(3.227.208.0) 您好!臺灣時間:2021/04/21 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡士傑
論文名稱:大氣電漿束之電漿特性與應用之研究
論文名稱(外文):Study of the Characteristics and Applications of Atmospheric Pressure Plasma Jets
指導教授:寇崇善
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:263
中文關鍵詞:大氣電漿預傾角操作頻率氣流
外文關鍵詞:atmospheric pressure plasmadriving frequencypreitlt anglegas flow
相關次數:
  • 被引用被引用:2
  • 點閱點閱:471
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:156
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用大氣電漿系統研究操作頻率對電漿特性的影響、氣流對薄膜沉積和電漿分佈的影響、沉積有機矽薄膜以及藉由調整薄膜特性達到控制液晶分子預傾角的目的。
  本研究在增加操作頻率下,觀察到以下幾種電漿特性變化:(1)電漿的崩潰電壓從256 V降低至204 V、(2)維持α模式放電的最高電漿密度從0.798×〖10〗^12 〖cm〗^(-3)上升至2.218×〖10〗^12 〖cm〗^(-3)以及電流從0.125 A提高至0.224 A、(3)放電模式轉換前的鞘層厚度從0.348 mm減少為0.257 mm、(4)電漿功率為25 W時電子激發溫度從0.535 ev降為0.316 ev。
  本實驗在研究過程中,發現當進氣量為5 slm時,氣流分佈不均勻,進而導致薄膜厚度的不均勻分佈。藉由改變風刀結構來改善氣流分佈的均勻性,可使薄膜厚度均勻分佈在基材上,由於薄膜沉積的均勻性和電漿密度分佈有關,因此可判斷氣流分佈對電漿密度分佈有重大的影響。
  本實驗使用大氣電漿源與有機矽化合物HMDSO沉積有機矽膜,藉由控制製程參數可調整薄膜結構與物理特性,實驗中發現HMDSO薄膜的主要結構為Si–CH3和Si–O–Si,提高分子平均能量可使薄膜結構偏向Si–O–Si;反之則偏向Si–CH3。Si–CH3為非極性分子,其結構較脆弱且較容易被破壞;Si–O–Si為極性分子,其結構較為堅固不易被破壞。當Si–O–Si的含量比例較高時,薄膜具有較高的表面能,可達68 mJ/m2,親水性質較明顯,表面硬度比較高,可達到5H;若是Si–CH3的含量比例較高,薄膜具有較低的表面能,可低至25 mJ/m2,疏水性質較明顯。
  本實驗藉由控制薄膜的表面能,達到控制液晶分子預傾角的目的。實驗結果顯示預傾角角度會隨著薄膜的表面能改變,當表面能低於34 mJ/m2時,預傾角角度趨近於90o,當表面能高於60 mJ/m2時,預傾角角度趨近於0o,由此可知,欲控制預傾角,表面能的範圍必須控制在34~60 mJ/m2。

In study, we used atmospheric pressure plasma source (APPS) to study the effect of driving frequency on the characteristic of plasma, the effect of gas flow on the deposition process and plasma density distribution, deposition of organic silicon film, and controlling the pretilt angle of liquid crystals (LCs).
The study was to investigate the driving frequency effects on the characteristics of atmospheric plasma jets system. The discharge gas is the helium. We change the power source frequency range from 10 MHz to 20 MHz. As the driving frequency is increased, we can observe the several phenomena. (1) gas breakdown voltage from 256 V down to 204 V, (2) plasma density from 0.798×〖10〗^12 〖cm〗^(-3) rose to 2.218×〖10〗^12 〖cm〗^(-3) and increase the current from 0.125 A to 0.224 A when the plasma state at highest α mode discharge, (3) sheath thickness decreased from 0.348 mm to 0.257 mm before discharge mode transition, (4) the electron excitation temperature dropped from 0.535 ev 0.316 ev when the plasma power of 25 W. Collectively, these results suggest that the high driving frequency help to improve the quality of plasma, enhance discharge efficiency, and make the atmospheric plasma jets systems have a wider application space.
From the results, the gas flow distribution became non-uniform at helium flow rate of 5 slm. By modifying the structure of nozzle, the gas flow distribution became more uniform so that film deposition became uniform. Because the uniformity of film deposition is related to the plasma density distribution, the gas flow distribution effected the plasma density distribution.
In study, the APPS was used to deposited the organic silicon film, HMDSO as the material. The process could control the structure and properties of the film. Results showed main bonds (Si–CH¬3 and Si–O–Si) can be controlled by molecular average energy (W/FM). The ratio of Si–O–Si increased when W/FM became large. The ratio of Si–CH¬3 was increasing with decreasing the W/FM. Si–O–Si are polar bonds, and Si–CH¬3 are non-polar bonds. Thus, if the ratio of Si–O–Si was higher than Si–CH¬3, the film became hydrophilic (surface energy could be 68 mJ/m2) and surface hardness became hard. If the ratio of Si–CH¬3 was higher than Si–CH¬3, the film became hydrophobic (surface energy could be 25 mJ/m2) and surface hardness became soft.
The pretilt angle of LCs could be controlled by adjusting the surface energy of the film. When the surface energy was smaller than 34 mJ/m2, the pretilt angle approached 90o. When the surface energy was larger than 60 mJ/m2, the pretilt angle approached 0o. Therefore, the pretilt angle could be controlled by the range of surface energy from 34 to 60 mJ/m2.

目 錄
第一章 緒論 1
1–1 前言 1
1–2 大氣電漿源簡介 1
1–3 有機矽膜簡介 7
1–4 液晶配向簡介 9
1–5 數值模擬軟體Comsol multiphysics簡介 11
1–6 研究目的 13
參考文獻 16

第二章 文獻回顧 22
2–1 大氣電漿 22
2–1–1 氣體游離過程 22
2–1–2 氣體崩潰機制 25
2–1–3 產生均勻放電的方法 31
2–1–4 氣流對電漿分佈的影響 36
2–2 液晶配向 39
2–2–1 配向的形成 40
2–2–2 配向的方法 46
2–2–3 預傾角 58
2–3 Hexamethyldisiloxane (六甲基矽氧烷,HMDSO) 60
2–4 Comsol multiphysics流體力學模型 64
2–4–1 連續方程式 64
2–4–2 動量傳輸方程式 65
2–4–3 能量傳輸方程式 66
參考文獻 67

第三章 實驗設備與分析方法 72
3–1 大氣電漿系統 72
3–2 各種分析儀器 77
3–2–1 物性分析儀器 77
(1) 橢圓偏光儀 77
(2) 傅立葉紅外線光譜儀 79
(3) 化學分析能譜儀 80
(4) 原子力顯微鏡 81
(5) 接觸角量測儀 82
(6) 鉛筆硬度測試機 85
3–2–2 液晶配向儀器 86
(1) 刷磨機 86
(2) 偏光顯微鏡 87
(3) 預傾角測量系統 88
3–2–3 電漿特性測量儀器 89
(1) 功率與電壓電流特性量測系統 89
(2) 電漿光譜量測系統 91
發射光譜強度分析 93
電子平均吸收能量 95
電子激發溫度計算 96
3–3 COMSOL模型建立 98
參考文獻 102

