跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:a8de:191f:a29b:1858) 您好!臺灣時間:2025/01/13 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭煒宗
研究生(外文):Cheng, Wei-Tsung
論文名稱:鋇、鈣置換對鋁酸鹽Sr4Al14O25 :Eu2+綠色螢光粉螢光性質之影響
論文名稱(外文):Effect of barium and calcium substitution on fluorescence properties of Sr4Al14O25 :Eu2+ green phosphor
指導教授:杜正恭杜正恭引用關係
指導教授(外文):Duh, Jenq-Gong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:119
中文關鍵詞:螢光粉紅移量子產率活化能發射光譜
外文關鍵詞:PhosphorsRed shiftQuantum yieldActivation energyEmission spectrum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前市面上的白光LED主要是利用InGaN藍色發光二極體搭配YAG :Ce3+黃色螢光粉,但由於缺乏紅光區的光譜波段,無法將其應用在需高演色性(CRI > 90)的室內照明中。為獲得高演色性光源,室內照明用的LED是以三色(紅,藍,綠)螢光粉搭配紫外光發光二極體為主流。此類型白光LED光色的關鍵在於各色的發光效率以及其發光光譜之間的搭配,因此發展高發光效率具有可調變發光光譜的螢光粉系統係為目前研發的重要課題。
Sr4Al14O25 :Eu2+為一具有高發光效率和高化學穩定性的螢光材料,其發光波長約在490 nm,適合應用在白光LED的綠色螢光粉。另外,文獻指出,當主體晶格中的陽離子被改變,其發光特性也會跟著改變。因此本研究利用固相反應法(Solid reaction method),燒結出此材料,並使用鋇和鈣離子進行摻雜,取代原先鍶離子的位置,觀察其對相變化、元素分佈、發光光譜、色度座標(chromaticity coordination),量子產率(quantum yield)等影響。此外,量測在高溫下的發光光譜,探討摻雜對其活化能(activation energy)的影響。
鋇摻雜的螢光粉具有明顯的紅移(red shift)現象,在較低取代濃度時,此現象是由於電子雲膨脹效應大於晶場效應。且隨鋇濃度的增加,量子效率可以提升到96.5%。受到Stokes shift和晶格振動頻率降低的影響,活化能可以提升到0.450eV。在較高取代濃度時,紅移現象主要是SrAl2O4生成,但在過量的取代下,晶格扭曲和相生成造成發光強度、量子產率,活化能快速下降。
鈣摻雜的螢光粉同樣具有的紅移現象,因為晶場效應大於電子雲膨脹效應。並且由於鍶與鈣離子的差異較鍶與鋇離子小,晶格扭曲較小,在較高取代濃度下,可維持單一相和一定的發光強度。此外,隨鈣的取代量增加,量子產率穩定且活化能下降速率緩慢。
對於鋇和鈣同時添加的螢光粉,紅移現象介於鋇和鈣添加之間。由於晶格扭曲的效果被相互中和,在較高取代濃度下可維持單一相,和一定的發光強度。另外,隨著取代濃度上升,量子效率下降速率較鋇摻雜低,且活化能獲得顯著提升。
此外,從製程改良出發,經由醋酸清洗和二次熱處理後,螢光粉的發光強度和活化能皆可有效被提升。因為酸洗後,螢光粉中的非晶相會被去除;而熱處理後,球磨後的螢光粉獲得修復。

Currently, white LED is mainly using blue chip (InGaN) equipped with yellow phosphor (YAG: Ce3+). However, this type is lack of spectrum wave band for the red region, and failed to be applied in the indoor lighting which needs high color rendering index. To obtain light source with high color rendering, white LED applied in indoor lighting generally employ UV chip with green, red, and blue phosphor. The critical points of light color of this type are luminous efficiency and mutual collocation of different colors. Hence, the development of high luminous efficiency phosphor with tunable emission spectrum system is the critical issue.
Sr4Al14O25 :Eu2+ is of high luminous efficiency and high chemical stability fluorescent material with emission intensity around 490 nm. It is suitable used as green phosphor of white LED. However, in literature, luminescence properties were altered as cation of host lattice was changed. Therefore, this material was fabricated through solid reaction method with barium and calcium doping to replace strontium in this study. Then, phase transformation, elemental distribution, emission spectrum, chromaticity coordination and quantum yield were investigated. Besides, emission spectrum in high temperature was measured to investigate the effect of cation substitution on activation energy.
