methionine biosynthesis. In polysome profile analysis, deletion of HOM6 caused translational arrest in the absence of amino acid supplements. In addition, we found that C. albican Hom6p has an effect on cell adhesion, which is important for C. albicans virulence. Many cell wall proteins are known to play major roles in cell adhesion; we also demonstrate that Hom6p can localize at cell wall by western blot. Moreover, C. albicans Hom6p affects expression of the cell wall protein Xog1p which is a major exoglucanase and is found to be involved in cell adhesion. Xog1p level increased on the cell wall, however, the overall exoglucanase activity reduced in the hom6hom6 mutant. We speculated that the defect of protein synthesis attenuated expression of other exoglucanases or glucan synthesis-related proteins, and then induced release of Xog1p to the cell wall. C. albicans Hom6p thus had an effect on cell survival and cell adhesion by maintaining protein synthesis and cell wall function. Moreover, this study suggests that Hom6p would be a good target to develop new antifungal drugs. In addition to adhesion, the second part of this work was to study a transcription factor ZCF29 probably involved in stress response in C. albicans. The zcf29zcf29 mutants were sensitive to menadione and caffeine but resistant to fenpropimorph. The transcriptional activity of Zcf29p was induced after menadione treatment, revealed by one-hybrid assay. However, the gene expression and activity of antioxidative enzymes had no differences between wild type and the zcf29zcf29 mutant. In addition, the expression of ERG2, ERG24 and ERG11 genes and the ergosterol content had no differences between wild type and the mutant. Therefore, Zcf29p regulates stress response probably through its control of other genes not tested in our study.
中文摘要 I
Abstract II
誌謝辭 III
Table of contents IV
List of Tables VI
List of Figures VII
List of Supplemental Tables and Figures VIII
1. Introduction 1
1.1. Candida albicans is an important fungal pathogen of humans 1
1.2. The major virulence factors in C. albicans 1
1.2.1. Secreted hydrolytic activity 2
1.2.2. C. albicans cell wall and adhesins 2
1.2.3. Morphogenesis in C. albicans 4
1.2.4. Phenotypic switching of C. albicans 4
1.3. Drug resistance of C. albicans 5
1.3.1. The emergence of drug resistance in C. albicans 5
1.3.2. Developing new antifungals and identifying new drugs targets 6
1.3.3. Homoserine dehydrogenase in S. cerevisiae and C. albicans 7
1.4. Stress responses in C. albicans 8
1.4.1. Antioxidant is important for C. albicans virulence 8
1.4.2. Ergosterol biosynthesis plays a role in stress resistance 10
1.4.3. C. albicans ZCF29 is a potential transcriptional regulator between ergosterol biosynthesis and oxidative response 11
1.5. The aims of this study 11
2. Materials and Methods 13
2.1. Strains and growth conditions 13
2.2. Isolation of C. albicans genomic DNA 13
2.3. Gene deletion in C. albicans 14
2.4. Yeast transformation 15
2.5. Construction of Hom6-GFP fusion protein 16
2.6. Construction of HOM6-overexpression strain 17
2.7. Spot assay of C. albicans 17
2.8. Reverse transcription (RT)-PCR 18
2.9. Southern blot analysis 19
2.10. Assay for homoserine dehydrogenase activity 19
2.11. Amino acid analysis 20
2.12. Polysome profile 21
2.13. Cell wall protein extraction 22
2.14. Western blot 23
2.15. Glucanase activity assay 23
2.16. Cell adhesion to polystyrene 24
2.17. Candida One-hybrid assay 24
2.18. Antioxidative activity assay 26
2.19. Quantification of Ergosterol content 27
3. Results 28
3.1. Studying the functions of Hom6p in C. albicans 28
3.1.1. C. albicans Hom6p is a homoserine dehydrogenase and involves in biosynthesis of threonine and methionine. 28
3.1.2. C. albicans Hom6p affected the concentrations of intracellular amino acid and translational activity in depletion of amino acids. 30
3.1.3. Hom6p attenuated the ability of cell adhesion in C. albicans. 32
3.1.4. Hom6p in C. albicans not only was a cytosolic protein but can also localize on the cell wall. 32
3.1.5. The hom6-deleted mutant had an effect on the exoglucanase activity. 33
3.2. Study of the functions of Zcf29 in C. albicans 34
3.2.1. Zcf29p functions as a transcriptional activator. 34
3.2.2. The zcf29-deleted mutants were sensitive to menadione and caffeine but resistant to fenpropimorph. 35
3.2.3. Zcf29p was involved in neither cell wall integrity nor response to H2O2 and fluconazole. 36
3.2.4. The transcriptional activity of Zcf29p was induced after menadione treatment. 37
3.2.5. Zcf29p affected neither the expression of genes associated with antioxidant nor the activity of antioxidative enzymes. 38
3.2.6. Zcf29p also did not affect the biosynthesis of ergosterol. 38
4. Discussion 39
4.1. For the study of Hom6p 39
4.2. For the study of Zcf29p 43
5. References 46

1. Karkowska-Kuleta J, Rapala-Kozik M, Kozik A (2009) Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochimica Polonica 56: 211-224.
2. Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, et al. (1999) Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29: 239-244.
3. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, et al. (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39: 309-317.
4. Conde-Rosa A, Amador R, Perez-Torres D, Colon E, Sanchez-Rivera C, et al. (2010) Candidemia distribution, associated risk factors, and attributed mortality at a university-based medical center. P R Health Sci J 29: 26-29.
5. Ruan SY, Hsueh PR (2009) Invasive candidiasis: an overview from Taiwan. Journal of the Formosan Medical Association 108: 443-451.
6. Lai CC, Chu CC, Wang CY, Tsai HY, Cheng A, et al. (2012) Association between incidence of candidaemia and consumption of antifungal agents at a medical centre in Taiwan. Int J Antimicrob Agents 40: 349-353.
7. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, et al. (2007) Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 45: 1735-1745.
8. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, et al. (2010) Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48: 1366-1377.
9. d'Enfert C (2009) Hidden killers: persistence of opportunistic fungal pathogens in the human host. Curr Opin Microbiol 12: 358-364.
10. Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62: 130-180.
11. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67: 400-428, table of contents.
12. Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, et al. (2009) Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 9: 688-700.
13. Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6: 915-926.
14. Yang YL (2003) Virulence factors of Candida species. Journal of microbiology, immunology, and infection 36: 223-228.
15. Finlay BB, Falkow S (1989) Common themes in microbial pathogenicity. Microbiol Rev 53: 210-230.
16. McKerrow JH, Sun E, Rosenthal PJ, Bouvier J (1993) The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol 47: 821-853.
17. Hube B (1998) Possible role of secreted proteinases in Candida albicans infections. Rev Iberoam Micol 15: 65-68.
18. Ibrahim AS, Mirbod F, Filler SG, Banno Y, Cole GT, et al. (1995) Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun 63: 1993-1998.
19. Schaller M, Borelli C, Korting HC, Hube B (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48: 365-377.
20. Chaffin WL (2008) Candida albicans Cell Wall Proteins. Microbiology and Molecular Biology Reviews 72: 495-544.
21. Shepherd MG, Poulter RT, Sullivan PA (1985) Candida albicans: biology, genetics, and pathogenicity. Annu Rev Microbiol 39: 579-614.
22. Calderone RA, Braun PC (1991) Adherence and receptor relationships of Candida albicans. Microbiol Rev 55: 1-20.
23. Ram SP, Romana LK, Shepherd MG, Sullivan PA (1984) Exo-(1,3)-beta-glucanase, autolysin and trehalase activities during yeast growth and germ-tube formation in Candida albicans. J Gen Microbiol 130: 1227-1236.
24. Tsai PW, Yang CY, Chang HT, Lan CY (2011) Characterizing the role of cell-wall beta-1,3-exoglucanase Xog1p in Candida albicans adhesion by the human antimicrobial peptide LL-37. PLoS One 6: e21394.
25. Watts HJ, Cheah FS, Hube B, Sanglard D, Gow NA (1998) Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiol Lett 159: 129-135.
26. Jeng HW, Holmes AR, Cannon RD (2005) Characterization of two Candida albicans surface mannoprotein adhesins that bind immobilized saliva components. Med Mycol 43: 209-217.
27. Munro CA, Bates S, Buurman ET, Hughes HB, Maccallum DM, et al. (2005) Mnt1p and Mnt2p of Candida albicans are partially redundant a-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 280: 1051-1060.
28. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, et al. (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183: 5385-5394.
29. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, et al. (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939-949.
30. Slutsky B, Buffo J, Soll DR (1985) High-frequency switching of colony morphology in Candida albicans. Science 230: 666-669.
31. Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, et al. (1987) "White-opaque transition": a second high-frequency switching system in Candida albicans. J Bacteriol 169: 189-197.
32. Lan CY, Newport G, Murillo LA, Jones T, Scherer S, et al. (2002) Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A 99: 14907-14912.
33. Soll DR (2002) Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Trop 81: 101-110.
34. Kvaal C, Lachke SA, Srikantha T, Daniels K, McCoy J, et al. (1999) Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 67: 6652-6662.
35. Homann OR, Dea J, Noble SM, Johnson AD (2009) A phenotypic profile of the Candida albicans regulatory network. PLoS Genet 5: e1000783.
36. Bachhawat AK, Yadav AK (2010) Metabolic Pathways as Drug Targets: Targeting the Sulphur Assimilatory Pathways of Yeast and Fungi for Novel Drug Discovery. In: Ahmad I, Owais M, Shahid M, Aqil F, editors. Combating Fungal Infections-Problems and Remedy. First Edition ed: Springer-Verlag Berlin Heidelberg. pp. 327-346.
37. Dixon DM, McNeil MM, Cohen ML, Gellin BG, La Montagne JR (1996) Fungal infections: a growing threat. Public Health Rep 111: 226-235.
38. Loeffler J, Stevens DA (2003) Antifungal drug resistance. Clin Infect Dis 36: S31-41.
39. Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62: 10-24.
40. Pereira GH, Muller PR, Szeszs MW, Levin AS, Melhem MS (2010) Five-year evaluation of bloodstream yeast infections in a tertiary hospital: the predominance of non-C. albicans Candida species. Med Mycol 48: 839-842.
41. Tkacz JS, DiDomenico B (2001) Antifungals: what's in the pipeline. Curr Opin Microbiol 4: 540-545.
42. Kofla G, Ruhnke M (2011) Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis: review of the literature. Eur J Med Res 16: 159-166.
43. Parks LW, Smith SJ, Crowley JH (1995) Biochemical and physiological effects of sterol alterations in yeast--a review. Lipids 30: 227-230.
44. Sturley SL (2000) Conservation of eukaryotic sterol homeostasis: new insights from studies in budding yeast. Biochim Biophys Acta 1529: 155-163.
45. Sturley SL (1998) A molecular approach to understanding human sterol metabolism using yeast genetics. Curr Opin Lipidol 9: 85-91.
46. Henneberry AL, Sturley SL (2005) Sterol homeostasis in the budding yeast, Saccharomyces cerevisiae. Semin Cell Dev Biol 16: 155-161.
47. Payne SH, Loomis WF (2006) Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryot Cell 5: 272-276.
48. Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61: 503-532.
49. Pascon RC, Ganous TM, Kingsbury JM, Cox GM, McCusker JH (2004) Cryptococcus neoformans methionine synthase: expression analysis and requirement for virulence. Microbiology 150: 3013-3023.
50. Yang Z, Pascon RC, Alspaugh A, Cox GM, McCusker JH (2002) Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant. Microbiology 148: 2617-2625.
51. Kingsbury JM, McCusker JH (2010) Fungal homoserine kinase (thr1D) mutants are attenuated in virulence and die rapidly upon threonine starvation and serum incubation. Eukaryot Cell 9: 729-737.
52. Kingsbury JM, McCusker JH (2010) Homoserine Toxicity in Saccharomyces cerevisiae and Candida albicans Homoserine Kinase (thr1D) Mutants. Eukaryotic Cell 9: 717-728.
53. Nazi I, Scott A, Sham A, Rossi L, Williamson PR, et al. (2007) Role of homoserine transacetylase as a new target for antifungal agents. Antimicrob Agents Chemother 51: 1731-1736.
54. Robichon-Szulmajster H, Surdin Y, Mortimer RK (1966) Genetic and biochemical studies of genes controlling the synthesis of threonine and methionine in Saccharomyces. Genetics 53: 609-619.