第四章 功率源頻率對大氣電漿束之影響 105
4–1 前言 105
4–2 電漿理論模型 106
4–3 實驗方法 110
4–4 頻率對功率傳遞效率分析 111
4–5 線型大氣電漿特性分析 114
4–5–1 線型大氣電漿束輝光放電現象 114
4–5–2 操作頻率對電漿放電特性之影響 117
4–5–3 操作頻率對電漿特性之影響 120
4–5–4 電漿光譜分析 124
4–5–5 不同操作頻率下He的特徵譜線 125
4–5–6 不同操作頻率下N2和N2+的特徵譜線 130
4–5–7 不同操作頻率下電子激發溫度 132
4–6 操作頻率改變電漿特性之原因 135
參考文獻 138

第五章 氣流對電漿分佈之影響 141
5–1 前言 141
5–2 實驗方法 142
5–3 氣流分佈對薄膜沉積的影響 144
5–3–1 市售風刀的氣流分佈模擬及對薄膜沉積的影響 144
(1) 氣流分佈模擬 146
(2) 薄膜厚度的均勻性 150
5–3–2 改善風刀結構對的氣流分佈及對薄膜沉積的影響 153
參考文獻 157

第六章 HMDSO薄膜特性與液晶配向之應用 158
6–1 前言 158
6–2 實驗流程 160
6–3 薄膜材料分析 163
6–3–1 薄膜結構分析 163
FTIR光譜分析 163
ESCA能譜分析 182
6–3–2 薄膜物理性質分析 218
表面能分析 218
硬度分析 230
表面粗糙度分析 233
6–3–3 薄膜沉積速率與折射率分析 239
6–3–4 Yasuda factor W/FM在本實驗扮演的角色 244
6–4 HMDSO薄膜在液晶配向之應用 247
表面形貌分析 248
HMDSO薄膜的配向效果 251
參考文獻 256

第七章 結論 259


圖目錄
圖1–1 介質屏障放電示意圖 2
圖1–2 暈光放電示意圖 3
圖1–3 電漿火炬示意圖 4
圖1–4 大氣電漿束示意圖 5
圖1–5 刷磨式配向法示意圖 9
圖1–6 大氣電漿源與刷磨式配向法的連續製程示意圖 14
圖2–1 Townsend breakdown的示意圖 26
圖2–2 電子崩的示意圖 29
圖2–3 電子崩對電場的影響 29
圖2–4 形成流光(streamer)的過程 31
圖2–5 Streamer coupling discharge示意圖 33
圖2–6 常用氣體的崩潰電壓與pd值的關係圖 35
圖2–7 不同氣壓下,放電電壓與氣流流速的關係圖 37
圖2–8 不同流速下,電壓與電流的關係圖 38
圖2–9 配向膜的溝槽結構 42
圖2–10 液晶分子與法線的夾角示意圖 45
圖2–11 氧化矽斜向蒸鍍法裝置圖 48
圖2–12 液晶分子在氧化矽表面的排列示意圖 48
圖2–13 刷磨式配向及各種參數的示意圖 51
圖2–14 刷磨前後的液晶分子排列示意圖 51
圖2–15 光異構的結構示意圖 53
圖2–16 光異構配向的液晶分子排列示意圖 53
圖2–17 光聚合反應的結構示意圖 53
圖2–18 光連結反應的結構示意圖 54
圖2–19 離子束配向的裝置示意圖 56
圖2–20 真空型電漿束配向示意圖 57
圖2–21 預傾角示意圖 58
圖2–22 外加電壓垂直於液晶分子的響示意圖 59
圖2–23 Tilt–reverse示意圖 59
圖2–24 Twist–reverse示意圖 59
圖2–25 HMDSO結構式 61
圖2–26 HMDSO的紅外線光譜圖 61
圖3–1 線型大氣電漿系統裝置示意圖 75
圖3–2 HMDSO的蒸氣壓與環境溫度關係圖 75
圖3–3 單體瓶裝置示意圖 76
圖3–4 風刀內部結構示意圖 76
圖3–5 橢圓儀測量示意圖 78
圖3–6 共振吸收的振動模式示意圖 79
圖3–7 光電子產生示意圖 80
圖3–8 原子間作用力與原子間距離的關係圖 82
圖3–9 接觸角測量示意圖 83
圖3–10 固、液、氣三相平衡示意圖 83
圖3–11 鉛筆硬度測試裝置與測量示意圖 85
圖3–12 刷磨式配向示意圖 87
圖3–13 POM測量示意圖 88
圖3–14 預傾角測量示意圖 88
圖3–15 功率量測系統 89
圖3–16 電漿光譜量測系統 92
圖3–17 氬氣放電的電子能量分布函數隨氣壓變化 94
圖3–18 氬氣中電子的電離、激發和彈性激發截面積 94
圖3–19 模擬的結構示意圖 99
圖3–20 實驗結構側視圖 98
圖4–1 線型大氣電漿束等效阻抗模型 107
圖4–2 功率傳遞效能隨操作頻率的變化 112
圖4–3 電漿放電損耗的比例隨操作頻率的變化 113
圖4–4 輝光放電照片前視圖(α模式放電現象) 114
圖4–5 氣流流速模擬圖 115
圖4–6 輝光放電照片側視圖 115
圖4–7 放電模式轉換圖 116
圖4–8 放電模式轉換圖 117
圖4–9 崩潰電壓與電流隨頻率的變化 118
圖4–10 放電模式轉換前的電壓與電流隨頻率的變化 118
圖4–11 放電模式轉換前電漿鞘層厚度與電漿密度隨頻率的變化 120
圖4–12 不同操作頻率下電壓與電流關係圖 121
圖4–13 不同頻率下電漿密度隨功率變化 122
圖4–14 不同頻率下電漿阻抗隨功率變化 122
圖4–15 不同頻率下電漿鞘層厚度隨功率變化 123
圖4–16 不同頻率下電漿鞘層電容隨功率變化 124
圖4–17 氦氣線型大氣電漿束放電過程中的特徵光譜 125
圖4–18 氦氣激發態譜線強度與電漿區功率的關係圖 126
圖4–19 氦氣激發態譜線強度與電漿區電壓的關係圖 127
圖4–20 不同頻率下氦氣激發態譜線強度 129
圖4–21 N_2 second positive system 的譜線強度與放電功率關係圖 130
圖4–22 N_2 first negative system 的譜線強度與放電功率的關係圖 131
圖4–23 電子激發溫度與放電電壓的關係圖 133
圖4–24 電子激發溫度與電漿區功率的關係圖 134
圖4–25 電子震盪振幅示意圖,電子移動時間示意圖 136
圖4–26 電子震盪振福與電子傳遞時間和操作頻率半周期比值隨頻率變化 137
圖5–1 Wafer表面顏色對氧化矽膜的厚度變化 143
圖5–2 實驗操作流程 143
圖5–3 市售風刀的外觀與內部結構 145
圖5–4 氣流模擬的模型 145
圖5–5 氣流的測量位置示意圖 145
圖5–6 氣流的向量分佈圖 147
圖5–7 氣流的速率分佈圖 148
圖5–8 噴氣口的氣流速率的分佈圖 149
圖5–9 氣壓分佈圖 149
圖5–10 經過沉積薄膜的Wafer表面顏色分佈隨著氦氣流量改變 150
圖5–11 經過沉積薄膜的Wafer表面顏色分佈隨著氦氣流量改變 151
圖5–12 將流量為2和3 slm的參數的掃描次數提高到40次 152
圖5–13 修改後的風刀結構 154
圖5–14 修改後的模擬結果 155
圖5–15 風刀經過修改後在出氣口的氣流速率分佈 156
圖5–16 使用修改後的風刀進行的薄膜沉積結果 156
圖6–1 實驗流程圖 162
圖6–2 HMDSO薄膜的紅外線吸收光譜 165
圖6–3 FTIR光譜,Power為變數 169
圖6–4 FTIR光譜,HMDSO流量為變數 173
圖6–5 FTIR光譜,Helium流量為變數 177
圖6–6 FTIR光譜,O2流量為變數 181
圖6–7 HMDSO薄膜的ESCA survey能譜 184
圖6–8 ESCA能譜,Power為變數 192
圖6–9 ESCA能譜,HMDSO流量為變數 200
圖6–10 ESCA能譜,Helium流量為變數 208
圖6–11 ESCA能譜,O2流量為變數 216
圖6–12 接觸角與表面能,Power為變數 222
圖6–13 接觸角與表面能,HMDSO流量為變數 226
圖6–14 接觸角與表面能,Helium流量為變數 227
圖6–15 接觸角與表面能,O2流量為變數 229
圖6–16 HMDSO薄膜的表面結構,Power 234
圖6–17 HMDSO薄膜的表面結構,HMDSO 235
圖6–18 HMDSO薄膜的表面結構,O2流量 237
圖6–19 基材經過電漿區的示意圖 240
圖6–20 Power對膜厚及沉積速率的影響 240
圖6–21 HMDSO流量對膜厚及沉積速率的影響 242
圖6–22 Helium流量對膜厚及沉積速率的影響 242
圖6–23 表面能在不同實驗參數中所對應的W/FM 246
圖6–24 未經刷磨的薄膜表面形貌 249
圖6–25 經過刷磨製程的薄膜表面形貌 250
圖6–26 液晶胞的配向狀況,HMDSO 253
圖6–27 液晶胞的配向狀況,Power 253
圖6–28 預傾角隨表面能的變化 254





