(3.230.143.40) 您好!臺灣時間:2021/04/21 19:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐仁慧
研究生(外文):Shiu, Ren-Huei
論文名稱:在果蠅模式中探討 Tau 蛋白經轉譯後修飾與 其所引發的神經毒性之關係
論文名稱(外文):Post-translational modifications of Tau-linked neurodegenerative disorders in a Drosophila model
指導教授:桑自剛
指導教授(外文):Sang, Tzu-Kang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:61
中文關鍵詞:Tau蛋白
外文關鍵詞:TauTauopathies
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Tauopathies為神經退化性疾病的其中一類,與tau蛋白不正常的聚合堆積有關。Tau蛋白是與微管相關的一種蛋白,主要表達於神經細胞,其功能為穩定由微管組成的細胞骨架和調節微管蛋白的動態平衡。
近年來的研究指出, tau蛋白進行過磷酸化、去磷酸化或是進行截斷作用(truncation)都與tau蛋白引起的細胞毒性有關。然而,磷酸化與否以及截斷作用究竟何者對於tau造成的毒性扮演著較重要的角色至今仍然在爭論中。為了研究何者扮演著較重要的角色,我們修飾tau蛋白上的磷酸化和裂解作用的位置,製造出基因轉殖果蠅,以闡釋tau蛋白經轉譯後修飾,其神經毒性可能會產生的影響。我們發現,長度全長並且過磷酸化或去磷酸化的tau蛋白都對眼睛造成毒性。有趣的是,過磷酸化並且裂解後缺少羧酸基端(C端)至少20個胺基酸的tau蛋白,可改善tau蛋白引起的果蠅眼睛神經退化;由此,我們進一步推測tau蛋白的C端對於tau蛋白所引起的毒性可能是一重要關鍵。根據tau蛋白之C端,我們找出含有酪蛋白激酶(casein kinase)以及醣基化的作用區,於是我們將藉由調控酪蛋白激酶的活性和醣基化相關的酵素活性,以驗證tau蛋白介導的病理機轉。我們的實驗結果顯示,酪蛋白激酶可能對tau造成的毒性扮演重要角色。
這項研究提供與tau蛋白相關的神經退化性疾病之致病機轉,對未來人們治療神經退化性疾病將有莫大的助益。

Tauopathies are a class of neurodegenerative diseases associated with the pathological aggregation of tau. Tau is a microtubule-associated protein predominantly expressed in nerve cells and its main function is to stabilize the microtubules and to regulate the dynamic of tubulin assembly. Accumulated studies have demonstrated that Tau hyperphosphorylation, nonphosphorylation and truncation play important roles for Tau-induced cytotoxicity. However, the question of whether Tau truncation or phosphorylation linking to the underlying pathogenic mechanism of tauopathies is under debates. To investigate which event is more critical for Tau-induced pathology, we generated transgenic flies with modified phosphorylation and truncation sites, and employed fly eye as a model to elucidate the effect of post-translational modification in tau-mediated toxicity in vivo. We found that hTau-E14FL and hTau-APFL have eye phenotype and further speculate that both hyperphosphorylated and nonphosphorylated full length hTau have detrimental effect. Interestingly, our data indicate that expressing truncated and psudophosphorylated hTau without the least twenty amino acids (hTau-E14421) only showed mild eye degeneration. Hence, we suggest that posttranslational modification of Tau C-terminus may be critical for Tau-induced pathology. Since the aforementioned C-terminal fragment contains a putative casein kinase site and a glycosylation site, we further manipulated casein kinase activity and glycosylated enzyme activity to validate the significance of the potential modifications. Based on the genetic data, we suggest that casein kinase may play a crucial role for tau-mediated neurotoxicity. This study may provide a mechanistic insight for developing the therapeutic targets for mitigating pathogenic tau-related neurodegeneration.
