跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林彥銘
論文名稱:改質石墨烯微片/多壁奈米碳管/纖維積層板複合材料機械性質暨扭轉疲勞之研究
指導教授:葉銘泉葉銘泉引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:114
中文關鍵詞:共價鍵改質石墨烯微片複合材料機械性質破裂韌性扭轉疲勞
相關次數:
  • 被引用被引用:5
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過共價改質石墨烯微片,在表面上接枝馬來酸酐(MAH),改善其在環氧樹脂中的分散性,同時補強環氧樹脂基材與碳纖維補強材間的介面強度。實驗過程中,先將石墨烯微片(GNPs)和奈米碳管(CNTs)混摻製成樹脂試片,探討機械性質並找出最佳配比;並以此配比製作積層板複合材料,探討添加量對機械強度、環境效應和扭轉疲勞測試的影響。
由實驗結果得知,在GNPs/CNTs混摻比例9/1時,有最佳的組合結構,在樹脂與纖維介面有較好的協同效果;製成積層板試片後,以添加1.0 wt%的纖維複合材料在機械性質的表現上為最佳。靜態機械測試中,相較於純纖維積層板,彎曲強度提升17.48%,層間剪切強度更提升了40.03%,扭矩提升36.66%,抗衝擊強度則上升21.20%,應變能釋放率更提升84.87%;環境效應中以高溫高濕(85℃/85%RH)複合環境其強度下降量最大,接著是濕度效應(25℃/85%RH)造成基材吸濕膨脹,溫度因子(85℃/65%RH)則影響最少;動態疲勞測試中,添加奈米補強材可以抑制疊層板內部脫層產生而延長試片在低扭轉角度下的疲勞壽命,並根據數據結果以統計學最小平方法做線性迴歸曲線,評估不同角度下的疲勞週次。
由掃描式電子顯微鏡觀察破壞斷面可發現,添加奈米補強材料使斷面變得粗糙不規則,主要是因為裂縫在成長過程中,會因為石墨烯微片和碳管而偏折方向,使裂縫延伸鈍化而在強度上明顯提升。

第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 研究目的 5
第二章 文獻回顧 6
2-1 複合材料疲勞性質 6
2-1-1 材料破壞模式 6
2-1-2 應變能量釋放率 7
2-1-3 複合材料之破壞機制 7
2-1-4 應力(S)與疲勞週次(Nf)曲線(S-N curve) 9
2-2 環氧樹脂 10
2-2-1 環氧樹脂性質與應用 10
2-2-2 環氧樹脂硬化反應機制 10
2-3 奈米碳管 11
2-4 石墨烯 11
2-5 碳纖維補強複合材料 12
2-6 奈米補強材於複合材料之機械與疲勞性質 13
2-6-1 奈米補強材於環氧樹脂中之分散性 13
2-6-2 奈米補強材於高分子材料之機械性質探討 14
2-6-3 奈米補強材於碳纖維積層板之機械性質探討 16
2-7 溫濕效應對複合材料之影響 17
第三章 實驗方法 19
3-1 實驗材料與試劑 19
3-2 實驗設備與儀器 20
3-2-1 工作設備 20
3-2-2 測試儀器 22
3-3 試片製備流程 26
3-3-1 石墨烯微片/奈米碳管/環氧樹脂試片製備 26
3-3-2 石墨烯微片/奈米碳管/纖維積層板試片製備 27
3-4 實驗測試方法 28
3-4-1 測試方法及流程 28
3-4-2 環境效應測試 31
3-4-3 動態扭轉疲勞測試(Dynamic Torsion Fatigue Test) 32
第四章 結果與討論 33
4-1 材料鑑定分析 33
4-1-1 FI-IR官能基鑑定分析 33
4-1-2 TEM形態學觀察 34
4-2 改質石墨烯微片/環氧樹脂複合材料機械性質 34
4-3 改質石墨烯微片/奈米碳管/環氧樹脂複合材料機械性質研究 35
4-3-1 拉伸強度測試分析 35
4-3-2 彎曲強度測試分析 36
4-3-3 衝擊強度測試分析 36
4-3-4 改質石墨烯微片/奈米碳管/環氧樹脂複合材料綜合討論 37
4-4 改質石墨烯微片/奈米碳管/纖維積層板複合材料之物理性質 39
4-4-1 熱性質分析 39
4-5 改質石墨烯微片/奈米碳管/纖維積層板複合材料機械性質之研究 40
4-5-1 彎曲強度測試分析 40
4-5-2 層間剪切強度測試分析 41
4-5-3 扭轉測試分析 41
4-5-4 抗衝擊強度測試分析 42
4-5-5 破裂韌性測試分析 43
4-6 改質石墨烯微片/奈米碳管/纖維積層板複合材料溫濕度預處理機械性質之研究 44
4-6-1常溫高濕(25℃/85%RH)預處理機械強度分析 44
4-6-2高溫常濕(85℃/65%RH)預處理機械強度分析 45
4-6-3高溫高濕(85℃/85%RH)預處理機械強度分析 46
4-6-4 溫濕預處理機械強度綜合比較 47
4-7 改質石墨烯微片/奈米碳管/纖維積層板複合材料動態扭轉疲勞測試之研究 48
4-8 SEM破壞斷面表面形貌 52
4-8-1 環氧樹脂破壞斷面觀察 52
4-8-2 纖維積層板破壞斷面觀察 53
第五章 結論 55
5-1 結論 55
5-2 未來展望 56
參考文獻 57
附表….. 64
附圖….. 72

[1] S. Iijima, “Helical microtubes of graphitic carbon,” Nature; 56: 354, 1991.