表目錄
表1–1 大氣電漿源與低氣壓電漿源之崩潰電壓比較 6
表1–2 大氣電漿源與低氣壓電漿源之電漿密度比較 6
表2–1 在γ_c–hypothesis中,各種配向模式所對應的液晶表面能與基板表面能的關係圖 46
表3–1 鉛筆型號與硬度的關係圖 86
表4–1 He譜線相關數據 132
表6–1 HMDSO薄膜的鍵結振動模式 165
表6–2 HMDSO薄膜的各種鍵結的束縛能 184
表6–3 測量液體的表面能參數表 220
表6–4 Power對表面硬度的影響 231
表6–5 HMDSO流量對表面硬度的影響 232
表6–6 O2流量對表面硬度的影響 232
表6–7 不同Power下的表面粗糙度 234
表6–8 不同HMDSO流量下的表面粗糙度 235
表6–9 不同O2流量下的表面粗糙度 237
表6–10 Power對薄膜折射率的影響 241
表6–11 HMDSO流量對薄膜折射率的影響 242
表6–12 Helium流量對薄膜折射率的影響 243
表6–13 刷磨前和刷磨後的表面粗糙度 248



[1] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources," Ieee Transactions on Plasma Science, vol. 26, pp. 1685-1694, Dec 1998.
[2] H. Schmid, B. Kegel, W. Petasch, and G. Liebel, "Low pressure plasma processing in microelectronics," presented at the Proc. Joint 24 th Int. Conf. Microelectronics (MIEL) and 32nd Symp. Devices Materials SD'6, Slovenia, 1996.
[3] M. A. Liebermann and A. L. Lichtenberg, Principles of Plasma Discharges and Materials Processing New York: Wiley, 1994.
[4] J. R. Roth, J. Rahel, X. Dai, and D. M. Sherman, "The physics and phenomenology of one atmosphere uniform glow discharge plasma (OAUGDP (TM)) reactors for surface treatment applications," Journal of Physics D-Applied Physics, vol. 38, pp. 555-567, Feb 21 2005.
[5] J. R. Roth, S. Nourgostar, and T. A. Bonds, "The one atmosphere uniform glow discharge plasma (OAUGDP) - A platform technology for the 21st century," Ieee Transactions on Plasma Science, vol. 35, pp. 233-250, Apr 2007.
[6] D. Pappas, "Status and potential of atmospheric plasma processing of materials," Journal of Vacuum Science & Technology A, vol. 29, pp. 020801-1, Mar-Apr 2011.
[7] K. G. Kostov, R. Y. Honda, L. M. S. Alves, and M. E. Kayama, "Characteristics of Dielectric Barrier Discharge Reactor for Material Treatment," Brazilian Journal of Physics, vol. 39, pp. 322-325, Jun 2009.
[8] B. M. Penetrante, M. C. Hsiao, B. T. Merritt, G. E. Vogtlin, P. H. Wallman, M. Neiger, et al., "Pulsed corona and dielectric-barrier discharge processing of NO in N-2," Applied Physics Letters, vol. 68, pp. 3719-3721, Jun 24 1996.
[9] J. S. Chang, P. A. Lawless, and T. Yamamoto, "Corona Discharge Processes," Ieee Transactions on Plasma Science, vol. 19, pp. 1152-1166, Dec 1991.
[10] N. Tippayawong and P. Khongkrapan, "Development of a laboratory scale air plasma torch and its application to electronic waste treatment," International Journal of Environmental Science and Technology, vol. 6, pp. 407-414, Sum 2009.
[11] T. B. Reed, "Induction-Coupled Plasma Torch," Journal of Applied Physics, vol. 32, pp. 821-824, 1961.
[12] N. Jiang, A. L. Ji, and Z. X. Cao, "Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism," Journal of Applied Physics, vol. 106, p. 013308, Jul 1 2009.
[13] M. J. Owen, "Why Silicones Behave Funny," Chemtech, vol. 11, pp. 288-292, 1981.
[14] J. P. Mollie, Silicone materials for electronic components and circuit protection Kluwer Academic Publishers, 1999.
[15] A. L. Smith, The Analytical Chemistry of Silicones vol. 112. New York: Wiley-Interscience, 1991.
[16] R. Bärsch, J. Lambrecht, and H. J. Winter, "On the Evaluation of Influences on the Hydrophobicity of Silicone Rubber Surfaces," presented at the 10th International Symposium on High Voltage Engineering, Montreal, 1997.
[17] J. Kindersberger, M. Kuhl, and R. Bärsch, "Evaluation of the Conditions of Non-Ceramic Insulators after Long-Term Operation under Service Conditions," presented at the 9th International Symposium on High Voltage Engineering, Graz, 1995.
[18] H. L. Chen and L. A. Wang, "Hexamethyldisiloxane film as the bottom antireflective coating layer for ArF excimer laser lithography," Applied Optics, vol. 38, pp. 4885-4890, Aug 1 1999.
[19] H. Nagai, M. Hori, T. Goto, T. Fujii, and M. Hiramatsu, "Fabrication of multilayered SiOCH films with low dielectric constant employing layer-by-layer process of plasma enhanced chemical vapor deposition and oxidation," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 2775-2779, May 2003.
[20] Y. Y. Ji, Y. C. Hong, S. H. Lee, S. D. Kim, and S. S. Kim, "Formation of super-hydrophobic and water-repellency surface with hexamethyldisiloxane (HMDSO) coating on polyethyleneteraphtalate fiber by atmosperic pressure plasma polymerization," Surface & Coatings Technology, vol. 202, pp. 5663-5667, Aug 30 2008.
[21] S. Yeo, T. Kwon, C. Choi, H. Park, J. W. Hyun, and D. Jung, "The patterned hydrophilic surfaces of glass slides to be applicable for the construction of protein chips," Current Applied Physics, vol. 6, pp. 267-270, Feb 2006.
[22] S. J. Jian, C. S. Kou, J. Hwang, C. D. Lee, and W. C. Lin, "Orientating layers with adjustable pretilt angles for liquid crystals deposited by a linear atmospheric pressure plasma source," Review of Scientific Instruments, vol. 84, p. 063501, 2013.
[23] X. Y. Xu, L. Li, S. G. Wang, L. L. Zhao, and T. C. Ye, "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure," Plasma Sources Science & Technology, vol. 16, pp. 372-376, May 2007.
[24] F. F. Shi, "Recent advances in polymer thin films prepared by plasma polymerization Synthesis, structural characterization, properties and applications," Surface & Coatings Technology, vol. 82, pp. 1-15, Jul 1996.
[25] N. Tomozeiu, "SiOx thin films deposited by r.f. magnetron reactive sputtering: structural properties designed by deposition conditions," Journal of Optoelectronics and Advanced Materials, vol. 8, pp. 769-775, Apr 2006.
[26] S. S. Asad, J. P. Lavoute, C. Dublanche-Tixier, C. Jaoul, C. Chazelas, P. Tristant, et al., "Deposition of Thin SiOx Films by Direct Precursor Injection in Atmospheric Pressure Microwave Torch (TIA)," Plasma Processes and Polymers, vol. 6, pp. S508-S513, 2009.