Abstract---------------------------------------------------------------------------------2
中文摘要-------------------------------------------------------------------------------4
Acknowledgement--------------------------------------------------------------------5
Table of contents----------------------------------------------------------------------7
Introduction----------------------------------------------------------------------------8
Materials and Methods--------------------------------------------------------------13
Results---------------------------------------------------------------------------------18
Discussion----------------------------------------------------------------------------27
List of figures------------------------------------------------------------------------32
Figures--------------------------------------------------------------------------------34
References----------------------------------------------------------------------------58

Andreadis A, Broderick JA, Kosik KS. (1995). Relative exon affinities and suboptimal splice site signals lead to non-equivalence of two cassette exons. Nucleic Acids Res. 23(17):3585-93.
Andreadis A, Brown WM, Kosik KS. (1992). Structure and novel exons of the human tau gene. Biochemistry.31(43):10626-33.
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev. 33(1):95-130.
Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain. Neurobiol Dis. 11(2):341-54.
Chang HY, Ready DF. (2000). Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Science. 290(5498): 1978-80.
Chatterjee S, Sang TK, Lawless GM, Jackson GR. (2009). Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet. 18(1):164-77. doi: 10.1093/hmg/ddn326.
Couchie D, Mavilia C, Georgieff IS, Liem RK, Shelanski ML, Nunez J. (1992). Primary structure of high molecular weight tau present in the peripheral nervous system. Proc. Natl. Acad. Sci. USA 89(10): 4378–81.
Fath T, Eidenmüller J, Brandt R. (2002). Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease. J Neurosci. 22(22):9733-41.
Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D'Amato CJ, Gilman S. (1997). Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann Neurol.41(6):706-15.
Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB. (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol. 9(2): 139-48.
Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, Miller R, Berry RW, Binder LI, Cryns VL. (2003). Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc Natl Acad Sci U S A. 100(17):10032-7.
Ghoshal N, Smiley JF, DeMaggio AJ, Hoekstra MF, Cochran EJ, Binder LI, Kuret J. A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer’s disease. (1999). Am J Pathol;155:1163–1172.
Gistelinck M, Lambert JC, Callaerts P, Dermaut B, Dourlen P. (2012). Drosophila models of tauopathies: what have we learned? Int J Alzheimers Dis.
Goedert M, Jakes R. (1990). Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J.9(13):4225-30.
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. (1989). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron. 3(4):519-26.
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A.83(13):4913-7.
Haase C, Stieler JT, Arendt T, Holzer M. (2004). Pseudophosphorylation of tau protein alters its ability for self-aggregation. J Neurochem. 88(6):1509-20.
Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH. (2007). Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem. 282(32):23645-54.
Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM. (1998). Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science. 282(5395):1914-7.
Iimoto DS, Masliah E, DeTeresa R, Terry RD, Saitoh T. (1990). Aberrant casein kinase II in Alzheimer's disease. Brain Res. 507(2):273-80.
Johnson GV, Stoothoff WH. (2004). Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci.117(24):5721-9.
Kannanayakal TJ, Tao H, Vandre DD, Kuret J. Casein kinase-1 isoforms differentially associate with neurofibrillary and granulovacuolar degeneration lesions. (2006). Acta Neuropathol;111: 413–421.
Khurana V, Lu Y, Steinhilb ML, Oldham S, Shulman JM, Feany MB. (2006). TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr Biol.16(3):230-41.
Kosik KS, Joachim CL, Selkoe DJ. (1986). Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A. 83(11):4044-8.
Kuret J, Johnson GS, Cha D, Christenson ER, DeMaggio AJ, Hoekstra MF. (1997). Casein kinase 1 is tightly associated with paired-helical filaments isolated from Alzheimer's disease brain. J Neurochem. 69(6):2506-15.
Lee S, Shea TB. (2012). Caspase-mediated truncation of tau potentiates aggregation. Int J Alzheimers Dis. 2012:731063. doi: 10.1155/2012/731063.
Lee VM, Goedert M, Trojanowski JQ. (2001). Neurodegenerative tauopathies. Annu Rev Neurosci. 24:1121-59.
Lefebvre T, Ferreira S, Dupont-Wallois L, Bussière T, Dupire MJ, Delacourte A, Michalski JC, Caillet-Boudin ML. (2003). Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins--a role in nuclear localization. Biochim Biophys Acta. 1619(2):167-76.