55. DeLaBarre B, Jacques SL, Pratt CE, Ruth DA, Wright GD, et al. (1998) Crystallization and preliminary X-ray diffraction studies of homoserine dehydrogenase from Saccharomyces cerevisiae. Acta Crystallogr D Biol Crystallogr 54: 413-415.
56. Yamaguchi H, Uchida K, Hiratani T, Nagate T, Watanabe N, et al. (1988) RI-331, a new antifungal antibiotic. Ann N Y Acad Sci 544: 188-190.
57. Yamaki H, Yamaguchi M, Imamura H, Suzuki H, Nishimura T, et al. (1990) The mechanism of antifungal action of (S)-2-amino-4-oxo-5-hydroxypentanoic acid, RI-331: the inhibition of homoserine dehydrogenase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 168: 837-843.
58. Yamaki H, Yamaguchi M, Tsuruo T, Yamaguchi H (1992) Mechanism of action of an antifungal antibiotic, RI-331, (S) 2-amino-4-oxo-5-hydroxypentanoic acid; kinetics of inactivation of homoserine dehydrogenase from Saccharomyces cerevisiae. J Antibiot (Tokyo) 45: 750-755.
59. Jacques SL, Mirza IA, Ejim L, Koteva K, Hughes DW, et al. (2003) Enzyme-Assisted Suicide: Molecular Basis for the Antifungal Activity of 5-Hydroxy-4-Oxonorvaline by Potent Inhibition of Homoserine Dehydrogenase Chemistry &; Biology 10: 989-995.
60. Ejim L, Mirza IA, Capone C, Nazi I, Jenkins S, et al. (2004) New phenolic inhibitors of yeast homoserine dehydrogenase. Bioorganic &; Medicinal Chemistry 12: 3825-3830.
61. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425: 686-691.
62. Yin Z, Stead D, Selway L, Walker J, Riba-Garcia I, et al. (2004) Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 4: 2425-2436.
63. Ebanks RO, Chisholm K, McKinnon S, Whiteway M, Pinto DM (2006) Proteomic analysis of Candida albicans yeast and hyphal cell wall and associated proteins. Proteomics 6: 2147-2156.
64. Thomas DP, Bachmann SP, Lopez-Ribot JL (2006) Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 6: 5795-5804.
65. Martinez-Gomariz M, Perumal P, Mekala S, Nombela C, Chaffin WL, et al. (2009) Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans. Proteomics 9: 2230-2252.
66. Fernandez-Arenas E, Cabezon V, Bermejo C, Arroyo J, Nombela C, et al. (2007) Integrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Mol Cell Proteomics 6: 460-478.
67. Becker JM, Kauffman SJ, Hauser M, Huang L, Lin M, et al. (2010) Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model. Proc Natl Acad Sci U S A 107: 22044-22049.
68. Herrero E, Ros J, Belli G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780: 1217-1235.
69. Gonzalez-Parraga P, Hernandez JA, Arguelles JC (2003) Role of antioxidant enzymatic defences against oxidative stress (H2O2) and the acquisition of oxidative tolerance in Candida albicans. Yeast 20: 1161-1169.
70. Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14: 1511-1527.
71. Brennan RJ, Schiestl RH (1996) Cadmium is an inducer of oxidative stress in yeast. Mutat Res 356: 171-178.
72. Nohl H, Kozlov AV, Gille L, Staniek K (2003) Cell respiration and formation of reactive oxygen species: facts and artefacts. Biochem Soc Trans 31: 1308-1311.
73. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552: 335-344.
74. Gonzalez-Guerrero M, Oger E, Benabdellah K, Azcon-Aguilar C, Lanfranco L, et al. (2010) Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Curr Genet 56: 265-274.
75. Moradas-Ferreira P, Costa V (2000) Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death. Redox Rep 5: 277-285.
76. Wolff SP, Garner A, Dean RT (1986) Free radicals, lipids and protein degradation. Trends in Biochemical Sciences 11: 27-31.
77. Storz G, Christman MF, Sies H, Ames BN (1987) Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc Natl Acad Sci U S A 84: 8917-8921.
78. Perrone GG, Tan SX, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783: 1354-1368.
79. Scott B, Eaton CJ (2008) Role of reactive oxygen species in fungal cellular differentiations. Curr Opin Microbiol 11: 488-493.