[27] X. D. Qian, L. Song, Y. Hu, and R. K. K. Yuen, "Preparation and thermal properties of novel organic/inorganic network hybrid materials containing silicon and phosphate," Journal of Polymer Research, vol. 19, p. 19:9890, Jun 2012.
[28] M. Nishikawa, Y. Matsuki, N. Bessho, Y. Iimura, and S. Kobayashi, "Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV," Journal of Photopolymer Science and Technology, vol. 8, p. 233, 1995.
[29] D. Ahn, Y. C. Jeong, S. Lee, J. Lee, Y. Heo, and J. K. Park, "Control of liquid crystal pretilt angles by using organic/inorganic hybrid interpenetrating networks," Optics Express, vol. 17, pp. 16603-16612, Sep 14 2009.
[30] K. Y. Han and T. Uchida, presented at the J. SID, 1995.
[31] H. Mada and T. Sonoda, "A Proposal on and Verification of Surface Alignment of Liquid-Crystals Aligned by Frictional Rubbing," Japanese Journal of Applied Physics Part 2-Letters, vol. 32, pp. L1245-L1247, Sep 1 1993.
[32] U. Wolff, W. Greubel, and H. Kruger, "Homogeneous Alignment of Liquid-Crystal Layers," Molecular Crystals and Liquid Crystals, vol. 23, pp. 187-196, 1973.
[33] K. Wako, K. Y. Han, and T. Uchida, "Relation among micro-structure of rubbing fiber, shape of the microgroove of rubbed polymer and its anchoring strength," Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals, vol. 304, pp. 235-246, 1997.
[34] K. Ichimura, S. Morino, and H. Akiyama, "Three-dimensional orientational control of molecules by slantwise photoirradiation," Applied Physics Letters, vol. 73, pp. 921-923, Aug 17 1998.
[35] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, "Surface-Induced Parallel Alignment of Liquid-Crystals by Linearly Polymerized Photopolymers," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 31, pp. 2155-2164, Jul 1992.
[36] Y. K. Jang, H. S. Yu, J. K. Song, B. H. Chae, and K. Y. Han, presented at the SID '97 Digest, 1997.
[37] M. Hasegawa and Y. Taira, "Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV," Journal of Photopolymer Science and Technology, vol. 8, pp. 241-248, 1995.
[38] M. J. Little, H. L. Garvin, and Y. S. Lee, "Means and method for inducing uniform parallel alignment of liquid crystal material in a liquid crystal cell," 1979.
[39] P. Chaudhari, J. A. Lacey, S. C. A. Lien, and J. L. Speidell, "Atomic beam alignment of liquid crystals," Japanese Journal of Applied Physics Part 2-Letters, vol. 37, pp. L55-L56, Jan 15 1998.
[40] J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, et al., "Liquid crystal alignment on carbonaceous surfaces with orientational order," Science, vol. 292, pp. 2299-2302, Jun 22 2001.
[41] G. J. Sprokel and R. M. Gibson, "Liquid-Crystal Alignment Produced by Rf Plasma Deposited Films," Journal of the Electrochemical Society, vol. 124, pp. 557-561, 1977.
[42] O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, and O. D. Lavrentovich, "Planar and tilted uniform alignment of liquid crystals by plasma-treated substrates," Liquid Crystals, vol. 31, pp. 859-869, Jun 2004.
[43] H. K. Wei, C. S. Kou, K. Y. Wu, and J. Hwang, "Liquid crystal alignment on a-C : H films by an argon plasma jet at atmospheric pressure," Diamond and Related Materials, vol. 17, pp. 1639-1642, Jul-Oct 2008.
[44] 皮托科技股份有限公司, COMSOL Multiphysics電腦輔助分析模擬軟體學習寶典. 台灣.
[45] R. L. Panton, "Incompressible flow, 2nd ed.," ed: John Wiely & Sons, 1996.
[46] G. K. Batchelor, An introduction to fluid dynamics: Cambridge University Press, 1967.
[47] S. K. Karkari and A. R. Ellingboe, "Effect of radio-frequency power levels on electron density in a confined two-frequency capacitively-coupled plasma processing tool," Applied Physics Letters, vol. 88, p. 101501, 2006.
[48] P. C. Boyle, A. R. Ellingboe, and M. M. Turner, "Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices," Journal of Physics D-Applied Physics, vol. 37, pp. 697-701, Mar 7 2004.
[49] I. Mori, T. Araki, H. Ishii, Y. Ouchi, K. Seki, and K. Kondo, "NEXAFS studies on the rubbing effects of the surface structure of polyimides," Journal of Electron Spectroscopy and Related Phenomena, vol. 78, pp. 371-374, 1996.
[50] M. Nakamura and M. Ura, "Alignment of Nematic Liquid-Crystals on Ruled Grating Surfaces," Journal of Applied Physics, vol. 52, pp. 210-218, 1981.
[51] S. Pekarek, "Experimental study of surface dielectric barrier discharge in air and its ozone production," Journal of Physics D-Applied Physics, vol. 45, p. 075201, Feb 22 2012.
[52] C. Wu, A. R. Hoskinson, and J. Hopwood, "Stable linear plasma arrays at atmospheric pressure," Plasma Sources Science & Technology, vol. 20, p. 045022, Aug 2011.
[53] J. Kluson, P. Kudrna, and M. Tichy, "Measurement of the plasma and neutral gas flow velocities in a low-pressure hollow-cathode plasma jet sputtering system," Plasma Sources Science & Technology, vol. 22, p. 015020, Feb 2013.
[54] J. Toshifuji, T. Katsumata, H. Takikawa, T. Sakakibara, and I. Shimizub, "Cold arc-plasma jet under atmospheric pressure for surface modification," Surface and Coatings Technology, vol. 171, pp. 302–306, 2003.
[55] Y. S. Seo, A. A. H. Mohamed, K. C. Woo, and H. W. Lee, "Comparative Studies of Atmospheric Pressure Plasma Characteristics Between He and Ar Working Gases for Sterilization," IEEE Transactions on plasma science, vol. 38, pp. 2954 - 2962, 2010.
[56] J. L. Walsh and M. G. Kong, "Contrasting characteristics of linear-field and cross-field atmospheric plasma jets," Applied Physics Letters, vol. 93, p. 11501, 2008.