[2] 黃淑娟, “新碳材時代-從奈米碳管到石墨烯,”工業材料雜誌291期, 2011.
[3] J. N. Coleman, U. Khan and Y. K. Gun'ko, “Mechanical reinforcement of polymers using carbon nanotubes,” Advanced Materials, vol. 18, pp. 689-706, 2006.
[4] K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advance, Z. Hashin and C. T. Herakovich, eds., Pergamon Press, New York, pp. 399-420, 1983.
[5] August Wöhler, “Wöhler's experiments on the strength of metals,” Engineering, New, vol. 4, pp. 160-161, 1867.
[6] D. F. Devitt, R. A. Schapery and W. L. Bradley, “A Method for Determining the Mode I Delamination Fracture Toughness of Elastic and Viscoelastic Composite Materials,” Journal of Composite Materials, vol. 14, pp. 270-270,1980.
[7] A. A. Griffith, “The phenomena of rupture and flow in solids,” Phil. Trans. Roy. Soc. of London, A221, pp. 163–197, 1921.
[8] G. R. Irwin, “Fracture dynamics,” Fracturing of Metals, ASM publ., pp. 147–166, 1948.
[9] G. R. Irwin, “Fracture. Handbuch der Physik VI. Flüge Ed.,” Springer, pp. 551–590. 1958.
[10] J. R. Rice, “A path independent integral and the approximate analysis of strain concentrations by notachs and cracks,” J. Appl. Mech., pp. 379–386, 1968.
[11] P. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, vol. 85, pp. 528, 1963.
[12] B. Harris, H. Reiter, T. Adam, R. F. Dickson and G. Fernando, “Fatigue behaviour of carbon fibre reinforced plastics,” COMPOSITES. volume 21, 0010-4361/90/050232-11, 1990.
[13] H. T. Hahn and R.Y. Kim, “Fatigue Behavior of Composite Laminate,” Journal of Composite Materials, Vol. 10, pp.156-180, 1976.
[14] J. M. Whitney, “Fatigue Characterization of Composite Materials,” Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, pp.133-151, 1981.
[15] W. Hwang and K. S. Han, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, Vol. 20, pp.154-165, 1986.
[16] 蕭世明, “含磷/氮難燃高分子之製備與熱穩定性質,” 國立中興大學化學工程學系碩士論文, 2001.
[17] 陳平、王德中編著, “環氧樹脂及其應用,” 化學工業出版社, 北京, 2004.
[18] C. C. Riccardi and R. J. J. Williams, Journal of Applied Polymer Science; 32: 3445, 1986.
[19] 王國書, “奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究,” 國立清華大學動力機械工程學系碩士論文, 2007.
[20] T. W. Odom﹐J. L. Huang﹐P. Kim and C. M. Lieber﹐ “Structure and electronic properties of carbon nanotubes,” J. Phys. Chem. B; 104: 2794, 2000.
