(18.206.12.76) 您好!臺灣時間:2021/04/23 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李明洋
論文名稱:Quantum transport in two-dimensional electron system: 1.Transition dynamics in the electrical breakdown of the integer quantum Hall effect 2.Disorder induced scattering in chemical vapor deposited graphene
論文名稱(外文):二維電子系統的量子傳輸現象: 1. 整數霍爾效應中電性崩壞現象的動態機制 2. 化學氣相沉積石墨烯中的缺陷散射之研究
指導教授:陳正中陳正中引用關係
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:127
中文關鍵詞:石墨烯二維電子氣霍爾效應電性崩壞磁導帶電雜質弱局域現象電子電洞坑結構缺陷
外文關鍵詞:graphenetwo dimensional electron gasquantum Hall effectelectrical breakdownelectron heating modelmagneto-conductivitystructural disorderweak localizationcharged disorderelectron hole puddle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
我們研究兩種不同二維電子系統(two-dimensional electron system)的電性傳輸,包含石墨烯(graphene)和異質結構介面中的二維電子氣(two-dimensional electron gas)。異質結構介面中的二維電子氣由於有很高的載子遷移率(mobility)以及可以局限至更低維度,使得其在學術領域以及工業方面有廣泛的應用。石墨烯是單一層碳原子形成蜂窩狀的二維電子系統。此晶格結構有著許多特殊的電子傳輸與光學特性,成為極受矚目的材料。
本論文討論兩個研究主題:整數霍爾效應(integer quantum Hall effect)中電性崩壞(electrical breakdown)現象的動態機制以及化學氣相沉積石墨烯(chemical vapor deposited graphene)中缺陷散射對電性傳輸的影響。我們由研究整數霍爾態(quantum Hall state)的崩壞現象的動態機制來了解整數霍爾效應的機制。藉由探討不同外加霍爾電場(Hall field)的掃描速率與臨界電場(critical field)的關係,我們觀察到電性崩壞現象的雙穩態特性(bistable nature)以及量測出兩個平衡態之間的躍遷率(escape rate)與霍爾電場的關係。此結果與基於bootstrap electron heating model的模擬相互吻合,進而表示電性崩壞現象的展現是由本身的躍遷率以及實驗架設的條件來決定。
石墨烯是一個嶄新的材料且有相當高的發展潛力,但是石墨烯本身的特性對於缺陷與環境相當敏感。我們主要探討缺陷對於化學氣相沉積石墨烯在電性傳輸上的影響。我們研究電導(conductivity)與磁導(magneto-conductivity)與載子濃度的關係。研究的範圍跨越電中性點(charge neutral point),並將實驗結果與探討結構缺陷(structural disorder)和帶電雜質(charged disorder)的理論研究做比較。磁導展現出弱局域現象(weak localization);且在電中性點附近,由於電子電洞坑(electron hole puddle)的出現增加inter-valley的散射,進而增強弱局域現象的表現。我們發現載子遷移率與帶電雜質的密度有很強的關聯性,而且帶電雜質引發的不均勻電位擾動(inhomogeneous potential fluctuation)是影響石墨烯在電中性點附近電性傳輸特性的主要原因。在電導與溫度以及載子濃度的探討更進一步證實結構缺陷會主導在高載子濃度時的電性傳輸,但在低載子濃度時,由帶電雜質主導電性傳輸特性。

We study the electric transport of two different two-dimensional electron systems: graphene, and two-dimensional electron gas (2DEG) formed between the interface of semiconductor heterostructure. 2DEG has been widely applied to both academic researches and industrial uses due to its high mobility and constructability to lower dimensional electronic system. Graphene is an intrinsic two-dimensional electronic system consisting of a monolayer carbon atoms hybridized in honeycomb lattice. This lattice structure gives rise to many special electronic and optical properties, which raise general interest in the field.
This thesis presents two research interests which are the transition dynamics in the electrical breakdown of the integer quantum Hall effect (QHE) in 2DEG system, and the disorder induced scattering in chemical vapor deposited graphene. QHE is an important feature in two-dimensional electronic system, we investigate the dynamic properties of the breakdown of integer quantum Hall states (QHSs) to study the mechanism of the QHE. With systematically study on the critical field of the breakdown with different scan rates of the applied Hall field, we observe bistable nature of the breakdown phenomena. We find the Hall field dependent escape rate between the low-dissipation QHS and the dissipation state ranges from a few seconds to 10 μs in bistable regime. The results are consistent with the simulation based the bootstrap electron heating model. This suggests that the dynamic behaviors are governed by the lifetime and the applied experimental setup condition.