Barium-doped sample exhibited significant red shift phenomenon. In lower substitution concentration, this phenomenon was due to the fact that Nephelauxetic effect was higher than crystal field effect. Furthermore, with the increasing barium content, quantum yield could be promoted to 96.5 %.Activation energy increased to 0.450 eV. In higher substitution concentration, red shift phenomenon was mainly due to SrAl2O4 formation. However, with the excess substitution, lattice distortion, impurity and other phase formation would lead to the rapid reduction of emission intensity, quantum yield, and activation energy.
Calcium-doped sample also exhibited red shift phenomenon, since crystal field effect was higher than Nephelauxetic effect. In addition, because the size difference of strontium and calcium ions is lower than that of strontium and barium ions, lattice distortion was low and impurity formation was less. The phosphor retained single phase and a certain degree of emission intensity in higher substitution concentration. Besides, with the increasing calcium substitution, quantum yield was stable and the reduction rate of activation energy was slow.
For barium and calcium co-substitution, the degree of red shift phenomenon was between barium and calcium substitution. Because the effects of lattice distortion were mutually neutralized, phosphor retained single phase and a certain degree of emission intensity in higher substitution concentration. Besides, with the increasing substitution, reduction rate of quantum yield was lower as compared with barium substitution, and the activation energy was significant promoted.
Besides, from process improvements, emission intensity and activation energy of phosphor were effectively promoted through acetic acid washing process and secondary heat treatment. Especially, amorphous phase was removed after acid washing.

Contents
List of Tables IV
Figures Caption V
Abstract XIII
Chapter Ⅰ Introduction 1
1.1 Background 1
1.2 Motivation and goals in this study 2
Chapter Π Literature Review 5
2.1 Phosphor 5
2.2 Light emitting mechanism of phosphor 5
2.3 White light emitting diode phosphor 6
2.3.1 Light emitting diode 6
2.3.2 White light emitting diode 7
2.3.3 The condition of white LED phosphor 8
2.4 Strontium aluminates green phosphor 9
2.4.1 Microstructure of Sr4Al14O25: Eu2+ 9
2.4.2 Luminescence mechanism of Sr4Al14O25 :Eu2+ 9
2.4.3 Preparation methods of Sr4Al14O25 :Eu2+ 10
2.5 Cation substitution on SrAl2O4 :Eu2+ and Sr4Al14O25 :Eu2+ 14
2.5.1 Barium substitution 14
2.5.2 Calcium substitution 15
2.5.3 Barium and calcium co-substitution 15
2.5.4 Other cations doping 16
2.6 Terms relating to the phosphor 16
2.6.1 The Luminosity function 16
2.6.2 Nephelauxetic effect 17
2.6.3 Crystal field theory 17
2.6.4 Thermal quenching 18
2.6.5 Quantum yield and adsorption 19
2.6.6 The CIE chromaticity coordination 19
Chapter Ш Experimental Procedures 29
3.1 Powders fabrication of strontium aluminate green phosphor 29
3.2 Acetic acid washing process 30
3.3 Secondary heat treatment 31
3.4 Analysis of phosphor powders 32
3.4.1 Microstructure and phase identification 32
3.4.2 Mean particle size (D50) 32
3.4.3 Morphology evolution 33
3.4.4 Composition analysis 33
3.4.5 Fourier transforms Infrared spectroscopy 33
3.5 Analysis of luminescence properties 34
3.5.2Photoluminescence spectrum measurement 34
3.5.2 Temperature-dependent photoluminescence 34
3.5.3 Quantum yield and adsorption measurement 35
3.5.4 CIE chromaticity coordinates measurement 36
Chapter Ⅳ Results and Discussion 47
4.1 Effect of starting materials 47
4.1.1 Flux concentration 47
4.1.2 Al2O3 powder size and type 49
4.1.3 Activator concentration 51
4.2 Effect of cation substitution on Sr4Al14O25 :Eu2+ 58
4.2.1 Barium substitution 58
4.2.2 Calcium substitution 75
4.2.3 Barium and calcium co-substitution 87
4.3 Process improvement 96
4.3.1 Acid washing process 96
4.3.2 Secondary heat treatment 99
Chapter Ⅴ Conclusions 112
References 114
















[1] 葉耀宗、董建岳、劉偉仁、張學明、陳政民, “白光LED與螢光粉特性探討(上)”, 工業材料雜誌, 257期 p129-p138 (2008).