[21] S. Amelinckx et. al, “Electron diffraction and microscopy of nanotubes,” 1475-7.
[22] 成會明, “納米碳奈米管制備,結構,物性及應用,” 化學工業出版社, 北京, 2002.
[23] C. Lee, X, Wei, J. W. Kysar and J. Hone, “Measurement of the elastic properities and instrinsic strength of monolayer grapheme,” Science, vol. 321, pp. 385-388, 2008.
[24] K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva and A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
[25] X. Lu, M. Yu, H. Huang and R. S. Ruoff, “Tailoring graohene with the goal of achieving single sheets,” Nanotechnology, vol. 10, pp. 269-272, 1999.
[26] X. Li, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nature Nanotechnology, vol. 3, pp. 538, 2008.
[27] J.F. Paiva, S. Mayer and M.C. Rezende, “Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field,” Materials Research, vol. 8, pp.1,91-97, 2005.
[28] D. R. Bortz, C. Merino and I. Martin-Gullon, “Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates,” Composites Part A: Applied Science and Manufacturing, 2011.
[29] B.C. Auman, T. L. Myers and D. P. Higley, “Synthesis and characterization of polyimides based on new fluorinated 3,3'-diaminobiphenyls,” Journal of Polymer Science Part a: Polymer Chemistry, vol. 35, pp. 24-41, 1997.
[30] A. Hirsch and O. Vostrowsky, “Functionalization of carbon nanotubes,” Top Curr Chem, vol. 245, pp. 193-237, 2005.
[31] M. Alvaro, “Sidewall Functionalization of Single-Walled Carbon Nanotubes with Nitrile Imines. Electron Transfer from the Substituent to the Carbon Nanotube,” J. Phys. Chem. B, 108, pp. 91-126, 2004.
[32] S. G. Prolongo, M. R. Gude and A. Urena, “Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment,” Composites Science and Technology 71, pp. 765-771, 2011.
[33] 鄧至均, “奈米碳材/環氧樹脂複合材料之製備與導熱性質研究,”國立清華大學化學工程系碩士論文, 2010.
[34] D. Cai and M. Song, “Recent advance in functionalized graphene/polymer nanocomposites,” J. Mater. Chem., vol. 20, pp. 7906-7915, 2010.
[35] L. J. Cote, J. Kim, V. C. Tung, J. Luo, F. Kim and J. Huang, “Graphene oxide as surfactant sheets,” Pure and Applied Chemistry, vol. 83, pp. 95, 2011.
[36] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnsond and J. E. Fischer, “Carbon nanotubes composites for thermal management,” Appl. Phys. Lett. 80, pp. 2767-2770, 2002.
[37] M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Z. Yu and N. Koratkar, “Enhanced mechanical properties of nanocomposites at low graphene content,” ACS Nano, vol. 3, pp. 3884-3890, 2009.
[38] M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small, vol. 6, pp. 179-183, 2010.
[39] J. H. Lee, K. Y. Rhee and S. J. Park, “Silane Modification of carbon nanotubes and its effects on the material properties of carbon/CNT/epoxy three-phase composites,” Composites: Part A 42, pp. 478-483, 2011.
[40] I. Zaman, T. T. Phan, H. C. Kuan, Q. Meng, L. T. Bao La, L. Luong, O. Youssf and J. Ma, “Epoxy/graphene platelets nanocomposites with two levels of interface strength,” Polymer, 2011.
[41] J. Qiu and S. Wang, “Enhancing polymer performance through graphene sheets,” Journal of Applied Polymer Science, vol. 119, pp. 3670-3674, 2011.
[42] D. R. Bortz, E. G. Heras and I. Martin-Gullon, “Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites,” Macromolecules, 2012.
[43] S. Y. Yang, W. N. Lin, Y. L. Huang, H. W. Tien, J. Y. Wang, C. C. Ma, S. M. Li and Y. S. Wang, “Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites,” Carbon, vol. 49, pp. 793-803, 2011.
[44] L. C. Tang, Y. J. Wan, D. Yan, Y. B. Pei, L. Zhao, Y. B. Li, L. B. Wu, J. X. Jiang, G. Q. Lai, “The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites,” Carbon, vol. 60, pp. 16-27, 2013.
