跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂呈祥
研究生(外文):Lu, cheng-hsiang
論文名稱:呼拉圈能量獵取裝置之設計與動態分析
論文名稱(外文):DESIGN AND DYNAMICS OF AN ENERGY-HARVESTING DEVICE MIMICKING HULA–HOOP MOTION
指導教授:宋震國
指導教授(外文):Sung, cheng-kuo
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:102
中文關鍵詞:能量獵取系統呼拉圈行為穩定度分析微型發電機
外文關鍵詞:Energy-scavenging systemHula-hoop motion transformerStability analysisElectromagnetic inductionFaraday’s theory
相關次數:
  • 被引用被引用:2
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
呼拉圈運動係透過人體與呼拉圈彼此間之交互運動所形成:由身體前後擺動過程,有效地將動力傳給呼拉圈,進而使呼拉圈產生旋轉運動稱之。故藉此運動機制,衍伸出呼拉圈轉換機構之設計概念,即經此呼拉圈運動機制,將外力造成之直線運動轉換為旋轉運動。由其機制,此呼拉圈轉換機構可搭配各式動力源,如:承載台振動力、車輛加減速慣性力,甚至於人體日間運動力等不同外力型式。
本研究首先評估各式動力源,了解可能存在之動力來源與搭配之能量轉換系統間的匹配問題,並由呼拉圈運動搭配可能應用之能量轉換機構。其中,電磁式機構除可由直線往復運動達到發電效果外,亦可透過旋轉運動進行發電,此與呼拉圈運動型態有所搭配。故,本研究主要整合電磁式發電裝置與呼拉圈轉換機構,作為發電裝置之輸入。另,以人體日常外力如:簡諧外力與脈衝外力為主,於此研究中作為外力來源進行討論。
首先,針對呼拉圈之運動狀態進行探討並建構物理模型,利用Lagrange方法推導出運動方程式,探討於簡諧外力下系統之動態行為,了解呼拉圈運動發生條件與系統參數之關係。進而針對運動方程式求取近似解析解,透過數值模擬驗證其準確性;再藉由Floquet理論進行穩定度分析,得出呼啦圈之發生區域,並與數值模擬進行探討比較。其後,由實驗結果進行驗證,與前述之數值模擬結果相符。故藉上述結果得到:於各式簡諧外力頻率與大小並搭配特定之參數情況下,系統發生呼拉圈之可能作動區域。
其次,藉脈衝力與系統初始速度之關係,探討系統於該外力情況,呼拉圈運動之暫態行為。透過數值模擬,進而驗證系統於脈衝外力下其運動方程式之正確性。同時,找出於不同初始條件下,系統發生呼拉圈運動之可能作動區域。最後,由實驗進一步驗證上述之模擬結果。
最後,透過法拉第定律,利用電磁機制有效擷取振動能量並轉換為電能,推得能量與呼拉圈運動之關係;並推知電磁阻尼與其對系統旋轉運動之影響。自理論得知,系統於特定外力大小與頻率下,可能輸出之能量,且於實驗與模擬結果,皆得一致之成果。最終,在最低外力大小為11.2 N與外力頻率為8 Hz時,系統輸出之最大能量為5 mW

Hula-hoop motion refers to the gyrating of a ring around a human body. This is made possible by the interactive forces between the human body and the moving ring. Inspired by the generic concept of hula-hoop motion, this study proposes a novel motion transformer design that consists of a main mass sprung in one translational direction and a free-spinning mass hinged eccentrically onto the center of the main mass. It is expected that the motion transformer can convert linear reciprocating motion into rotational one and accommodate various power sources, which mainly accompany with the vibrations of the vehicle suspension and machine base as well as the motion of human body.
This thesis aimed at designing an energy-harvesting device that can scavenge energy, especially, from human motion by integrating an electromagnetic generator with a hula-hoop motion transformer. The harmonic and impulsive forces caused by both machine vibration and human motion were investigated, individually.
First, a thorough dynamic analysis of the proposed transformer system with harmonic excitation was conducted in order to characterize the relationships between the various system parameters and the likelihood of hula-hoop motion occurring. The governing equations were derived using Lagrange method. This was followed by a search for steady-state solutions via the Homotopy perturbation method; meanwhile, a direct numerical simulation was performed to verify the correctness of the approximate analysis. The corresponding stability analysis was conducted via Floquet theory. In this manner, the feasibility of the proposed design and the occurrence criteria of hula-hoop motion were assessed. After that, an experimental study confirmed that the dynamic responses were well matched with the numerical simulation. The results imply the possibility of hula-hoop motion over a large set of combinations of excitation frequencies and amplitudes, which are confirmed by not only the dynamic analysis but also the experiment.
