跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 12:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:汪楚剛
研究生(外文):Wang, Chu-Kang
論文名稱:具可嵌入式高壓側倍壓模組之新隔離型雙向直流轉換器
論文名稱(外文):A Novel Isolated Bidirectional DC Converter With Embedded High Side Voltage Multiplier Module
指導教授:潘晴財吳財福
指導教授(外文):Pan, Ching-TsaiWu, Tsai-Fu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:128
中文關鍵詞:微直流電網雙向直流轉換器嵌入式高壓側模組交錯式控制
外文關鍵詞:DC microgrudbidirectional dc converterembedded high side voltage multiplier moduleinterleave control
相關次數:
  • 被引用被引用:3
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要目的在於針對微直流電網與其所並聯之電池儲能系統之間的介面電路,提出一新型雙向電力轉換器,以作為電池儲能與釋能調節微直流電網系統之電力品質之應用。基本上本論文主要貢獻可概述如下幾點。首先,本論文提出一新型雙向直流轉換器電路,不僅具有電器隔離特性,並可作為儲能充電器與反向釋能至微電網系統,而其特色為高壓側模組具有嵌入式之功能,即可配合電池不同電壓層級之需求選用N倍壓模組,N≧2,且自2倍壓模組開始,每增加一倍電壓,僅需增加一個主動開關與一個電容器;至於低壓側則採用雙向倍流器架構,可減少變壓器電流及採用同步整流控制而大大減少耗損。其次,本論文更進一步採用二組二倍壓轉換器以高壓側串聯低壓側並聯之架構,提升至更大容量,同時作更深入之理論分析與直流模型與小信號模型推導,以利配合併聯微直流電網系統之調節控制。最後,根據本文理論分析之結果,實際製作壹台規格為高壓側電壓400V、低壓側電壓48V與額定功率為1kW之雛型電路,以驗證所提新型轉換器之可行性。實測結果顯示該轉換器於降壓模式下之最高效率可達94.1%,升壓模式下之最高效率可達94.4%。
The main purpose of this thesis is focused on the study of an interface between a battery energy storage system and a paralleled DC microgrid with a view to develop to a novel bidirectional dc converter for regulating the DC microgrid. Basically, the major contributions of this thesis can be summarized as follows. First, a new bidirectional dc converter structure is proposed. This new topology can not only achieve electrical isolation and bidirectional power flow capability, but also can be embedded with a voltage multiplier module in high voltage side to obtain N times voltage step up/down, where N is a positive integer greater than is equal to two. Also, starting from N≧2, only one more active switch and one more capacitor are required for increasing/decreasing one more voltage level step up/down. Secondly, to demonstrate the way of increasing the power handling capability, two sets of the proposed bidirectional basic converter are interconnected together such that the high voltage sides are in series and the low voltage sides are in parallel. Meanwhile, the corresponding DC and AC models are derived for feedback controller design. Finally, a 1kW prototype with 400V high side voltage and 48V low side voltage have been constructed to verify the feasibility of the proposed converter. It can be seen that maximum efficiencies are 94.1% and 94.4% for step down and step up operation modes respectively.
摘 要
英文摘要
誌 謝
目 錄
圖 目 錄
表 目 錄
第一章 緒 論
1.1 研究動機
1.2 文獻回顧
1.3 本論文之貢獻
1.4 論文內容概述
第二章 嵌入式倍壓模組簡介
2.1 前言
2.2 二倍壓倍壓模組架構與工作原理
2.3 延伸至多倍壓架構
第三章 新隔離型雙向直流轉換器
3.1 前言
3.2 四倍壓雙向直流轉換器架構與工作原理
3.3 四倍壓雙向直流轉換器之數學模型推導
第四章 實體電路製作與量測結果
4.1 前言
4.2 功率電路製作
4.3 控制電路設計與實現
4.4 模擬與實測結果
第五章 結 論
5.1 論文內容總結
5.2 未來工作
參考文獻
[1] M. Begovic, A. Pregelj, A. Rohatgi, and C. Honsberg, “Green power: status and perspectives,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1734-1743, Dec. 2001.
[2] H. Falk, “Prolog to renewable energy today and tomorrow,” Proceedings of the IEEE, vol. 89, no. 8, pp. 1214-1215, Aug. 2001.
[3] T. Gilchrist, “Fuel cell to the fore,” IEEE Spectrum, vol. 35, no. 11, pp.35-40, 1998.
[4] M. W. Ellis, M. R. Von Spakovsky, and D. J. Nelson, “Fuel cell system: efficient, flexible energy conversion for the 21st century,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1808-1818, 2001.
[5] F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electronics, vol. 19, no. 5, pp. 1184-1194, 2004.