[45] F. Yavari, M. Rafiee, J. Rafiee, Z. Z. Yu and N. Koratkar, “Dramatic increase in fatigue life in hierarchical graphene composites,” ACS Applied Materials & Interfaces, 2010.
[46] M.T. Kim, K.Y. Rhee, J.H. Lee, D. Hui, and K.T. Lau, “Property enhancement of a carbon fiber/epoxy composite by using carbon Nanotubes,” Composites: Part B 42, pp. 1257-1261, 2011.
[47] D. C. Davis, J. W. Wikerson, J. Zhu, V. G. Hadjiev, “A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes,” Compos Sci Technol, 71, pp. 1089-1097, 2011.
[48] 楊又璇, “多壁奈米碳管對纖維補強高分子預浸材積層板複合材料機械性質與扭轉疲勞特性之研究,” 國立清華大學動力機械工程學系碩士論文, 2011.
[49] N. T. Phonga, M. H. Gabra, K. Okuboa, B. Chuongb, T. Fujiia, “Improvement in the mechanical performances of carbon fiber/epoxy composite with addition of nano-(Polyvinyl alcohol) fibers,” Composite Structures, vol. 99, pp. 380-387, 2013.
[50] J. Morton, S. Kellas and S. Bishop, “Damage characteristics in notched carbon fiber composites subjected to fatigue loading-environmental effects,” Journal of composite materials, vol. 22, pp. 657-673, 1988.
[51] S. Kellas, J. Morton and P. Curtis, “The effect of hygrothermal environments upon the tensile and compressive strengths of notched CFRP laminates. Part 1: Static loading,” Composites, vol. 21, pp. 41-51, 1990.
[52] R. Selzer and K. Friendrich, “Mechanical Properties and Failure Behavior of Carbon Fiber Reinforced Polymer Composites under the Influence of Moisture,” Composite, vol. 28, pp. 594-604, 1997.
[53] T. A. Collings, D. L. Mead and D. E. W. Stone,“ The Effects of High Temperature Excursions on Environmentally Exposed CFC,” RAE Technical Report, TR 85074 (Royal Aircraft Establishment, Farnborough, UK), 1985.
[54] Yu. I. Dimitrienko,“ Thermomechanical Behavior of Composite Materials and Structures under High Temperature: 1. Material,” Composite, vol. 28, pp. 463-471, 1997.
[55] Yu. I. Dimitrienko,“ Thermomechanical Behavior of Composite Materials and Structures under High Temperature: 2. Structure,” Composite, vol. 28, pp. 463-471, 1997.
[56] 李宗勳, “預紐、溫度效應及熱壓修補對擬均向性Gr/PEEK複合材料疲勞行為之影響,” 國立清華大學動力機械工程學系碩士論文, 1999.
[57] “EPO-622TM Type Resin data sheet,”EPOTECH COMPOSITE CORPORATION, Ltd.
[58] ASTM D638-10, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, 2010.
[59] ASTM D790-10, “Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, 2010.
[60] ASTM D256-10, “Standard Test Method for Determining the Pendulum Impact Resistance of Notched Specimens of Plastics,” Annual Book of ASTM Standards, 2010.
[61] ASTM D2344/D2344M-00, “Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates,” Annual Book of ASTM Standards, 2006.
[62] ASTM D5528-01, “Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites1,” 2007.
[63] E. J. Ripling, S. Mostooy and R. L. Patrick, “Measuring fracture toughness of adhesive joints,” Material Research & Standards, Vol. 4, p.p. 129-134, 1964.
[64] ASTM E831-12, “Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis,” Annual Book of ASTM Standards.
[65] ASTM D3479/D3479M-06, “Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials,” 2007.
[66] ASTM E739-91, “Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data,” 2004.
[67] 林意生、李莉莉、趙季若、殷敬華, “HDPE氯化原位家接枝MAH及產物結構,” 應用化學, 第22卷 第12期, 2005.
[68] 陳眉秀, “石墨烯微片/環氧樹脂預浸材對碳纖維補強複合材料之機械性質與拉伸疲勞暨溫濕老化影響效應之研究,” 國立清華大學動力機械工程學系碩士論文, 2012.
[69] R. C. Chang, C. C. Tsao, K. Y. Chen1, “Ultrasonic Delamination Inspection of Composite Materials under Fatigue Load,” Journal of Advanced Engineering, vol. 2, no. 3, pp. 151-155, 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