80. Morgenstern DE, Gifford MA, Li LL, Doerschuk CM, Dinauer MC (1997) Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med 185: 207-218.
81. Murphy JW (1991) Mechanisms of natural resistance to human pathogenic fungi. Annu Rev Microbiol 45: 509-538.
82. Donini M, Zenaro E, Tamassia N, Dusi S (2007) NADPH oxidase of human dendritic cells: role in Candida albicans killing and regulation by interferons, dectin-1 and CD206. Eur J Immunol 37: 1194-1203.
83. Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16: 42-47.
84. Evans P, Halliwell B (2001) Micronutrients: oxidant/antioxidant status. Br J Nutr 85 Suppl 2: S67-74.
85. Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K (2009) Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 71: 240-252.
86. Nakagawa Y, Kanbe T, Mizuguchi I (2003) Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents. Microbiol Immunol 47: 395-403.
87. Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends in Cell Biology 15: 319-326.
88. Ikner A, Shiozaki K (2005) Yeast signaling pathways in the oxidative stress response. Mutat Res 569: 13-27.
89. Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13: 4382-4389.
90. Rep M, Proft M, Remize F, Tamas M, Serrano R, et al. (2001) The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40: 1067-1083.
91. Lee J, Godon C, Lagniel G, Spector D, Garin J, et al. (1999) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274: 16040-16046.
92. Zhang X, De Micheli M, Coleman ST, Sanglard D, Moye-Rowley WS (2000) Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Mol Microbiol 36: 618-629.
93. Winkler H, Adam G, Mattes E, Schanz M, Hartig A, et al. (1988) Co-ordinate control of synthesis of mitochondrial and non-mitochondrial hemoproteins: a binding site for the HAP1 (CYP1) protein in the UAS region of the yeast catalase T gene (CTT1). EMBO J 7: 1799-1804.
94. Alonso-Monge R, Navarro-Garcia F, Roman E, Negredo AI, Eisman B, et al. (2003) The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2: 351-361.
95. Alarco AM, Raymond M (1999) The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol 181: 700-708.
96. Lees ND, Bard M, Kemple MD, Haak RA, Kleinhans FW (1979) ESR determination of membrane order parameter in yeast sterol mutants. Biochimica et Biophysica Acta (BBA) - Biomembranes 553: 469-475.
97. Lees ND, Kleinhans FW, Broughton MC, Pennington DE, Ricker vA, et al. (1989) Membrane fluidity alterations in a cytochrome P-450-deficient mutant of candida albicans. Steroids 53: 567-578.
98. Bard M, Lees ND, Burrows LS, Kleinhans FW (1978) Differences in crystal violet uptake and cation-induced death among yeast sterol mutants. J Bacteriol 135: 1146-1148.
99. Kleinhans FW, Lees ND, Bard M, Haak RA, Woods RA (1979) ESR determinations of membrane permeability in a yeast sterol mutant. Chem Phys Lipids 23: 143-154.
100. Lees ND, Broughton MC, Sanglard D, Bard M (1990) Azole susceptibility and hyphal formation in a cytochrome P-450-deficient mutant of Candida albicans. Antimicrob Agents Chemother 34: 831-836.
101. Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, et al. (2010) Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 6: e1000939.
102. Lees ND, Skaggs B, Kirsch DR, Bard M (1995) Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review. Lipids 30: 221-226.
103. Marcireau C, Guilloton M, Karst F (1990) In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property. Antimicrob Agents Chemother 34: 989-993.
104. Henry KW, Nickels JT, Edlind TD (2000) Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 44: 2693-2700.
105. Franz R, Kelly SL, Lamb DC, Kelly DE, Ruhnke M, et al. (1998) Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother 42: 3065-3072.
106. Sanglard D, Ischer F, Koymans L, Bille J (1998) Amino acid substitutions in the cytochrome P-450 lanosterol 14a-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 42: 241-253.
107. White TC (1997) Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41: 1482-1487.
108. White TC (1997) The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14a demethylase in Candida albicans. Antimicrob Agents Chemother 41: 1488-1494.
109. Dimster-Denk D, Rine J (1996) Transcriptional regulation of a sterol-biosynthetic enzyme by sterol levels in Saccharomyces cerevisiae. Mol Cell Biol 16: 3981-3989.