Secondly, the transient dynamic analysis was also performed based on the governing equations by applying an impulsive excitation to the main mass, which then created its initial velocity. A direct numerical simulation was performed to verify the correctness of the equations considering the impulsive excitation. Additionally, the occurrence of hula-hoop motion was investigated to find the dynamic matching between the initial conditions and the system parameters of the hula-hoop motion transformer. Moreover, the experimental responses were used to verify both the correctness of the equations considering impulsive excitation and the dynamic responses of the direct numerical integration.
Thirdly, for the generation of energy through electromagnetism, the equations describing the relation between induced voltage and power for the system were derived according to the Faraday theory. Herein, the equation of induced electrical damping was obtained as well, in which the effect of electrical damping was concerned for the system response. Moreover, the responses from the theoretical analysis, numerical simulation, and experiment were in good agreement with one another regarding the accuracy of the equations of the induced voltage and power from the generator.
Finally, the proposed energy-harvesting system was proved to generate power through electromagnetism after integrating the electromagnetic generator with the hula-hoop motion transformer. Specifically, the maximum power that the system can generate is approximately 5 mW when the frequency and amplitude of the external harmonic excitation are 8 Hz and 11.2 N, respectively.

摘要 I
ABSTRACT III
CONTENTS VII
INDEX OF FIGURES IX
INDEX OF TABLES XII
NOMENCLATURE XIII
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Survey 2
1.2.1 Comparison of Energy-Scavenging Methods 2
1.2.2 Hula-Hoop Energy-Harvesting Device 13
1.3 Thesis Outline 23
CHAPTER 2 DYNAMIC ANALYSIS OF THE HULA-HOOP MOTION TRANSFORMER 25
2.1 Physical Model and Governing Equation 25
2.2 Approximate Solutions 27
2.3 Dynamic Responses of the Main and Free Masses 37
2.3.1 Approximate Solutions 37
2.3.2 Numerical Simulation 40
2.3.3 Summary 48
CHAPTER 3 STABILITY AND OCCURRENCE OF HULA-HOOP MOTION 50
3.1 Definition of Stability 50
3.2 Stability Analysis of Hula-hoop Motion with Harmonic Excitation 53
3.3 Occurrence of Hula-hoop Motion by Numerical Integration with Harmonic Excitation 56
3.4 Occurrence of Hula-hoop Motion by Numerical Integration with Impulsive Excitation 60
3.5 Concluding Remarks 63
CHAPTER 4 EXPERIMENTAL STUDY 65
4.1 Physical Model and Governing Equations 65
4.2 Energy Generation and Electrical Damping 66
4.3 Experimental Set-up 69
4.4 System with Harmonic Excitation 74
4.5 System with Impulsive Excitation 84
4.6 Summary 88
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 90
REFERENCES 94


[1] S. Chalasani and J. M. Conrad, 2008, “A Survey of Energy Harvesting Sources for Embedded Systems,” IEEE Southeastcon, pp. 442–447.
[2] M. T. Penella and M. Gasulla, 2007, “A Review of Commercial Energy Harvesters for Autonomous Sensors,” IEEE Proc. of Instrumentation and Measurement Technology Conference, pp. 1–5.
[3] ZTE Communication Co., 2009, “Solar Mobile Phone,” http://www.zte.com.cn/pub/cn/.
[4] M. Pereyma, 2007, “Overview of the Modern State of the Vibration Energy Harvesting Devices,” Perspective Technologies and Methods in MEMS Design, pp. 23–26.
[5] D. K. Kotter, S. D. Novack, W. D. Slafer, and P. Pinhero, 2010, “Theory and Manufacturing Processes of Solar Antenna Electromagnetic Collectors,” Journal of Solar Energy Engineering, 132(1), pp. 1–7.
[6] S. Roundy, P. K. Wright, and J. Rabaey, 2003, “A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes,” Computer Communications, 26, pp. 1131–1144.
[7] M. E. Hami, P. G. Jones, N. M. White, M. Hill, S. Beeby, E. James, A. D. Brown, and J. N. Ross, 2001, “Design and Fabrication of a New Vibration-Based Electromechanical Power Generator,” Journal of Sensors and Actuators A, 92(1-3), pp. 335-342.
[8] J. A. Paradiso and T. Starner, “Energy Scavenging for Mobile and Wireless Electronics,” 2005, IEEE Pervasive Computing, 4(1), pp. 18–27.