[2] 葉耀宗、董建岳、劉偉仁、張學明、陳政民, “白光LED與螢光粉特性探討(下)”, 工業材料雜誌, 258期 p234-p239 (2008)
[3] 劉如熹、林群哲, “高演色性白光發光二極體螢光粉材料近況發展”, 工業材料雜誌, 258期 p227-p233 (2008).
[4] M. Bredol, J. Merikhi, I. Köhler, H. Bechtel and W. Czarnojan, “Emission Color Tuning of Green Emitting ZnS-Based CRT Phosphors”, J. Solid State Chem. 110 (1994) 250.
[5] L. Ozawa, M. Koike and M. Itoh, “Mechanisms of flux action for growth of ZnS phosphor particles”, Mater. Chem. Phys. 93 (2005) 420.
[6] Y.Y. Chen, J.G. Duh,B.S. Chiou and C.G. Peng, “Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors” , Thin Solid Films 392 (2001) 50.
[7] Z. Wu, M. Gong, J. Shi and Q. Su, “Comparative investigation on synthesis and luminescence of Sr4Al14O25 :Eu2+ applied in InGaN LEDs”, J. Alloys Compd. 458 (2008) 134.
[8] D. WANG and M. WANG, “Synthesis, crystal structure and X-ray powder diffraction data of the phosphor matrix 4SrO•7Al2O3”, J. Mater. Sci. 34 (1999) 4959.
[9] L.T. Sharpe, A. Stockman, W. Jagla and H. Jagle, “A luminous efficiency function, V*(λ), for daylight adaptation”, J. Vis. 5 (2005) 948.
[10] J.A. DeLuca, “An Introduction to Luminescence in Inorganic Solids”, J. Chem. Educ. 57 (1980) 541.
[11] 方容川, “固體光譜學”, 中國科技大學, 合肥, (2001).
[12] J.J. Zuckerman, “Crystal Field Splitting Diagrams”, J. Chem. Educ., 42 (1965) 315.
[13] H.W. Leverenz, “An Introduction to Luminescence of Solids”, John Wiley &; Sons, New York, (1950).
[14] C.N. Chau and D.C. Seymour, “Phosphor global summit”, Sylvania, (2006).
[15] 劉如熹, “白光發光二極體製作技術-由晶粒金屬化至封裝”, 全華科技, 台北, (2008).
[16] K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development High-bright and Pure-white LED lamp”, J. Light &; Env. 22 (1998) 2.
[17] Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties”, Mater. Lett. 51 (2001) 14.
[18] Q. Li, J. Zhao, F. Sun, “Energy transfer mechanism of Sr4Al14O25 :Eu2+ phosphor”, J. Rare Earths. 28 (2010) 26.
[19] C. Chang, Z. Yuan, D. Mao, “Eu2+ Activated Long Persistent Strontium Aluminate Nano Scaled Phosphor Prepared by Precipitation Method” J. Alloys Compd. 415 (2006) 220.
[20] C. Zhao, D. Chen, Y. Yuan, and M. Wu, “Synthesis of Sr4Al14O25 :Eu2+, Dy3+ phosphor nanometer powders by combustion processes and its optical properties”, Mater. Sci. Eng. B 133 (2006) 200.
[21] V. Bachmann, C. Ronda, O. Oeckler, W. Schnick and A. Meijerink, “Color Point Tuning for (Sr,Ca,Ba)Si2O2N2 :Eu2+ for White Light LEDs”, Chem. Mater. 21 (2009) 316.
[22] Q. Wu, Z. Liu and H. Jiao, “Luminescent properties of stabled hexagonal phase Sr1-XBaXAl2O4 :Eu2+ (X = 0.37–0.70)”, Physica B 404 (2009) 2499.