Li G, Yin H, Kuret J. (2004). Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules. J Biol Chem.279(16):15938-45.
Liu F, Zaidi T, Iqbal K, Grundke-Iqbal I, Gong CX. (2002). Aberrant glycosylation modulates phosphorylation of tau by protein kinase A and dephosphorylation of tau by protein phosphatase 2A and 5. Neuroscience. 115(3):829-37.
Martin L, Latypova X, Terro F. (2011). Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem Int. 58(4):458-71.
McMillan PJ, Kraemer BC, Robinson L, Leverenz JB, Raskind M, Schellenberg G. (2011). Truncation of tau at E391 promotes early pathologic changes in transgenic mice. J Neuropathol Exp Neurol. 70(11):1006-19.
Mondragón-Rodríguez S, Basurto-Islas G, Santa-Maria I, Mena R, Binder LI, Avila J, Smith MA, Perry G, García-Sierra F. (2008). Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer's disease. Int J Exp Pathol. 89(2):81-90. doi: 10.1111/j.1365-2613.2007.00568.x.
Perez DI, Gil C, Martinez A. (2011). Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med Res Rev. 31(6):924-54. doi: 10.1002/med.20207.
Plouffe V, Mohamed NV, Rivest-McGraw J, Bertrand J, Lauzon M, Leclerc N. (2012). Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS One. 7(5):e36873. doi: 10.1371/journal.pone.0036873.
Price MA. CKI, there’s more than one: Casein kinase I family members in Wnt and Hedgehog signaling. (2006). Genes Dev;20:399–410.
Rohn TT, Rissman RA, Davis MC, Kim YE, Cotman CW, Head E. (2002).
Saito M, Chakraborty G, Mao RF, Paik SM, Vadasz C, Saito M. (2010). Tau phosphorylation and cleavage in ethanol-induced neurodegeneration in the developing mouse brain. Neurochem Res.35(4):651-9. doi: 10.1007/s11064-009-0116-4.
Sang TK, Ready DF. (2002). Eyes closed, a Drosophila p47 homolog, is essential for photoreceptor morphogenesis. Development. 129(1): 143-54.
Slawson C, Hart GW. (2003). Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation. Curr Opin Struct Biol. 13(5):631-6.
Steinhilb ML, Dias-Santagata D, Fulga TA, Felch DL, Feany MB. (2007b). Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol Biol Cell. 18(12):5060-8.
Steinhilb ML, Dias-Santagata D, Mulkearns EE, Shulman JM, Biernat J, Mandelkow EM, Feany MB. (2007a). S/P and T/P phosphorylation is critical for tau neurotoxicity in Drosophila. J Neurosci Res. 85(6):1271-8.
Takahashi M, Tsujioka Y, Yamada T, Tsuboi Y, Okada H, Yamamoto T, Liposits Z. (1999). Glycosylation of microtubule-associated protein tau in Alzheimer's disease brain. Acta Neuropathol. 97(6):635-41.
Talmat-Amar Y, Arribat Y, Redt-Clouet C, Feuillette S, Bougé AL, Lecourtois M, Parmentier ML. (2011). Important neuronal toxicity of microtubule-bound Tau in vivo in Drosophila. Hum Mol Genet. 20(19):3738-45. doi: 10.1093/hmg/ddr290.
Ubhi KK, Shaibah H, Newman TA, Shepherd D, Mudher A. (2007). A comparison of the neuronal dysfunction caused by Drosophila tau and human tau in a Drosophila model of tauopathies. Invert Neurosci. 7(3):165-71.
Wood JG, Mirra SS, Pollock NJ, Binder LI. (1986). Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci U S A. 83(11):4040-3.
Zhang Q, Zhang X, Sun A. (2009). Truncated tau at D421 is associated with neurodegeneration and tangle formation in the brain of Alzheimer transgenic models. Acta Neuropathol.117(6):687-97. doi: 10.1007/s00401-009-0491-6.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