[9] S. P. Beeby, M. J. Tudor, and N. M. White, 2006, “Energy Harvesting Vibration Sources for Microsystems Applications,” Measurement and Technology, 17, pp. 175–195.
[10] S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O’Donnell, C. R. Saha, and S. Roy, 2007, “A Micro Electromagnetic Generator for Vibration Energy Harvesting,” Journal of Micromechanics and Microengineering, 17(7), pp. 1257-1265.
[11] I. Sari, T. Balkan, and H. Kulah, 2010, “An Electromagnetic Micro Power Generator for Low-Frequency Environmental Vibrations Based on the Frequency Up-conversion Technique,” Journal of Microelectromechanical Systems, 19(1), pp. 14-27.
[12] J. C. Park, D. H. Bang, and J. Y. Park, 2010, “Micro-Fabricated Electromagnetic Power Generator to Scavenge Low Ambient Vibration,” IEEE Transactions On Magnetics, 46(6), pp. 1937-1942.
[13] Andrew S. Holmes, Guodong Hong, and Keith R. Pullen, 2005, “Axial-Flux Permanent Magnet Machines for Micropower Generation,” Journal of Microelectromechanical Systems, 14(1), pp. 54-62.
[14] D. P. Arnold, 2007, “Review of Microscale Magnetic Power Generation,” IEEE Trans. On Magnetics, 43(11), pp. 3940-3951.
[15] K. Sasaki, Y. Osaki, J. Okazaki, H. Hosaka, and K. Itao, 2005, “Vibration-Based Automatic Power-Generation System,” Journal of Microsystem Technologies, 11(8–10), pp. 965-969.
[16] D. Spreemann, Y. Manoli, B. Folkmer, and D. Mintenbeck, 2006, “Non-resonant vibration conversion,” Journal of Micromechanics and Microengineering, 16, pp. 169-173.
[17] C. T. Pan and T. T. Wu, 2007, “Development of a Rotary Electromagnetic Microgenerator,” Journal of Micromechanics and Microengineering, 17, pp. 120–128.
[18] L. D. Liao, P. C.-P. Chao, J. T. Chen, W. D. Chen, W. H. Hsu, C. W. Chiu, and C. T. Lin, 2009, “A Miniaturized Electromagnetic Generator with Planar Coils and its Energy Harvest Circuit,” IEEE Transactions on Magnetics, 45(10), pp. 4621-4627.
[19] E. M. Yeatman, 2006, “Rotating and Gyroscopic MEMS Energy Scavenging,” IEEE Proc. of International Workshop on Wearable and Implantable Body Sensor Networks, pp. 42–45.
[20] S. Starner, 1996, “Human-Powered Wearable Computing,” Journal of IBM Systems, 35(3–4), pp. 618–629.
[21] A. K. Bajaj, S. I. Chang, and J. M. Johnson, 1994, “Amplitude Modulated Dynamics of a Resonantly Excited Autoparametric Two Degree-of-freedom System,” Journal of Non-linear Dynamics, 5(4), pp. 433-457.
[22] B. Banerjee, A. K. Bajaj, and W. Lafayette, 1997, “Amplitude Modulated Chaos in Two Degree-of-freedom Systems with Quadratic Nonlinearities,” Journal of Acta Mechanica, 124(1-4), pp. 131-154.
[23] A. Vyas and A. K. Bajaj, 2001, “Dynamics of Autoparametric Vibration Absorbers Using Multiple Pendulum,” Journal of Sound and Vibration, 246(1), pp. 115-135.
[24] H. Hatwal, A. K. Mallik, and A. Ghosh, 1983, “Forced Nonlinear Oscillations of an Autoparametric System—Part 1: Periodic Responses,” Journal of Applied Mechanics, 50, pp. 657–662.
[25] J. Warminski and K. Kecik, 2006, “Autoparametric Vibrations of a Nonlinear System with Pendulum,” Journal of Mathematic Problems in Engineering, 2006(1), pp. 1-19.
[26] H. Jo and H. Yabuno, 2010, “Amplitude Reduction of Parametric Resonance by Dynamic Vibration Absorber Based on Quadratic Nonlinear Coupling,” Journal of Sound and Vibration, 329(11), pp. 2205-2217.
[27] A. Berlioz, R. Dufour, and S. C. Sinha, 2000, “Bifurcation in a Nonlinear Autoparametric System Using Experimental and Numerical Investigations,” Journal of Non-linear Dynamics, 23(2), pp. 175-187.
[28] Y. Song, H. Sato, Y. Iwata, and T. Komatsuzaki, 2003, “The Response of a Dynamic Vibration Absorber System with a Parametrically Excited Pendulum,” Journal of Sound and Vibration, 259(4), pp. 747–759.
