(18.204.2.190) 您好!臺灣時間:2021/04/19 06:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李忠諺
論文名稱:以ALD成長氧化鋅鎵透明導電薄膜應用於紫光發光二極體上
論文名稱(外文):GZO Transparent Conductive Layer Grown by ALD on Violet Light-Emitting Diodes
指導教授:吳孟奇
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:74
中文關鍵詞:原子層沉積氧化鋅鎵透明導電薄膜紫光發光二極體
外文關鍵詞:atomic layer deposition (ALD)gallium-doped ZnO (GZO)Violet LEDsInGaN/GaN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,氧化鋅鎵(GZO)已逐漸成為一個受矚目的透明導電薄膜材料,並且被應用於氮化銦鎵(InGaN)系列的發光二極體(LEDs)上。而GZO本身是屬於寬能隙n-type的半導體氧化物,透過我們研究所得到的結果,發現經由ALD (atomic-layer-deposition)成長厚度為250 nm的GZO薄膜具有高的摻雜濃度(~1×1021 cm-3)及低電阻率(~4×10-4 Ω-cm)的特性,此外,ALD-GZO薄膜在可見光波段有高達約90%的穿透率。
為了改善GZO薄膜在短波長的穿透率,我們透過快速熱擴散(rapid-thermal diffusion)的新方法,將鋅(Zn)與鎂(Mg)以driven-in的方式摻入ALD-GZO薄膜裡面,藉由紫外光可見光光譜儀量測結果,發現ALD-GZO薄膜在摻入Zn與Mg後其吸收邊界有明顯的藍移現象,並且其能隙也隨之增加。
另外,我們使用鎳/金(Ni/Au)來做為LEDs的p-GaN接觸電極,藉由調整Ni的厚度以及熱退火的溫度來獲得Ni/Au與p-GaN之間最佳的歐姆接觸,並且根據CTLM (circular transmission line model)的理論求得其最佳之特徵接觸電阻值(specific contact resistance, ρc)為1.4×10-3 Ω•cm2。
接著我們將Zn與Mg摻入ALD-GZO薄膜來做為透明導電層應用在400 nm及380 nm的InGaN/GaN紫光LEDs上,發現其EL (electroluminescence)的發光強度在注入電流為20 mA的情況下,以Zn與Mg摻入ALD-GZO做為透明導電層的400 nm與380 nm的LEDs與單純只以ALD-GZO來做透明導電層的LEDs相比較,分別提升了約1.4及2.5倍的強度,並且其光輸出功率在注入電流為20 mA的情況下,400 nm與380 nm的LEDs分別從6.1 mW提升至7.7 mW,以及0.7 mW提升至1.9 mW,光輸出功率分別增強了27%與166%,結果顯示將Zn與Mg以driven-in的方式摻入ALD-GZO薄膜,對於應用在較短波長的紫光LEDs上,其發光強度有更明顯的改善效果。

In recent years, gallium-doped zinc oxide (GZO) has passed into a very popular material as transparent conductive oxide (TCO) films to apply on InGaN-based light-emitting diodes (LEDs). GZO is a wide band-gap and n-type semiconducting oxide, which can be used as a transparent contact. The results reveal that the atomic layer deposition (ALD)-GZO films with a thickness of 250 nm have an electron concentration of ~1 × 1021 cm-3, low resistivity of ~4 × 10-4 Ω-cm, and high transmittance (~90%) at the visible wavelengths.
In order to enhance the transmittance in short wavelengths of GZO films, we employed Zn and Mg driven-in ALD-GZO films via the novel method of rapid-thermal diffusion. The ultraviolet-visible spectrum shows a significant blue-shift of the absorption band edge and an increasing optical band gap for the Zn and Mg driven-in GZO films.
Additionally, we used circular transmission line model (CTLM) to perform the experiment of Ni/Au ohmic contact on p-GaN, and tried to adjust the thickness of Ni and annealing temperature to obtain optimum Ni/Au ohmic contact on p-GaN. We acquired the best specific contact resistance (ρc) is 1.4 × 10-3 Ω•cm2.
By means of Zn and Mg driven-in GZO as transparent conducting layer onto 400- and 380-nm InGaN/GaN, the electroluminescence intensity of 400- and 380-nm LEDs with Zn and Mg driven-in GZO films has nearly 1.4 and 2.5 times of magnitude stronger than the conventional LEDs only with GZO films at 20 mA. The 400- and 380-nm LEDs with Zn and Mg driven-in GZO films also reveal a light output power of 7.7 and 1.9 mW at 20 mA as compared to the conventional LEDs only with GZO films of 6.1 and 0.7 mW, respectively. The 400- and 380-nm LEDs also exhibit an enhancement of 27% and 166% in light output power. These results present that Zn and Mg driven-in ALD-GZO films have significant improvement for the light extraction on the shorter wavelengths for the violet and ultraviolet (UV) LEDs.