110. Arthington-Skaggs BA, Crowell DN, Yang H, Sturley SL, Bard M (1996) Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway. FEBS Lett 392: 161-165.
111. M'Baya B, Fegueur M, Servouse M, Karst F (1989) Regulation of squalene synthetase and squalene epoxidase activities in Saccharomyces cerevisiae. Lipids 24: 1020-1023.
112. Smith SJ, Crowley JH, Parks LW (1996) Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Mol Cell Biol 16: 5427-5432.
113. Kennedy MA, Barbuch R, Bard M (1999) Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1445: 110-122.
114. Tamura K, Gu Y, Wang Q, Yamada T, Ito K, et al. (2004) A hap1 mutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol-related genes and cellular ergosterol content compared to sake yeast. J Biosci Bioeng 98: 159-166.
115. Montanes FM, Pascual-Ahuir A, Proft M (2011) Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors. Mol Microbiol 79: 1008-1023.
116. Marisco G, Saito ST, Ganda IS, Brendel M, Pungartnik C (2011) Low ergosterol content in yeast adh1 mutant enhances chitin maldistribution and sensitivity to paraquat-induced oxidative stress. Yeast 28: 363-373.
117. Inglis DO, Arnaud MB, Binkley J, Shah P, Skrzypek MS, et al. (2012) The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res 40: D667-674.
118. Maicas S, Moreno I, Nieto A, Gomez M, Sentandreu R, et al. (2005) In silico analysis for transcription factors with Zn(II)2C6 binuclear cluster DNA-binding domains in Candida albicans. Comp Funct Genomics 6: 345-356.
119. Reuss O, Vik A, Kolter R, Morschhauser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127.
120. Lin HY, Lin SE, Chien SF, Chern MK (2011) Electroporation for three commonly used yeast strains for two-hybrid screening experiments. Anal Biochem 416: 117-119.
121. Hsu PC, Yang CY, Lan CY (2011) Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Eukaryot Cell 10: 207-225.
122. Datta P, Gest H (1965) Homoserine dehydrogenase of Rhodospirillum rtubrum. Purification, properties, and feedback control of activity. J Biol Chem 240: 3023-3033.
123. Treco DA, Winston F (2008) Growth and Manipulation of Yeast. Current Protocols in Molecular Biology: John Wiley &; Sons, Inc. pp. 1 3.2.1-1 3.2.12.
124. Weaver PL, Sun C, Chang TH (1997) Dbp3p, a putative RNA helicase in Saccharomyces cerevisiae, is required for efficient pre-rRNA processing predominantly at site A3. Mol Cell Biol 17: 1354-1365.
125. Huang JY, Su WC, Jeng KS, Chang TH, Lai MM (2012) Attenuation of 40S ribosomal subunit abundance differentially affects host and HCV translation and suppresses HCV replication. PLoS Pathog 8: e1002766.
126. Vignais PV, Stevens BJ, Huet J, André J (1972) MITORIBOSOMES FROM CANDIDA UTILIS Morphological, Physical, and Chemical Characterization of the Monomer Form and of Its Subunits. The Journal of cell biology 54: 468-492.
127. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
128. Jin Y, Samaranayake LP, Samaranayake Y, Yip HK (2004) Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol 49: 789-798.
129. Meletiadis J, Mouton JW, Meis JFGM, Bouman BA, Donnelly JP, et al. (2001) Colorimetric assay for antifungal susceptibility testing of Aspergillus species. Journal of Clinical Microbiology 39: 3402-3408.
130. Russell CL, Brown AJ (2005) Expression of one-hybrid fusions with Staphylococcus aureus lexA in Candida albicans confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genet Biol 42: 676-683.
131. Rupp S (2002) LacZ assays in yeast. Methods Enzymol 350: 112-131.
132. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry 195: 133-140.
133. Collinson EJ, Wimmer-Kleikamp S, Gerega SK, Yang YH, Parish CR, et al. (2011) The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes. J Biol Chem 286: 2205-2214.
134. Arthington-Skaggs BA, Jradi H, Desai T, Morrison CJ (1999) Quantitation of ergosterol content: Novel method for determination of fluconazole susceptibility of Candida albicans. Journal of Clinical Microbiology 37: 3332-3337.
135. Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, et al. (2004) Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns. Eukaryotic Cell 3: 536-545.