Graphene is a novel material and has great potential on application owing to its special transport properties. Nevertheless, graphene is sensitive to the disorder and the environment, which might limit or change its properties. We investigate the effects of random disorders in electric transport on chemical vapor deposited (CVD) graphene. We study the carrier density dependence of conductivity and magneto-conductivity crossing the charge neutral point and compare our data with pervious theories concerning sharp structural disorder and charged disorder. The magneto-conductivity exhibits weak localization behavior and weak localization is enhanced by inter-valley scattering with the presence of the electron hole puddle near charge neutral point (CNP). The electric mobility shows strong correlation with the charged impurity density. We find that the inhomogeneous potential fluctuation induced by charged impurities plays a dominated role in electronic transport especially near the CNP. The study on temperature and carrier density dependent conductivity further suggests that the sharp defect dominate the transport in high carrier density regime, but the charge impurity becomes important in lower density regime.

Chapter 1 Introduction 1
1-1 Introduction 1
1-2 Two-dimensional electron gas formed between the interface of semiconductor heterostructure 4
1-3 Graphene 7
1-4 Quantum Hall effect 10
1-5 Organization of this thesis 15
Chapter 2 Mechanism for breakdown of the quantum Hall effect — Electron Heating model 16
2-1 Electron heating model 16
2-2 Breakdown of quantum Hall effect 21
Chapter 3 Theories for electrical transport in disordered Graphene 28
3-1 Weak antilocalization and weak localization 28
3-2 Drude-Boltzmann transport model in disordered graphene 33
Chapter 4 Transition dynamics in the electrical breakdown of the quantum Hall effect 38
4-1 Introduction 38
4-2 Experiment 40
4-3 Discussion 50
4-4 Conclusion 56
4-5 Future work 57
Chapter 5 Disorder induced scattering in chemical-vapor deposited graphene 60
5-1 Introduction 60
5-2 Sample characterization 64
5-3 Experiment 70
5-3-1 Weak localization in CVD graphene 70
5-3-2 Charged disorder 74
5-4 Discussion 80
5-5 Conclusion 85
5-6 Future work 86
Chapter 6 Temperature and carrier density dependent conductivity in disordered graphene 88
6-1 Introduction 88
6-2 Experiment 90
6-3 Discussion 92
6-4 Conclusion 100
6-5 Future work 101
Chapter 7 Conclusion 102
Appendix A Chemical-vapor deposited graphene device 104
A-1 facility for chemical-vapor deposition 104
A-2 Chemical-vapor deposited graphene 111
A-3 Device fabrication 115
A-4 Circuit 119
Bibliography 120

[1] S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge University press (1995)
[2] Y. Kanemitsu and T. Ogawa, Optical Properties of Low–Dimensional Materials, Vol 2. World Scientific (1998)
[3] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures. Cambridge, Cambridge university press (1997).
[4] J. H. Davies, The Physics of Low-dimensional Semiconductors: An Introduction. The Press Syndicate of the University of Cambridge, 1998
[5] S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004)
[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009)
[8] S. Das Sarma, S. Adam, E. H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)
[9] K. Kim, J. Y. Choi, T. Kim, S. H. Cho, H. J. Chung, Nature 479, 338 (2011)
[10] K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[11] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nature Nanotechnology 3, 538 (2008)
[12] C. Y. Su, Y. P. Xu, W. J. Zhang, J. W. Zhao, X. H. Tang, C. H. Tsai, and L. J. Li, Chem. Mater. 21, 5674 (2009)
[13] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Pinter, A. Velamakanni, I. Jung, E. Tutuc, et al., Science 324, 1312 (2009).
[14] W. deHeer, C. Berger, X. Xu, P. First, E. Conrad, X. B. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, Solid State Commun. 143, 92 (2007).
[15] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and Walt A. de Heer, J. Phys. Chem. B 108 (52), 19912 (2004)
[16] R. Landauer, Phys. Today 31 (11), 23 (1978).
[17] P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants". Database developed by J. Baker, M. Douma, and S. Kotochigova. National Institute of Standards and Technology, Gaithersburg, MD 20899.
[18] G. Ebert, K. von Klitzing, K. Ploog, and G. Weimann, J. Phys. C 16, 5441 (1983).
[19] G. Nachtwei, Physica E 4, 79 (1999).
[20] A. VI. Gurevich and R. G. Mints, Rev. Mod. Phys. 59, 941 (1987)
[21] S. Komiyama, T. Takamasu, S. Hiyamizu, S. Sasa, Solid State Commun. 54, 479 (1985).
[22] T. Takamasu, S. Komiyama, S. Hiyamizu, and S. Sasa, Surf. Sci. 170, 202 (1986).
[23] G. Nachtwei, Z. H. Liu, G. Lütjering, R. R. Gerhardts, D. Weiss, K. von Klitzing, K. Eberl, Rev. B 57, 9937 (1998).