[29] Y. Yoshitake, T. Ishibashi, and A. Fukushima, 2004, “Vibration Control and Electricity Generating Device Using a Number of Hula-hoops and Generators,” Journal of Sound and Vibration, 275(1–2), pp. 77–78.
[30] Paul C.-P. Chao, C. I. Shao, C. X. Lu and C. K. Sung, 2011, “A New Energy Harvest System with a Hula-Hoop Transformer, Micro-generator and Interface Energy-Harvesting Circuit,” Journal of Microsystem Technologies, 17(5-7), pp. 1025-1036. (In press)
[31] C. X. Lu, C. C. Wang, Paul C.P. Chao, and C. K. Sung, 2009, “Dynamic Analysis of a Motion Transformer Mimicking a Hula Hoop,” ASME International Design Engineering Technical Conferences (IDETC) &; Computers and Information in Engineering Conference (CIE), pp. 413–420, Aug. 30-Sep. 2.
[32] H. Hunt, 2007, “Wobblerings,” Cambridge University, http://www2.eng.cam.ac.uk/~hemh/.
[33] C. C. Wang, 2004, “Dynamic of Hula Behavior and its Engineering Design,” M.S. thesis, National Tsing Hua University, Hsinchu.
[34] Y. C. Kang, 2007, “An Investigation into the Hula-Hoop Motion due to Impulsive Excitation,” M.S. thesis, National Tsing Hua University, Hsinchu.
[35] W. Garira and S. R. Bishop, 2003, “Rotating Solutions of the Parametrically Excited Pendulum,” Journal of Sound and Vibration, 263(1), pp. 233-239.
[36] X. Xu, M. Wiercigroch, and M. P. Cartmell, 2005, “Rotating Orbits of a Parametrically-excited Pendulum,” Journal of Chaos, Solitons and Fractals, 23(5), pp. 1537-1548.
[37] X. Xu, M. Wiercigroch, and M. P. Cartmell, 2006, “Erratum to: Rotating Orbits of a Parametrically-excited Pendulum,” Journal of Chaos, Solitons and Fractals, 29(4), pp. 1045-1045.
[38] S. Lenci, E. Pavlovskaia, G. Rega, M. Wiercigroch, 2008, “Rotating Solutions and Stability of Parametric Pendulum by Perturbation Method,” Journal of Sound and Vibration, 310(1-2), pp. 243-259.
[39] S. T. Wu, 2009, “Active Pendulum Vibration Absorbers with a Spinning Support,” Journal of Sound and Vibration, 323(1-2), pp. 1-16.
[40] B. Horton, J. Sieber, J.M.T. Thompson, M. Wiercigroch, 2011, “Dynamics of the Nearly Parametric Pendulum,” Journal of Non-Linear Mechanics, 46(2), pp. 436-442.
[41] F. R. E. Crossley and N. H. Conn, 1952, “The Free Oscillation of the Centrifugal Pendulum with Wide Angles,” Journal of Applied Mechanics, 74, pp. 315-319.
[42] D. E. Newland, 1964, “Nonlinear Aspects of the Performance of Centrifugal Pendulum Vibration Absorbers,” Journal of Engineering for Industry, 86, pp. 257-263.
[43] C. P. Chao, S. W. Shaw, and C. T. Lee, 1997, “Stability of the Unison Response for a Rotating System with Multiple Tautochronic Pendulum Vibration Absorbers,” Journal of Applied Mechanics, 64(1), pp. 149-156.
[44] C. T. Lee, S. W. Shaw, and V. T. Coppola, 1997, “A Subharmonic Vibration Absorber for Rotating Machinery,” Journal of Vibration and Acoustics, 119(4), pp. 590-595.
[45] A. S. Alsuwaitan and S. W. Shaw, 2002, “Performance and Dynamic Stability of General-path Centrifugal Pendulum Vibration Absorbers,” Journal of Sound and Vibration, 252(5), pp. 791-815.
[46] A. G. Haddow and S. W. Shaw, 2003, “Centrifugal Pendulum Vibration Absorbers: An Experimental and Theoretical Investigation,” Journal of Nonlinear Dynamics, 34(3-4), pp.293-307.
[47] S. W. Shaw and C. Pierre, 2006, “The Dynamic Response of Tuned Impact Absorbers for Rotating Flexible Structures,” Journal of Computational and Nonlinear Dynamics, 1(1), pp. 13-24.