中 文 摘 要..........................................................................I
Abstract...........................................................................II
誌 謝..............................................................................III
Contents...........................................................................IV
List of Figure.....................................................................VI
List of Table......................................................................XI
Chapter 1. Introduction............................................................1
1-1 Development of III-nitride-based light-emitting diodes.........................1
1-2 Research motivation and purpose................................................3
Chapter 2. The Basis of Theory and Characterization Instruments....................7
2-1 Basic theory of light-emitting diodes..........................................7
2-2 The structure and characteristic of GZO films..................................9
2-3 Atomic layer deposition system.................................................10
2-4 Theory of current spreading layer..............................................11
2-5 Ni/Au ohmic contact on p-GaN...................................................12
2-6 Theory of circular transmission line model.....................................13
2-7 Characterization instruments...................................................15
2-7-1 I-V and C-V characteristic measurement systems...............................15
2-7-2 Electroluminescence (E-L) measurement system.................................15
2-7-3 Luminous Intensity (L-I) measurement.........................................16
2-7-4 Divergence angle measurement system..........................................17
Chapter 3. LEDs Device Structure and Fabrication...................................27
3-1 Epitaxial structure design concept.............................................27
3-2 The design of Mask.............................................................27
3-3 Zn and Mg driven-in ALD-GZO films..............................................28
3-4 Experimental process of CTLM...................................................28
3-5 Experiment process of violet LEDs..............................................29
Chapter 4. Result and Discussion...................................................39
4-1 Electro-optical characteristics of Zn and Mg driven-in ALD-GZO films...........39
4-1-1 Effect of post-annealing temperature on the ALD- GZO films...................39
4-1-2 Effect of driven-in temperature and driven-in source on the ALD-GZO films....40
4-2 The characteristics analysis of Ni/Au ohmic contact on p-GaN...................43
4-3 Electro-optical characteristics of violet LEDs.................................45
4-3-1 I-V characteristics analysis of violet LEDs..................................46
4-3-2 C-V characteristics analysis of violet LEDs..................................48
4-3-3 Electroluminescence (EL) spectrum of violet LEDs.............................49
4-3-4 Luminous Intensity (L-I) of violet LEDs......................................50
4-3-5 Near-field light intensity of violet LEDs....................................51
4-3-6 Divergence angle of violet LEDs..............................................51
4-3-7 Frequency response of violet LEDs............................................51
Chapter 5. Conclusions.............................................................70
References.........................................................................71
[1]H. Morkoc, Nitride Semiconductors and devices, Springer-Verlag, Berlin (1999).
[2]G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. Han, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, IEEE Trans. Electron Devices, vol. 47, pp. 692-696 (2000).
[3]S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, C. H. Liu, Solid-State Electronics, vol. 47, pp. 1539-1542 (2003).
[4]E. F. Schubert Light-Emitting Diodes (Cambridge Univ Pess), www.LightEmittingDiodes.org.
[5]C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C.S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, J. M. Tsai, Materials Science and Engineering, vol. 106, pp. 69-72 (2004).
[6]L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, IEEE J Quantum Electron., vol. 38, pp. 446-450 (2002).
[7]L. W. Wu, S. J. Chang, Y. K. Su, R. W Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tasi, J. K. Sheu, Solid-State Electronics, vol. 47, pp. 2027-2030 (2003).
[8]G. B. Stringfellow, and M. G. Craford, IEEE, vol. 85, pp. 1752-1764 (1997).
[9]S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, Appl. Phys. Lett., vol. 66, pp. 1249 (1995).
[10]S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett., vol. 69, pp. 4188-4190 (1996).
[11]Y. A. Chang, "Study of Structure Optimization in III-V Semi -conductor Light Emitting Devices", p. 3-4 (2007).
[12]H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett., vol. 48, pp. 353-355 (1986).
[13]H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114 (1989).
[14]S. Nakamura, N. Iwasa, M. Senoh and T. Mukai, Jpn. J. Appl. Phys., vol. 31, pp. 1258-1266 (1992).
[15]S. Nakamura and T. Mukai, Jpn. J. Appl. Phys., vol. 31, pp. L1457-L1459 (1992).
[16]S. Nakamura, T. Mukai and M. Senoh, J. Appl. Phys., vol. 76, pp. 8189-8191 (1994).
[17]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Jpn. J. Appl. Phys., vol. 36, pp. 1059-1061 (1997).