[1] B. Chapman, Glow Discharge Process. New York: John Wiley & Sons Inc., 1980.
[2] Y. P. Raizer, Gas Discharge Physics. New York: Spronger–Verlag, 1991.
[3] J. R. Roth, Industrial plasma Engineering vol. 2. Bristol: Institute of physics Publishing, 2001.
[4] J. R. Roth, Industrial plasma Engineering vol. 1. Bristol: Institute of physics Publishing, 1995.
[5] M. A. Liebermann and A. L. Lichtenberg, Principles of Plasma Discharges and Materials Processing New York: Wiley, 1994.
[6] H. Raether, Avalanches and Breakdown in Gases. London: Butter Worth, 1964.
[7] W. Pfeiffer, "High-Frequency Voltage Stress of Insulation - Methods of Testing," IEEE Transactions on Electrical Insulation, vol. 26, pp. 239-246, Apr 1991.
[8] S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura, "Appearance of Stable Glow-Discharge in Air, Argon, Oxygen and Nitrogen at Atmospheric-Pressure Using a 50-Hz Source," Journal of Physics D-Applied Physics, vol. 26, pp. 889-892, May 14 1993.
[9] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, "Stable Glow Plasma at Atmospheric-Pressure," Journal of Physics D-Applied Physics, vol. 21, pp. 838-840, May 14 1988.
[10] T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, "The Mechanism of the Stabilization of Glow Plasma at Atmospheric-Pressure," Journal of Physics D-Applied Physics, vol. 23, pp. 1125-1128, Aug 14 1990.
[11] J. J. Shi and M. G. Kong, "Sheath dynamics in radio-frequency atmospheric glow discharges," IEEE Transactions on Plasma Science, vol. 33, pp. 278-279, Apr 2005.
[12] J. I. Levatter and S. C. Lin, "Necessary Conditions for the Homogeneous Formation of Pulsed Avalanche Discharges at High Gas-Pressures," Journal of Applied Physics, vol. 51, pp. 210-222, 1980.
[13] A. J. Palmer, "Physical Model on Initiation of Atmospheric-Pressure Glow Discharges," Applied Physics Letters, vol. 25, pp. 138-140, 1974.
[14] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, "Stable glow plasma at atmospheric pressure," Journal of Physics D: Applied Phsics, vol. 21, pp. 838-840, 1988.
[15] T. Yokoyama, M. Kogoma, S. Kanazawa, T. Moriwaki, and S. Okazaki, "The Improvement of the Atmospheric-Pressure Glow Plasma Method and the Deposition of Organic Films," Journal of Physics D-Applied Physics, vol. 23, pp. 374-377, Mar 14 1990.
[16] C. Mauguin, Bull. Soc. Fr. Min., vol. 34, p. 71, 1911.
[17] P. Chatelain, Bull. Soc. Fr. Miner. Crist., vol. 66, p. 105, 1943.
[18] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment technologies and applications of liquid crystals. London and New York: Taylor & Francis, 2005.
[19] S. Faetti, "Azimuthal Anchoring Energy of a Nematic Liquid-Crystal at a Grooved Interface," Physical Review A, vol. 36, pp. 408-410, Jul 1 1987.
[20] L. T. Creagh and A. R. Kmetz, "Mechanism of Surface Alignment in Nematic Liquid-Crystals," Molecular Crystals and Liquid Crystals, vol. 24, pp. 59-68, 1973.
[21] S. Naemura, "Polar and Non-Polar Contributions to Liquid-Crystal Orientations on Substrates," Journal of Applied Physics, vol. 51, pp. 6149-6159, 1980.
[22] D. W. Berreman, "Solid Surface Shape and Alignment of an Adjacent Nematic Liquid-Crystal," Physical Review Letters, vol. 28, pp. 1683-1686, 1972.
[23] 松本正一 and 角田市良, 液晶之基礎與應用. 台灣: 國立編譯館, 1997.
[24] J. C. Dubois, M. Gazard, and A. Zann, "Liquid-Crystal Orientation Induced by Polymeric Surfaces," Journal of Applied Physics, vol. 47, pp. 1270-1274, 1976.
[25] J. L. Janning, "Thin-Film Surface Orientation for Liquid-Crystals," Applied Physics Letters, vol. 21, pp. 173-174, 1972.
[26] T. Motohiro and Y. Taga, "Sputter-Deposited Siox Films for Liquid-Crystal Alignment," Thin Solid Films, vol. 185, pp. 137-144, Feb 1990.
[27] U. Wolff, W. Greubel, and H. Kruger, "Homogeneous Alignment of Liquid-Crystal Layers," Molecular Crystals and Liquid Crystals, vol. 23, pp. 187-196, 1973.
[28] M. J. Little, H. L. Garvin, and Y. S. Lee, "Means and method for inducing uniform parallel alignment of liquid crystal material in a liquid crystal cell," 1979.
[29] O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, and O. D. Lavrentovich, "Planar and tilted uniform alignment of liquid crystals by plasma-treated substrates," Liquid Crystals, vol. 31, pp. 859-869, Jun 2004.
[30] R. Watanabe, T. Nakano, T. Satoh, H. Hatoh, and Y. Ohki, "Plasma-Polymerized Films as Orientating Layers for Liquid-Crystals," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 26, pp. 373-376, Mar 1987.
[31] M. Nishikawa, Y. Matsuki, N. Bessho, Y. Iimura, and S. Kobayashi, "Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV," Journal of Photopolymer Science and Technology, vol. 8, p. 233, 1995.
[32] D. Ahn, Y. C. Jeong, S. Lee, J. Lee, Y. Heo, and J. K. Park, "Control of liquid crystal pretilt angles by using organic/inorganic hybrid interpenetrating networks," Optics Express, vol. 17, pp. 16603-16612, Sep 14 2009.
[33] K. Y. Han and T. Uchida, presented at the J. SID, 1995.
[34] H. Mada and T. Sonoda, "A Proposal on and Verification of Surface Alignment of Liquid-Crystals Aligned by Frictional Rubbing," Japanese Journal of Applied Physics Part 2-Letters, vol. 32, pp. L1245-L1247, Sep 1 1993.
[35] K. Wako, K. Y. Han, and T. Uchida, "Relation among micro-structure of rubbing fiber, shape of the microgroove of rubbed polymer and its anchoring strength," Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals, vol. 304, pp. 235-246, 1997.
[36] K. Ichimura, S. Morino, and H. Akiyama, "Three-dimensional orientational control of molecules by slantwise photoirradiation," Applied Physics Letters, vol. 73, pp. 921-923, Aug 17 1998.
[37] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, "Surface-Induced Parallel Alignment of Liquid-Crystals by Linearly Polymerized Photopolymers," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 31, pp. 2155-2164, Jul 1992.
[38] M. Hasegawa and Y. Taira, "Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV," Journal of Photopolymer Science and Technology, vol. 8, pp. 241-248, 1995.
[39] P. Chaudhari, J. A. Lacey, S. C. A. Lien, and J. L. Speidell, "Atomic beam alignment of liquid crystals," Japanese Journal of Applied Physics Part 2-Letters, vol. 37, pp. L55-L56, Jan 15 1998.
[40] J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, et al., "Liquid crystal alignment on carbonaceous surfaces with orientational order," Science, vol. 292, pp. 2299-2302, Jun 22 2001.
[41] J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, et al., "Ion beam alignment for liquid crystal display fabrication," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 206, pp. 467-471, May 2003.
[42] G. J. Sprokel and R. M. Gibson, "Liquid-Crystal Alignment Produced by Rf Plasma Deposited Films," Journal of the Electrochemical Society, vol. 124, pp. 557-561, 1977.
[43] O. Yaroshchuk, R. Kravchuk, L. Dolgov, A. Dobrovolskyy, N. Klyui, E. Telesh, et al., "Aging of liquid crystal alignment on plasma beam treated substrates: Choice of alignment materials and liquid crystals," Molecular Crystals and Liquid Crystals, vol. 479, pp. 1149-1158, 2007.
[44] F. S. Yeung, Y. W. Li, and H. S. Kwok, "Pi-cell liquid crystal displays at arbitrary pretilt angles," Applied Physics Letters, vol. 88, p. 041108, Jan 23 2006.
[45] M. Andriot, J. V. DeGroot, J. Meeks, R. Meeks, E. Gerlach, M. Jungk, et al., Silicones in Industrial Applications: Dow Corning, 2007.
[46] M. Goujon, I. Belmonte, and G. Henrion, "OES and FTIR diagnostics of HMDSO/O-2 gas mixtures for SiOx deposition assisted by RF plasma," Surface & Coatings Technology, vol. 188, pp. 756-761, Nov-Dec 2004.
[47] G. F. Leu, A. Brockhaus, and J. Engemann, "Diagnostics of a hexamethyldisiloxane/oxygen deposition plasma," Surface & Coatings Technology, vol. 174, pp. 928-932, Sep-Oct 2003.
[48] P. Raynaud, B. Despax, Y. Segui, and H. Caquineau, "FTIR plasma phase analysis of hexamethyldisiloxane discharge in microwave multipolar plasma at different electrical powers," Plasma Processes and Polymers, vol. 2, pp. 45-52, 2004.
[49] 皮托科技股份有限公司, COMSOL Multiphysics電腦輔助分析模擬軟體學習寶典. 台灣.
[50] 皮托科技股份有限公司, Plasma Module User Guide. 台灣.
[51] R. L. Panton, "Incompressible flow, 2nd ed.," ed: John Wiely & Sons, 1996.
[52] G. K. Batchelor, An introduction to fluid dynamics: Cambridge University Press, 1967.
[53] G. Emanuel, Analytical fluid dynamics 2nd ed.: CRC Press, 2001.
[54] R. Aris, Vectors, Tensors, and the basic Equations of Fluid Mechanics: Dover Publications, 1989.