[6] P. Das, B. Laan, S. A. Mousavi, and G. Moschopoulos, “A nonisolated bidirectional zvs-pwm active clamped dc–dc converter,” IEEE Trans. on Power Electronics, vol. 24, no. 2, pp. 553-558, February 2009.
[7] L. R. Chen, N. Y. Chu, C. S. Wang, and R. H. Liang, “Design of a reflex-based bidirectional converter with the energy recovery function,” IEEE Trans. on Industrial Electronics, vol. 55, no. 8, pp. 3022-3029, August 2008.
[8] R. J. Wai and R. Y. Duan, “High-efficiency bidirectional converter for power sources with great voltage diversity,” IEEE Trans. on Power Electronics, vol. 22, no. 5, pp. 1986-1996, September 2007.
[9] C. C. Hua and C. H. Hsu, “Implementation of a regenerative pulse and equalization battery charger using a dsp,” International Conference on Power Electronics and Drives Systems, vol. 2, pp. 955-959, 2005.
[10] H. W. Seong, H. S. Kim, K. B. Park, G. W. Moon, and M. J. Youn, “High Step-Up DC-DC Converters Using Zero-Voltage Switching Boost Integration Technique and Light-Load Frequency Modulation Control,” IEEE Trans. on Power Electronics, vol. 27, no. 3, pp. 1383-1400, March 2012.
[11] W. C. Liao, T. J. Liang, H. H. Liang, H. K. Liao, L. S. Yang, K. C. Juang, and J. F. Chen, “Study and Implementation of a Novel Bidirectional DC-DC Converter with High Conversion Ratio,” International Conference on Energy Conversion Congress and Exposition (ECCE), pp. 134-140, 2011.
[12] R. K. Singh, and S. Mishra, “A Magnetically Coupled Feedback-Clamped Optimal Bidirectional Battery Charger,” IEEE Trans. Power Electronics, vol. 60 no. 2 pp. 422-432, Feb. 2013.
[13] Eduardo F. de Oliveira, Guilherme A. T. Hertz, Marcelo de C. Gino, and René P. Torrico-Bascopé, “Magnetically Coupled Bidirectional DC-DC Converter Based On The Three State Switching Cell, ” Power Electronics Conference, pp. 679 - 685, 2009.
[14] Q. Wei, C. Dong, , Jorge G. Cintrón-Rivera, M. Gebben, D. Wey, and Z. P. Fang, “A Switched-Capacitor DC–DC Converter With High Voltage Gain and Reduced Component Rating and Count,” IEEE Trans. Industrial Electronics, vol. 48 no. 4 pp. 1397-1406, July/Auguest. 2012.
[15] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems,” IEEE Trans. Power Electronics, vol. 28 no. 4 pp. 1741-1755, April. 2013.
[16] L. Corradini, D. Seltzer, D. Bloomquist, R. Zane, D. Maksimovi´, and B. Jacobson, “Minimum Current Operation of Bidirectional Dual-Bridge Series Resonant DC/DC Converters,” IEEE Trans. Power Electronics, vol. 27 no. 7 pp. 3266-3276, July. 2012.
[17] Z. Zhe, O. Ziwei, O. C. Thomsen, and M. A. E. Andersen, “Analysis and Design of a Bidirectional Isolated DC–DC Converter for Fuel Cells and Supercapacitors Hybrid System,” IEEE Trans. Power Electronics, vol. 27 no. 2 pp. 848-859, Feb. 2012
[18] W. Li, H. Wu, H. Yu, and X. He, “Isolated Winding-Coupled Bidirectional ZVS Converter With PWM Plus Phase-Shift (PPS) Control Strategy,” IEEE Trans. Power Electronics, vol. 26 no. 12 pp. 3560-3570, Dec. 2011.
[19] W. Li, J. Xiao, Y. Zhao, and X. He, “PWM Plus Phase Angle Shift (PPAS) Control Scheme for Combined Multiport DC/DC Converters,” IEEE Trans. Power Electronics, vol. 27 no. 3 pp. 1479-1489, March. 2012.
[20] B. Zhao, Q. Yu, and W. Sun, “Extended-Phase-Shift Control of Isolated Bidirectional DC–DC Converter for Power Distribution in Microgrid,” IEEE Trans. Power Electronics, vol. 21 no. 11 pp. 4667-4680, Nov. 2012.
[21] T. F. Wu, Y. C. Chen, J. G. Yang, and C. L. Kuo, “Isolated Bidirectional Full-Bridge DC–DC Converter With a Flyback Snubber,” IEEE Trans. Power Electronics, vol. 25 no. 7 pp. 1915-1922, July. 2010.
[22] “2.0 Amp output current IGBT gate drive optocoupler,” Aglient Technologies.
[23] “Voltage transducer LV 25-P,” LEM.
[24] “Current transducer LA 55-P,” LEM.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top