136. Jones EW, Fink GR (1982) Regulation of amino acid and nucleotide biosynthesis in yeast. In: Strathern JN, Jones EW, Broach JR, editors. The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. pp. 181-299.
137. Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59: 407-450.
138. Masek T, Valasek L, Pospisek M (2011) Polysome analysis and RNA purification from sucrose gradients. Methods Mol Biol 703: 293-309.
139. Lopez-Ribot JL, Chaffin WL (1996) Members of the Hsp70 family of proteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 178: 4724-4726.
140. Chang HT, Tsai PW, Huang HH, Liu YS, Chien TS, et al. (2012) LL37 and hBD-3 elevate the b-1,3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic. Biochem J 441: 963-970.
141. Kuranda K, Leberre V, Sokol S, Palamarczyk G, Francois J (2006) Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 61: 1147-1166.
142. Sandini S, Stringaro A, Arancia S, Colone M, Mondello F, et al. (2011) The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans. BMC Microbiol 11.
143. Lamarre C, LeMay JD, Deslauriers N, Bourbonnais Y (2001) Candida albicans expresses an unusual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase. J Biol Chem 276: 43784-43791.
144. Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47: 532-606.
145. Li DD, Wang Y, Dai BD, Li XX, Zhao LX, et al. (2012) ECM17-dependent methionine/cysteine biosynthesis contributes to biofilm formation in Candida albicans. Fungal Genet Biol.
146. Vollbrecht D (1974) Three pathways of isoleucine biosynthesis in mutant strains of Saccharomyces cerevisiae. Biochim Biophys Acta 362: 382-389.
147. Herscovics A, Orlean P (1993) Glycoprotein biosynthesis in yeast. FASEB J 7: 540-550.
148. Yamada-Okabe T, Yamada-Okabe H (2002) Characterization of the CaNAG3, CaNAG4, and CaNAG6 genes of the pathogenic fungus Candida albicans: possible involvement of these genes in the susceptibilities of cytotoxic agents. FEMS Microbiol Lett 212: 15-21.
149. Dean N (1995) Yeast glycosylation mutants are sensitive to aminoglycosides. Proceedings of the National Academy of Sciences 92: 1287-1291.
150. De Groot PW, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42: 657-675.
151. Chen L, Davis NG (2000) Recycling of the yeast a-factor receptor. J Cell Biol 151: 731-738.
152. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, et al. (2001) Global analysis of protein activities using proteome chips. Science 293: 2101-2105.
153. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, et al. (2007) Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 6: 48-59.
154. Cleves AE, Cooper DN, Barondes SH, Kelly RB (1996) A new pathway for protein export in Saccharomyces cerevisiae. J Cell Biol 133: 1017-1026.
155. Sriram G, Martinez JA, McCabe ER, Liao JC, Dipple KM (2005) Single-gene disorders: what role could moonlighting enzymes play? Am J Hum Genet 76: 911-924.
156. Urban C, Xiong X, Sohn K, Schroppel K, Brunner H, et al. (2005) The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Mol Microbiol 57: 1318-1341.
157. Kelly J, Kavanagh K (2010) Proteomic analysis of proteins released from growth-arrested Candida albicans following exposure to caspofungin. Med Mycol 48: 598-605.
158. Zadzinski R, Fortuniak A, Bilinski T, Grey M, Bartosz G (1998) Menadione toxicity in Saccharomyces cerevisiae cells: activation by conjugation with glutathione. Biochem Mol Biol Int 44: 747-759.
159. Marcireau C, Joets J, Pousset D, Guilloton M, Karst F (1996) FEN2: a gene implicated in the catabolite repression-mediated regulation of ergosterol biosynthesis in yeast. Yeast 12: 531-539.
160. Stolz J, Sauer N (1999) The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter. J Biol Chem 274: 18747-18752.
161. Chen YT, Lin CY, Tsai PW, Yang CY, Hsieh WP, et al. (2012) Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans. Eukaryot Cell 11: 168-182.
162. Otsubo Y, Yamamato M (2008) TOR signaling in fission yeast. Crit Rev Biochem Mol Biol 43: 277-283.
163. Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198: 179-182.
164. Tsao CC, Chen YT, Lan CY (2009) A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genet Biol 46: 126-136

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top