[1] A. C. A. Materials, HMDSO: Air Liquid Electronics.
[2] D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed.: Wiley-IEEE Press, 2006.
[3] 汪建明, 材料分析. 台灣: 中國材料科學學會, 1998.
[4] D. A. Skoog et al., Principles of Instrumental Analysis 5th ed.: Thomson-Brooks, 2004.
[5] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.: Wiely, 2001.
[6] K. Nakamoto, Infrared and Raman spetra of inorganic and coodrination compounds. New York: Wiely, 1997.
[7] J. C. Vickeaman, Surface Analysis - The Principal Techniques: Wiely, 1997.
[8] T. Young, "An Essay on the Cohesion of Fluids," Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805.
[9] D. K. Owens and R. C. Wendt, "Estimation of Surface Free Energy of Polymers," Journal of Applied Polymer Science, vol. 13, pp. 1741-1747, 1969.
[10] 松本正一 and 角田市良, 液晶之基礎與應用. 台灣: 國立編譯館, 1997.
[11] I. Mori, T. Araki, H. Ishii, Y. Ouchi, K. Seki, and K. Kondo, "NEXAFS studies on the rubbing effects of the surface structure of polyimides," Journal of Electron Spectroscopy and Related Phenomena, vol. 78, pp. 371-374, 1996.
[12] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment technologies and applications of liquid crystals. London and New York: Taylor & Francis, 2005.
[13] T. J. Scheffer and J. Nehring, "Accurate Determination of Liquid-Crystal Tilt Bias Angles," Journal of Applied Physics, vol. 48, pp. 1783-1792, 1977.
[14] K. Shirota, M. Yaginuma, K. Ishikawa, H. Takezoe, and A. Fukuda, "Modified Crystal Rotation Method for Measuring High Pretilt Angle in Liquid-Crystal Cells," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 34, pp. 4905-4906, Sep 1995.
[15] P. Semiconductors, Design of HF wideband power transformers, 1998.
[16] D. M. Pozar, Microwave Engineering 4th ed. New York: Wiely, 2011.
[17] 木宗正, 高頻電路設計實例. 台灣: 全華科技圖書股份有限公司, 1989.
[18] P. Semiconductors, Power transformers for the frequency range of 30-80 MHz, 1998.
[19] J. Sevick, Transmission Line Transformers, 4th ed.: SciTech Publishing, 2001.
[20] Boylestad, Introductory Circuit Analysis: PRENTICE HALL, 2008.
[21] P. Semiconductors, Application note combining units for a 1 kW wideband HF amplifier, 1998.
[22] Boylestad, Introductory Circuit Analysis. PRENTICE HALL, 2008.
[23] K. S. Yun, K. H. Seo, and K. J. Ha, "Interdecadal Change in the Relationship between ENSO and the Intraseasonal Oscillation in East Asia," Journal of Climate, vol. 23, pp. 3599-3612, Jul 2010.
[24] Y.P.Raizer, Gas Discharge Physics. New York: Springer-Verlag, 1991.
[25] X. Yang, M. Moravej, G. R. Nowling, S. E. Babayan, J. Panelon, and J. P. Chang, "Comparison of an atmospheric pressure, radio-frequency discharge operating in the alpha and gamma modes," Plasma Sources Science & Technology, vol. 14, 2005.
[26] P. Vidaud, S. M. A. Durrani, and D. R. Hall, "Alpha-Rf and Gamma-Rf Capacitative Discharges in N-2 at Intermediate Pressures," Journal of Physics D-Applied Physics, vol. 21, pp. 57-66, 1988.
[27] Y. P. Raizer, Glow Discharge Physics. New York: Spronger–Verlag, 1991.
[28] R. K. Sinnott, Coulson & Richardson's Chemical Engineering, Volume 6: Chemical Engineering Design, 4th ed.: Butterworth-Heinemann.
[29] 皮托科技股份有限公司, Plasma Module User Guide. 台灣.
[30] 皮托科技股份有限公司, COMSOL Multiphysics電腦輔助分析模擬軟體學習寶典. 台灣.
[31] J. P. Holman, Heat Transfer: McGraw-Hill, 2002.