[23] N. Suriyamurthy and B.S. Panigrahi, “Effects of non-stoichiometry and substitution on photoluminescence and afterglow luminescence of Sr4Al14O25 :Eu2+, Dy3+ phosphor”, J. Lumin. 128 (2008) 1809.
[24] L.T. Chen, C.S. Hwang, I.L. Sun, I.G. Chen, “Luminescence and chromaticity of alkaline earth aluminate MXSr1-XAl2O4 :Eu2+ (M: Ca, Ba)”, J. Lumin. 118 (2006) 12.
[25] C. Liu, Y. Wang, Y. Hu and R. Chen, F. Liao, “Adjusting luminescence properties of SrXCa1−XAl2O4 :Eu2+, Dy3+ phosphors by Sr/Ca ratio”, J. Alloys Compd. 470 (2009) 473.
[26] W. Xie, J. Quan, H. Wu, L. Shao, C. Zou, J. Zhang, X. Shia and Y. Wang, “Structure and luminescence properties of SrAl2O4 :Eu2+, Dy3+ by Ba2+ and Ca2+ co-doping”, J. Alloys Compd. 514 (2012) 97.
[27] R. Zhong, J. Zhang, X. Zhang, S. Lu and X.J. Wang, “Energy transfer and red phosphorescence in strontium aluminates co-doped with Cr3+, Eu2+ and Dy3+”, J. Lumin. 119–120 (2006) 327.
[28] M. Peng, Z. Pei, G. Hong and Q. Su, “Study on the reduction of Eu3+ →Eu2+ in Sr4Al14O25 :Eu prepared in air atmosphere”, Chem. Phys. Lett. 371 (2003) 1.
[29] 劉如熹、紀喨勝, “紫外光發光二極體用螢光粉介紹”, 全華科技, 台北, (2004).
[30] S. Shionoya, W.M. Yen (Eds.), “Phosphor Hand book”, CRC Press, New York, (1999).
[31] A.H. Kitai (Eds.), “Solid state Luminescence”, Chapman &; Hall, New York, (1993).
[32] P.W. Atkins, “Physical Chemistry”, Oxford University Press, Tokyo (2002)
[33] J.G. Solé, L.E. Bausá, D. Jaque, “An Introduction to the Optical Spectroscopy of Inorganic Solids”, John Wiley &; Sons, Chichester, (2005).
[34] G. Blasse and B.C. Grabmaier, “Luminescent Materials”, Springer, Berlin (1994).
[35] D.L. MACADAM, “Visual Sensitivities to Color Differences in Daylight”, J. Opt. Soc. Am. 32 (1942) 247.
[36] T. SMITH, M.A., and F.INST.P., “The C.I.E. colorimetric standards and their use”, Trans. Opt. Soc. 33 (1931) 73.
[37] D.B. Judd and G. Wyszecki, “Color in Business, Science, and Industry”, John Wiley, New York, (1975).
[38] G. Wyszecki and W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, John Wiley, New York, (1982).
[39] L. Porres, A. Holland, L.O. Palsson, A.P. Monkman, C. Kemp, and A. Beeby, “Absolute Measurements of Photoluminescence Quantum Yields of Solutions Using an Integrating Sphere”, J. Fluoresc. (2006).
[40] M. Shaw and M. Fairchild, “Evaluating the 1931 CIE Color-Matching Functions”, COLOR research and application 27 (2002) 316.
[41] F. Massazza, “The System SrO–Al2O3”, Chim. Ind. (Milan) 41 (1959) 108.
[42] E.M. Levin, C.R. Robbins, H.F. McMurdie, and M.K. Reser (Eds.). “Phase Diagrams for Ceramists”, American Ceramic Society, Colombus, OH, Fig. 294, (1964).
[43] Mickaël Capron and André Douy, “Strontium Dialuminate SrAl4O7: Synthesis and Stability”. J. Am. Ceram. Soc. 85 (2002) 3036.
[44] J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, “Emission color variation of M2SiO4 :Eu2+ (M=Ba, Sr, Ca) phosphors for light-emitting diode”, Solid State Commun.133 (2005) 187.