[18]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys., vol. 31, pp. L139-L142 (1992).
[19]M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, IEEE, vol. 19, pp. 1880-1882 (2007).
[20]S. C. Huang, K. C. Shen, D. S. Wuu, P. M. Tu, H. C. Kuo, J. Appl. Phys., vol. 110, pp. 123102 (2011).
[21]Richard Gutt, Thorsten Passow, Michael Kunzer, Wilfried Pletschen, Lutz Kirste, Kamran Forghani, Ferdinand Scholz, Klaus Köhler, and Joachim Wagner, Appl. Phys. E., vol. 5, pp. 032101 (2012).
[22]Siddha Pimputkar, James S. Speck, Steven P. DenBaars and Shuji Nakamura, Nature Photonics, vol. 3, pp. 180-182 (2009).
[23]S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett., vol. 69, pp. 4188 (1996).
[24]E. S. Jeon, V. Kozlov, Y.-K. Song, A. Vertikov, M. Kuball, A. V. Nurmikko, H. Liu, C. Chen, R. S. Kern, C. P. Kuo, and M. G. Craford, Appl. Phys. Lett., vol. 69, pp. 4194 (1996).
[25]P. Perlin, V. Iota, B. A. Weinstein, P. Wisniewski, T. Suski, P. G.. Eliseev, and M. Osinski, Appl. Phys. Lett., vol. 70, pp. 2993 (1997).
[26]Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, S. Fujita, and S. Nakamura, Appl. Phys. Lett., vol. 70, pp. 981 (1997).
[27]C.-C. Pan, "Investigation of InGaN Ultraviolet Light-Emitting Diodes", pp.7 (2007).
[28]S. H. Tu, C. J. Lan, S. H. Wang, M. L. Lee, K. H. Chang, R. M. Lin, J. Y. Chang, and J. K. Sheu, Appl. Phys. Lett., vol. 96, pp. 133504-133506 (2010).
[29]C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, IEEE Electron Device Lett., vol. 34, pp. 611-613, May 2013.
[30]J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, and G. C. Chi, Journal of the Electrochemical Society, vol. 154, pp. H521-H524 (2007).
[31]Y. Matsumoto, M. Murakami, Z. W. Jin, A. Ohtomo, M. Lippmaa, M. Kawasaki, and H. Koinuma, Jpn. J. Appl. Phys. Lett., vol. 38, pp. L603-L605 (1999).
[32]郭浩中、賴芳儀、郭守義, "Principles and Applications of Light -emitting Diode", ( 2009).
[33]P. Nunes, E. Fortunato, R. Martins, International Journal of Inorganic Materials, vol. 3, pp. 1125-1128 (2001).
[34]T. Minami, S. Suzuki, T. Miyata, "Electrical Conduction Mechanism of Highly Transparent and Conductive ZnO Thin Films", MRS Symp. Proc., vol. 666 (2001).
[35]T. Minami, "New n-type transparent conducting oxides", MRS Bulletin /Aug. (2000).
[36]C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, M. Wuttig, J. Appl. Phys., vol. 95, pp. 1911-1917 (2004).
[37]J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, G. C. Chi, Journal of The Electrochemical Society, vol. 154, pp. H521-H524 (2007).
[38]Thompson G.H.B., "Physics of Semiconductor Laser Devices", New York, pp. 572 (1980).
[39]Rensselaer Polytechnic Institute, Troy, New York, "LIGHT EMITTING DIODES", Second Edition, E. Fred Schubert.
[40]C. Y. Hu, Z. X. Qin, Z. X. Feng, Z. Z. Chen, Z. B. Ding, Z. J. Yang, T. J. Yu, X. D. Hu, S. D. Yao, G. Y. Zhang, Materials Science and Engineering B, vol. 128, pp. 37-43 (2006).
[41]楊謹隆, 陳貞夙, "氮化鎵元件之製程科技", 電子月刊 第75 期, 130 (2001).
[42]J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, J. J. Kai, J. Appl. Phys., vol.86, pp. 4491-4497 (1999).
[43]L. C. Chen, J. K. Ho, C. S. Jong, C. C. Chiu, K. K. Shih et al, Appl. Phys. Lett., vol. 76, pp. 3703-3705 (2000).
[44]L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho et al, J. Appl. Phys., vol. 86, pp. 3826-3832 (1999).
[45]X. A. Cao, E. B. Stokes, P. Sandvik, N. Taskar, J. Kretchmer, D. Walker, Solid-State Electronics, vol. 46, pp. 1235-1239 (2002).
[46]G. K. Reeves, "Specific contact resistance using a circular transmission line model", Solid-State Electron, vol. 23, pp. 487-490 (1980).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