[1] Y. P. Raizer, Gas Discharge Physics. New York: Springer-Verlag, 1991.
[2] X. Yang, M. Moravej, G. R. Nowling, S. E. Babayan, J. Panelon, and J. P. Chang, "Comparison of an atmospheric pressure, radio-frequency discharge operating in the alpha and gamma modes," Plasma Sources Science & Technology, vol. 14, 2005.
[3] F. F. Chen, Introduction to Plasma Physics. New York and London: Plenum Press, 1984.
[4] M. A. Liebermann and A. L. Lichtenberg, Principles of Plasma Discharges and Materials Processing New York: Wiley, 1994.
[5] J. L. Walsh, F. Iza, and M. G. Kong, "Atmospheric glow discharges from the high-frequency to very high-frequency bands," Applied Physics Letters, vol. 93, Dec 22 2008.
[6] J. J. Shi, X. T. Deng, R. Hall, J. D. Punnett, and M. G. Kong, "Three modes in a radio frequency atmospheric pressure glow discharge," Journal of Applied Physics, vol. 94, pp. 6303-6310, 2003.
[7] S. Y. Moon, D. B. Kim, B. Gweon, and W. Choe, "Driving frequency effects on the characteristics of atmospheric pressure capacitive helium discharge," Applied Physics Letters, vol. 93, 2008.
[8] M. Goldman and N. Goldman, Corona discharges vol. 1. New York, 1978.
[9] N. Spiliopoulos, D. Mataras, and D. E. Rapakoulias, "Power dissipation and impedance measurements in radio-frequency discharges," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 14, pp. 2757-2765, 1996.
[10] J. Y. Jeong, S. E. Babayan, A. Schutze, V. J. Tu, J. Park, and I. Henins, "Etching polyimide with a nonequilibrium atmospheric-pressure plasma jet," Journal of Vacuum Science & Technology A, vol. 17, pp. 2581-2585, 1999.
[11] G. Nersisyan, T. Morrow, and W. G. Graham, "Measurements of helium metastable density in an atmospheric pressure glow discharge," Applied Physics Letters, vol. 85, pp. 1487-1489, 2004.
[12] G. Nersisyan and W. G. Graham, "Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium," Plasma Sources Science & Technology, vol. 13, pp. 582-587, 2004.
[13] P. C. Boyle, A. R. Ellingboe, and M. M. Turner, "Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices," Journal of Physics D-Applied Physics, vol. 37, pp. 697-701, Mar 7 2004.
[14] 袁帝文, 王岳華, 謝孟翰, and 王弘毅, 高頻通訊電路設計. 台灣: 高立圖書有限公司, 2000.
[15] T. L. Floyd, Electronic Devices Conventional Current Version, 8th ed: Pearson education, 2008.
[16] C. S. Lee and J. T. Suen, "A study of the N-2(+) first negative system induced by H+, H-2(+), H-3(+), He+, and Ne+ on N-2," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 140, pp. 273-280, May 1998.
[17] G. Nersisyan and W. G. Graham, "Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium," Plasma Sources Science & Technology, vol. 13, pp. 582-587, Nov 2004.
[18] G. Nersisyan, T. Morrow, and W. G. Graham, "Measurements of helium metastable density in an atmospheric pressure glow discharge," Applied Physics Letters, vol. 85, pp. 1487-1489, Aug 30 2004.
[19] N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, "Transition from glow silent discharge to micro-discharges in nitrogen gas," Plasma Sources Science & Technology, vol. 9, pp. 340-346, 2000.
[20] N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, "Transition from glow silent discharge to micro-discharges in nitrogen gas," Plasma Sources Science & Technology, vol. 9, pp. 340-346, Aug 2000.
[21] 木宗正, 高頻電路設計實例. 台灣: 全華科技圖書股份有限公司, 1989.
[22] J. Sevick, Transmission Line Transformers, 4th ed.: SciTech Publishing, 2001.
[23] Y. Takeuchi, H. Mashima, M. Murata, S. Uchino, and Y. Kawai, "Characteristics of VHF-excited SiH4 plasmas using a ladder-shaped electrode," Surface & Coatings Technology, vol. 142, pp. 52-55, Jul 2001.
[24] P. Semiconductors, Application note combining units for a 1 kW wideband HF amplifier, 1998.
[25] X. Yang, M. Moravej, G. R. Nowling, S. E. Babayan, J. Panelon, J. P. Chang, et al., "Comparison of an atmospheric pressure, radio-frequency discharge operating in the alpha and gamma modes," Plasma Sources Science & Technology, vol. 14, pp. 314-320, May 2005.
[26] J. Park, I. Henins, H. W. Herrmann, and G. S. Selwyn, "Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source," Journal of Applied Physics, vol. 89, pp. 15-19, Jan 1 2001.
[27] Y.P.Raizer, M.N.Shneider, and N.A.Yatsenko, Radio Frequency Cpacitive Discharges: Boca Raton, 1995.
[28] E. Amanatides and D. Mataras, "Frequency variation under constant power conditions in hydrogen radio frequency discharges," Journal of Applied Physics, vol. 89, pp. 1556-1566, 2001.

[1] J. L. Walsh and M. G. Kong, "Contrasting characteristics of linear-field and cross-field atmospheric plasma jets," Applied Physics Letters, vol. 93, p. 11501, 2008.
[2] Y. S. Seo, A. A. H. Mohamed, K. C. Woo, and H. W. Lee, "Comparative Studies of Atmospheric Pressure Plasma Characteristics Between He and Ar Working Gases for Sterilization," IEEE Transactions on plasma science, vol. 38, pp. 2954 - 2962, 2010.
[3] J. Toshifuji, T. Katsumata, H. Takikawa, T. Sakakibara, and I. Shimizub, "Cold arc-plasma jet under atmospheric pressure for surface modification," Surface and Coatings Technology, vol. 171, pp. 302–306, 2003.
[4] B. Y. University. Full Color Chart for SiO2.
[5] G. K. Batchelor, An introduction to fluid dynamics: Cambridge University Press, 1967.
[6] G. Emanuel, Analytical fluid dynamics 2nd ed.: CRC Press, 2001.
[7] J. Verschuren and P. Kiekens, "Gas flow around and through textile structures during plasma treatment," AUTEX Research Journal, vol. 5, pp. 154-161, 2005.
[8] H. K. Yasuda, "Some important aspects of plasma polymerization," Plasma Processes and Polymers, vol. 2, pp. 293-304, May 12 2005.
[9] Y. P. Raizer, Gas Discharge Physics. New York: Spronger–Verlag, 1991.
[10] B. Zimmermann, F. Fietzke, H. Klostermann, J. Lehmann, F. Munnik, and W. Möller, "High rate PECVD of a-C:H coatings in a hollow cathode arc plasma," presented at the 13th International Conference on Plasma Surface Engineering, Garmisch-Partenkirchen, Germany, 2012.
[11] S. Wu, Z. Wang, Q. Huang, X. Tan, and X. Lu, "Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation," Physics of Plasmas, vol. 20, p. 203503, 2013.