[48] S. W. Shaw, P. M. Schmitz, and A. G. Haddow, 2006, “Tautochronic Vibration Absorbers for Rotating Systems,” Journal of Computational and Nonlinear Dynamics, 1(4), pp. 283-293.
[49] Y. J. Wang, C. D. Chen, and C. K. Sung, 2010, “Design of a Frequency-adjusting Device for Harvesting Energy From a Rotating Wheel,” Journal of Sensors and Actuators A, 159(2), pp. 196-203.
[50] C. B. Williams and R. B. Yates, 1996, “Analysis of a Micro-electric Generator for Microsystems,” Journal of Sensors and Actuators A, 52(1-3), pp. 8-11.
[51] C. B. Williams and R. B. Yates, 2001, “Development of an Electromagnetic Micro-generator,” IEEE Proceeding Circuits Devices and Systems, 148(6), pp. 337-342.
[52] I. Sari, T. Balkan, and H. Kulah, 2008, “An Electromagnetic Micro Power Generator for Wideband Environmental Vibrations,” Journal of Sensors and Actuators A, 145-146, pp. 405-413.
[53] E. Cantatore and M. Ouwerkerk, 2006, “Energy Scavenging and Power Management in Network of Autonomous Microsensors,” Journal of Microelectronics, 37(12), pp. 1584-1590.
[54] J. H. He, 2000, “Variational Iteration Method for Autonomous Ordinary Differential Systems,” Applied Mathematics and Computation, 114(2–3), pp. 115–123.
[55] J. H. He, 2000, “A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems,” Journal of Non-Linear Mechanics, 35(1), pp. 37–43.
[56] A. Beléndez, A. Hernández, T. Beléndez, C. Neipp, and A. Márquez, 2007, “Application of the Homotopy Perturbation Method to the Nonlinear Pendulum,” European Journal of Physics, 28(1), pp. 93-104.
[57] A. H. Nayfeh, D. T. Mook, 1979, Nonlinear Oscillations, John Wiley &; Sons, Inc., New York.
[58] B. V. D. Broek and F. Verhulst, 1987, “Averaging Techniques and the Oscillator-Flywheel Problem,” Jounrnal of Nieuw Archief Wiskunde, 5(2), pp. 185–206.
[59] R. H. Rand, R. J. Kinsey, and D. L. Mingori, 1992, “Dynamics of Spinup through Resonance,” Journal of Non-Linear Mechanics, 27(3), pp. 489-502.
[60] D. Quinn and R. Rand, 1995, “The Dynamics of Resonant Capture,” Journal of Non-Linear Mechanics, 8(1), pp. 1-20.
[61] D. D. Quinn, 1997, “Resonance Capture in a Three Degree-of-Freedom Mechanical System,” Journal of Non-Linear Mechanics, 14(4), pp. 309-333.
[62] J. M. Balthazar, B. I. Cheshankov, D. T. Ruschev, L. Barbanti, and H. I. Weber, 2001, “Remarks on the Passage through Resonance of a Vibrating System with Two Degrees of Freedom, Excited By a Non-Ideal Energy Source,” Journal of Sound and Vibration, 239(5), pp. 1075-1085.
[63] M. R. Bolla, J. M. Balthazar, J. L. P. Felix, and D. T. Mook, 2007, “On an Approximate Analytical Solution to a Nonlinear Vibrating Problem, Excited By a Nonideal Motor,” Journal of Non-Linear Mechanics, 50(4), pp. 841-847.
[64] J. H. He, 2006, “Some Asymptotic Methods for Strongly Nonlinear Equations,” Journal of Modern Physics B, 20(10), pp. 1141–1199.
[65] J. H. He, 1999, “Variational Iteration Method—A Kind of Non-Linear Analytical Technique: Some Examples,” Journal of Non-Linear Mechanics, 34(4), pp. 699–708.
[66] J. H. He, 2003, “Homotopy Perturbation Method: A New Nonlinear Analytical Technique,” Journal of Applied Mathematics and Computation, 135(11), pp. 73–79.
[67] Meirovitch, L., 2001, Fundamentals of Vibrations, McGraw-Hill, Singapore, pp. 160-161.
[68] W. J. Bottega, Engineering Vibrations, Taylor &; Francis, USA, pp. 234-236.
[69] D. K. Cheng, 1992, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley Publishing Company, USA, pp. 307-321.
[70] N. Ida, 2000, Engineering Electromagnetics, USA.
[71] E. T. Whittaker and G. N. Watson, 1958, “A Course of Modern Analysis,” Cambridge University Press.
[72] T. Kapitaniak and S. R. Bishop, 1999, Journal of Nonlinear Dynamics and Chaos, Wiley, England.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top