[24] Y. Kawaguchi, F. Hayashi, S. Komiyama, T. Osada, Y. Shiraki, and R. Itoh, Jpn. J. Appl. Phys. 34, 4309 (1995).
[25] Y. Kawaguchi, S. Komiyama, T. Osada, and Y. Shiraki, Physica B 227, 183 (1996).
[26] S. Komiyama, Y. Kawaguchi, T. Osada, and Y. Shiraki, Phys. Rev. Lett. 77, 558 (1996).
[27] I. I. Kaya, G. Nachtwei, K. von Klitzing, K. Eberl, Physica B 8, 256 (1998).
[28] I. I. Kaya, G. Nachtwei, K. von Klitzing, K.Eberl, Phys. Rev. B 58, 7536R (1998).
[29] R. Woltjer, R. Eppenga, J. Mooren, C. Timmering, and J. Andre, Europhys. Lett. 2, 149 (1986).
[30] L. Eaves and F. W. Sheard, Semicond. Sci. Technol. 1, 346 (1986).
[31] V. Tsemekhman, K. Tsemekhman, C. Wexler, J. H. Han, and D. J. Thouless, Phys. Rev. B 55, 10201R (1997).
[32] B. E. Sagŏl, G. Nachtwei, K. von Klitzing, G. Hein, K. Eberl, Phys. Rev. B 66, 075305 (2002).
[33] M. E. Cage, R. F. Dziuba, B. F. Field, E. R. Williams, S. M. Girvin, A. C. Gossard, D. C. Tsui, and R. J. Wagner, Phys. Rev. Lett. 51, 1374 (1983).
[34] P. G. N. deVegvar, A. M. Chang, G. Timp, P. M. Mankiewich, J. E. Cunningham, R. Behringer, and R. E. Howard, Phys. Rev. B 36, 9366 (1987).
[35] A. Buss, F. Hohls, F. Schulze-Wischeler, C. Stellmach, G. Hein, R. J. Haug, and G. Nachtwei, Phys. Rev. B 71, 195319 (2005).
[36] N. G. Kalugin, B. E. Sagŏl, A. Bus, A. Hirsch, C. Stellmach, G. Hein, and G. Nachtwei, Phys. Rev. B 68, 125313 (2003).
[37] F. J. Ahlers, G. Hein, H. Scherer, L. Bliek, H. Nickel, R. Lösch, and W. Schlapp, Semicond. Sci. Technol. 8, 2062 (1993).
[38] G. Boella, L. Cordiali, G. Marullo-Reedtz, D. Allasia, G. Rinaudo, M. Truccato, and C. Villavecchia, Phys. Rev. B 50, 7608 (1994).
[39] M. E. Cage, J. Res. Natl. Inst. Stand. Technol. 98, 361 (1993).
[40] N. Q. Balaban, U. Meirav, H. Shtrikman, Y. Levinson, Phys. Rev. Lett. 71, 1443 (1993).
[41] T. A. Fulton and L. Dunkleberger, Phys. Rev. B 9, 4760 (1974).
[42] T. Nakajima and S. Komiyama, Physica E 42, 1026 (2010).
[43] S. Komiyama and Y. Kawaguchi, Phys. Rev. B 61, 2014 (2000).
[44] D. G. Polyakov and B. I. Shklovskii, Phys. Rev. Lett. 70, 3796 (1993).
[45] Y. Kawaguchi and S. Komiyama, J. Phys. Soc. Jpn. 72, 217 (2003).
[46] K. K. Choi, D. C. Tsui and K. Alavi, Phys. Rev. B 36, 7751 (1987)
[47] H. Suzuura and T. ando, Phys. Rev. B 65, 235412 (2002)
[48] E. McCann, K. Kechedzhi, Vladimir I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006)
[49] Xin-Zhong Yan and C. S. Ting, Phys. Rev. Lett. 101, 126801 (2008)
[50] F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2009)
[51] E. Fradkin, Phys. Rev. B 33, 3257 (1986)
[52] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, G. Grinstein, Phys. Rev. B 50, 7526 (1994)
[53] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 438, 197 (2005)
[54] Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 438, 201 (2005)
[55] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proc. Natl. Acad. Sci. U.S.A. 104, 18392 (2007).
[56] E. H. Hwang, S. Adam and S. Das Sarma, Phys. Rev. Lett. 98, 186806 (2007)
[57] E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 195412 (2008)
[58] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007)
[59] Q. Li, E. H. Hwang, and S. Das Sarma, Phys. Rev. B 84, 115442 (2011).
[60] A. Deshpande, W. Bao, Z. Zhao, C. N. Lau, and B. J. LeRoy, Phys. Rev. B 83, 155409 (2011)
[61] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing and A. Yacoby, Nature Physics 4, 144 (2008)
[62] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).