[1] Y. Y. Ji, Y. C. Hong, S. H. Lee, S. D. Kim, and S. S. Kim, "Formation of super-hydrophobic and water-repellency surface with hexamethyldisiloxane (HMDSO) coating on polyethyleneteraphtalate fiber by atmosperic pressure plasma polymerization," Surface & Coatings Technology, vol. 202, pp. 5663-5667, Aug 30 2008.
[2] S. Yeo, T. Kwon, C. Choi, H. Park, J. W. Hyun, and D. Jung, "The patterned hydrophilic surfaces of glass slides to be applicable for the construction of protein chips," Current Applied Physics, vol. 6, pp. 267-270, Feb 2006.
[3] Z. G. Xiao and T. D. Mantei, "Plasma-enhanced deposition of hard silicon nitride-like coatings from hexamethyldisiloxane and ammonia," Surface & Coatings Technology, vol. 172, pp. 184-188, Jul 29 2003.
[4] H. Nagai, M. Hori, T. Goto, T. Fujii, and M. Hiramatsu, "Fabrication of multilayered SiOCH films with low dielectric constant employing layer-by-layer process of plasma enhanced chemical vapor deposition and oxidation," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 2775-2779, May 2003.
[5] H. K. Yasuda, "Some important aspects of plasma polymerization," Plasma Processes and Polymers, vol. 2, pp. 293-304, May 12 2005.
[6] J. L. Fang, H. Chen, and Y. H. Yu, "Studies on plasma polymerization of hexamethyldisiloxane in the presence of different carrier gases," Journal of Applied Polymer Science, vol. 80, pp. 1434-1438, May 31 2001.
[7] D. S. Wavhal, J. M. Zhang, M. L. Steen, and E. R. Fisher, "Investigation of gas phase species and deposition of SiO2 Films from HMDSO/O-2 plasmas," Plasma Processes and Polymers, vol. 3, pp. 276-287, Apr 12 2006.
[8] M. Goujon, I. Belmonte, and G. Henrion, "OES and FTIR diagnostics of HMDSO/O-2 gas mixtures for SiOx deposition assisted by RF plasma," Surface & Coatings Technology, vol. 188, pp. 756-761, Nov-Dec 2004.
[9] Y. Hijikata, H. Yaguchi, M. Yoshikawa, and S. Yoshida, "Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films," Applied Surface Science, vol. 184, pp. 161-166, Dec 12 2001.
[10] G. G. Jernigan, R. E. Stahlbush, M. K. Das, J. A. Cooper, and L. A. Lipkin, "Interfacial differences between SiO2 grown on 6H-SiC and on Si(100)," Applied Physics Letters, vol. 74, pp. 1448-1450, Mar 8 1999.
[11] F. Benitez, E. Martinez, and J. Esteve, "Improvement of hardness in plasma polymerized hexamethyldisiloxane coatings by silica-like surface modification," Thin Solid Films, vol. 377, pp. 109-114, Dec 1 2000.
[12] M. Andriot, J. V. DeGroot, J. Meeks, R. Meeks, E. Gerlach, M. Jungk, et al., Silicones in Industrial Applications: Dow Corning, 2007.
[13] G. F. Leu, A. Brockhaus, and J. Engemann, "Diagnostics of a hexamethyldisiloxane/oxygen deposition plasma," Surface & Coatings Technology, vol. 174, pp. 928-932, Sep-Oct 2003.
[14] R. Hofman, J. G. F. Westheim, I. Pouwel, T. Fransen, and P. J. Gellings, "FTIR and XPS studies on corrosion-resistant SiO2 coatings as a function of the humidity during deposition," Surface and Interface Analysis, vol. 24, pp. 1-6, Jan 1996.
[15] M. R. Alexander, R. D. Short, F. R. Jones, W. Michaeli, and C. J. Blomfield, "A study of HMDSO/O-2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: curve fitting of the Si 2p core level," Applied Surface Science, vol. 137, pp. 179-183, Jan 1999.
[16] C. Serre, L. CalvoBarrio, A. PerezRodriguez, A. RomanoRodriguez, J. R. Morante, Y. Pacaud, et al., "Ion-beam synthesis of amorphous SiC films: Structural analysis and recrystallization," Journal of Applied Physics, vol. 79, pp. 6907-6913, May 1 1996.
[17] K. Shimoda, J. S. Park, T. Hinoki, and A. Kohyama, "Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basic powder characteristics," Applied Surface Science, vol. 253, pp. 9450-9456, Oct 15 2007.
[18] C. Onneby and C. G. Pantano, "Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 15, pp. 1597-1602, May-Jun 1997.
[19] K. Shimoda, J. S. Park, T. Hinoki, and A. Kohyama, "Densification Mechanism and Microstructural Evolution of Sic Matrix in Nite Process," Ceramics in Nuclear and Alternative Energy Applications, vol. 27, pp. 19-27, 2007.
[20] L. Pauling, "The Nature of Silicon-Oxygen Bonds," American Mineralogist, vol. 65, pp. 321-323, 1980.
[21] D. Trunec, L. Zajickova, V. Bursikova, F. Studnicka, P. Stahel, V. Prysiazhnyi, et al., "Deposition of hard thin films from HMDSO in atmospheric pressure dielectric barrier discharge," Journal of Physics D-Applied Physics, vol. 43, pp. 5403-5411, Jun 9 2010.
[22] Y. Qi, Z. G. Xiao, and T. D. Mantei, "Comparison of silicon dioxide layers grown from three polymethylsiloxane precursors in a high-density oxygen plasma," Journal of Vacuum Science & Technology A, vol. 21, pp. 1064-1068, Jul-Aug 2003.
[23] R. E. Johnson and R. H. Dettre, "Contact angle hysteresis," Advances in Chemistry Series, vol. 43, pp. 112-135, 1964.
[24] J. H. Wei, M. Yoshinari, S. Takemoto, M. Hattori, E. Kawada, B. L. Liu, et al., "Adhesion of mouse fibroblasts on hexamethyidisiloxane surfaces with wide range of wettability," Journal of Biomedical Materials Research Part B-Applied Biomaterials, vol. 81B, pp. 66-75, Apr 2007.
[25] G. K. Sigworth and J. F. Elliott, "Conditions for Nucleation of Oxides during Silicon Deoxidation of Steel," Metallurgical Transactions, vol. 4, pp. 105-113, 1973.
[26] L. C. M. Han, J. S. Pan, S. M. Chen, N. Balasubramanian, J. N. Shi, L. S. Wong, et al., "Characterization of carbon-doped SiO2 low k thin films - Preparation by plasma-enhanced chemical vapor deposition from tetramethylsilane," Journal of the Electrochemical Society, vol. 148, pp. F148-F153, Jul 2001.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