[45] A.D. Deshmukh, S.J. Dhoble and N.S. Dhoble, “Optical properties of MAl12O19 :Eu (M = Ca, Ba, Sr) nanophosphors”, Adv. Mat. Lett. 2 (2011) 38.
[46] W. Chung, H.J. Yu, S.H. Park, B.H. Chun, J. Kim and S.H. Kim, “Spray pyrolysis synthesis of MAl2O4 :Eu2+ (M = Ba, Sr) phosphor for UV LED excitation”, J. Cryst. Growth 326 (2011) 73.
[47] M.A. Lephoto, O.M. Ntwaeaborwa, S.S. Pitale, H.C. Swart, J.R. Botha and B.M. Mothudi, “Synthesis and characterization of BaAl2O4 :Eu2+ co-doped with different rareearthions”, Physica B 407 (2012) 1603.
[48] Z. Yanfang, L. Lan, Z. Xiaosong and X. Qun, “Temperature effects on photoluminescence of YAG:Ce3+ phosphor and performance in white light-emitting diodes”, J RARE EARTH 26 (2008) 446.
[49] W. Lüa, X. Zhanga, Y. Wanga, Z. Haoa, Y. Liua, Y. Luoa , X. Wangc and J. Zhanga, “Luminescence investigation and thermal stability study of Eu2+ and Eu2+–Mn2+ codoped (Ba,Sr)Mg2Al6Si9O30 phosphor”, J. Alloys Compd. 513 (2012) 430.
[50] Y.L. Chang, H.I. Hsiang and M.T. Liang, “Characterizations of Eu, Dy co-doped SrAl2O4 phosphors prepared by the solid-state reaction with B2O3 addition”, J. Alloys Compd. 461 (2008) 598.
[51] Nag, T.R.N. Kutty, “Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4 :Eu, Dy”, J. Alloys Compd. 354 (2003) 221.
[52] R.M. Hovhannisyan, J A. Geodakyan, B.V Petrosyan, V.P. Toroyan, Z.M. Abramyan, N.B. Knyasyan, V.R. Israelyan and R.G. Mkhitaryan, “Processes of borate formation taking place in batches of alkaline earth aluminum borate glasses”, Glass Technol. 44 (2003) 101.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. FePd及FePd/IrMn薄膜晶體結構與磁性質之研究
2. 以奈米複合晶技術開發具優異高溫穩定性之多元氮化鉻鋁矽薄膜
3. 利用介電質平板式常壓電漿改質聚對苯二甲酸乙二醇酯和乙烯-四氟化乙烯聚酯物以提升其表面生物相容性
4. 經由氣氛控制與碳披覆之鈦酸鋰的電化學特性與其在高功率鋰離子電池的應用
5. 藉由製程溫度控制鍍製鋯-銅-鎳-鋁金屬玻璃薄膜及其微結構、熱、機械與抗菌性質
6. 製備Sn-Ag-Cu/Ni銲接系統的參數控制及奈米雙晶鎳薄膜對界面反應的影響
7. 錫基無鉛銲料與鎳、銅、及新穎銅鋅合金底層金屬接點之相關界面反應、微結構變化及衝擊可靠度
8. 藉改變銅/錫銀/鎳微凸塊系統之金屬基材接合順序以調控介金屬化合物的相生成及演變機制
9. 錫銀銅鎳銲料與三維封裝中錫銀微銲點接合新穎銅鋅底層金屬後之微觀結構、晶粒方向性及可靠度測試
10. 應用於鋰離子電池之錳系高工作電壓尖晶石正極材料與高電容量富鋰層狀氧化物之合成機制、結構分析與電化學性能探討
11. 利用快速熱處理晶圓廢料回收之微米矽 並應用於鋰離子電池負極材料
12. 利用常壓電漿束對鋰離子電池負極ZnCo2O4材料進行氮摻雜和碳沉積
13. 以表面改質和奈米複合材料提升高功率型鈦酸鋰鋰離子負極材料
14. 鉻鋁矽氮奈米複合晶薄膜高溫抗磨耗特性及藉由低壓電漿滲氮改質基板與鍍膜之附著性
15. 藉結構調制具自潤滑之氮化鉻鋁/氮化釩奈米多層薄膜以強化機械性質及抗高溫磨耗特徵