[63] J. Heo, H. J. Chung, Sung-Hoon Lee, H. Yang, D. H. Seo, J. K. Shin, U-In Chung, S. Seo, E. H. Hwang, and S. Das Sarma, Phys. Rev. B 84, 035421 (2011).
[64] A. K. Geim and S. K. Novoselov, Nature Mater. 6, 183 (2007)
[65] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nature photonics. 4, 611 (2010).
[66] Y. Shao, J. Wang, H. Hu, J. Liu, I. A. Aksay, and Y. Lin, Electroanalysis 22, 1027 (2010).
[67] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. McChesney, T. Ohta, S. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Mater. 8, 203 (2009).
[68] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Pinter, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R.S. Ruoff, Science 324, 1312 (2009).
[69] T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).
[70] F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).
[71] Y. F. Chen, M. H. Bae, C. Chialvo, T. Dirks, A. Bezryadin, and N. Mason, J. Phys.: Condens. Matter 22, 205301 (2010).
[72] J.-H. Chen, C. Jang, M. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nature Phys. 4, 377 (2008).
[73] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
[74] S. K. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 483, 197 (2005).
[75] C. Yanik and I. Kaya, Solid State Commun. 160, 47 (2013).
[76] X.-Z. Yan and C. S. Ting, Phys. Rev. B 80, 155423 (2009).
[77] Y.-W. Tan, Y. Zhang, H. L. Stormer, and P. Kim, Eur. Phys. J. Special Topics 148, 15 (2007).
[78] F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2009).
[79] H. Cao, Q. Yu, L. A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D. K. Benjamin, Z. Jiang, J. Bao, etal., Appl. Phys. Lett. 96 ,122106 (2010).
[80] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008).
[81] P. Songfeng and C. Hui-Ming, Carbon 50, 3210 (2012).
[82] C.-Y. Su, Y. Xu ,W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, Chem. Mater. 21, 5674 (2009).
[83] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, Nano Lett. 9, 388 (2009).
[84] C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, F.-R. Chen, et al., Nano Lett. 11, 3612 (2011).
[85] P.-Y. Teng, C.-C. Lu, K. Akiyama-Hasegawa, Y.-C. Lin, C.-H. Yeh, K. Suenaga, and P.-W. Chiu, Nano Lett. 12, 1379 (2012).
[86] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. RiKim, Y. I. Song, et al., Nature Nanotechnology 5, 574 (2010).
[87] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruo, and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011).
[88] J. W. Suk, W. H. Lee, J. Lee, H. Chou, R. D. Piner, Y. Hao, D. Akinwande, and R. S. Ruo, Nano Letters 13, 1462 (2013).
[89] C.-L. Hsu, C.-T. Lin, J.-H. Huang, C.-W. Chu, K.-H. Wei, and L.-J. Li, ACS Nano 6, 5031 (2012).
[90] W. Regan, N. Alem, B. Aleman, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettl, Appl. Phys. Lett. 96, 113102 (2010).
[91] Y.-W. Tan, Y. Zhang, H. L. Stormer, and P. Kim, Eur. Phys. J. Spec. Top. 148, 15 (2007).
[92] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
[93] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008).
[94] E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 115449 (2008).
[95] N. Mounet, and N. Marzari, Phys. Rev. B 71, 205214 (2005).
[96] C. C. Tang, M. Y. Li, L. J. Li, C. C. Chi, and J. C. Chen, Appl. Phys. Lett. 99, 112107 (2011).
[97] E. H. Hwang and S. Das Sarma, Phys. Rev. B 79, 165404 (2009).
[98] T. Stauber, N. M. R. Peres, and F. Guinea, Phys. Rev. B 76, 205423 (2007).
[99] S. Fratini and F. Guinea, Phys. Rev. B 77, 195415 (2008).
[100] S.-T. Wang, Y.-F. Lin, Y.-C. Li, P.-C. Yeh, S.-J. Tang, B. Rosenstein, T.-H. Hsu, X. Zhou, Z. Liu, M.-T. Lin, etal., Appl. Phys. Lett. 101, 183110 (2012).
[101] Ming-YangLi, T. Nakajima, Kuan-Ting Lin, C. C. Chi, J. C. Chen, and S. Komiyama, Phys. Rev. B 85, 245315 (2012)
[102] D. K. Ki, D. Jeong, J. H. Choi, H. J. Lee, and K. S. Park, Phys. Rev. B 78, 125409 (2008).
[103] X. Z. Yan and C. S. Ting, New J. Physics 11, 093026 (2009).
[104] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Nature Nano. 3, 206 (2008).
[105] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
[106] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and Y. Y., Nature Physics 4, 144 (2008).
[107] Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, Nature Phys. 5, 722 (2009).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